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A REGULARIZED ROBUST DESIGN CRITERION FOR
UNCERTAIN DATA

A. H. SAYED, V. H. NASCIMENTO, AND F. A. M. CIPPARRONE

Abstract. The paper formulates and solves a robust criterion for least-squares designs in the
presence of uncertain data. Compared with earlier studies, the proposed criterion incorporates si-
multaneously both regularization and weighting and allows for a large class of uncertainties. The
solution method is based on reducing a vector optimization problem to an equivalent scalar min-
imization problem of a provably unimodal cost function; thus achieving significant reduction in
computational complexity.
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1. INTRODUCTION. As is well-known, many estimation and control prob-
lems rely on solving regularized least-squares problems of the form

min
x

[
xT Qx + (Ax − b)T W (Ax − b)

]
(1.1)

where xT Qx is a regularization term, Q > 0 and W ≥ 0 are Hermitian weighting
matrices, x is an unknown n−dimensional column vector, A is a known N × n data
matrix, and b is a known N × 1 measurement vector. The solution of (1.1) is

x̂ =
[
Q + AT WA

]−1
AT Wb (1.2)

where the invertibility of (Q + AT WA) is guaranteed by the positive-definiteness of
Q.

When the nominal data {A, b} are subject to disturbances and/or uncertainties,
the performance of the optimal estimator (1.1) can degrade appreciably. For example,
if the actual data matrix were (A + δA), for some unknown perturbation δA, then
the estimator (1.1) that is designed based on A alone, and without accounting for
the existence of δA, can perform poorly. This fact has motivated numerous works in
the literature that attempt to robustify the solution of least-squares designs in the
presence of data uncertainties. Some notable methods are the total-least-squares and
the H∞ formalisms (see, e.g., [1, 2] and the many references therein). These methods
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are known to lead to solutions that perform data de-regularization and that can at
times be conservative.

In this work, we propose a robust alternative to the regularized and weighted
least-squares problem (1.1), which will be shown to lead to a regularized solution, as
opposed to a de-regularized solution. This property is useful, especially for on-line
implementations, since the regularized solution does not require existence conditions.
The special case of Q = 0 and W = I (which corresponds to unweighted least-squares
problems without regularization), was studied in [3, 4] by different methods; one relies
on LMI techniques while the other relies on SVD techniques. However, nontrivial
choices for {Q,W} require special care and a new technique is developed herein that
leads to the following contributions. First, the technique can handle a large class
of data uncertainties, as will be explained below. This is achieved by formulating a
problem that allows for a general description of the uncertainty set. Second, we show
how to replace a vector optimization problem by a scalar minimization problem of a
cost function that is provably unimodal. This step is at the heart of the proposed
solution method since it leads to significant simplifications in complexity. A complete
proof of its validity is provided in the appendices at the end of the paper (in order
not to overburden the body of the text with technicalities).

Applications of the proposed methodology to recursive estimation, control, and
data fusion problems appear in [5]–[7]; we refer the reader to these articles for moti-
vation, examples, simulations, and comparisons with other related techniques. As a
brief motivation, one application in the context of state-space estimation is succinctly
described in Sec. 2.3, with full details provided in [6]. In most of the paper, how-
ever, we opt to focus on studying the properties and technical aspects of the robust
least-squares problem that is formulated further ahead in (2.1).

As mentioned above, the formulation in this article is useful for two main rea-
sons. First, it leads to a robust solution that involves regularization rather than de-
regularization. In this way, existence conditions do not arise, which could be a burden
for on-line solutions (see, e.g., [6]). Second, the framework incorporates both regular-
ization and weighting into the cost function. Such extensions are needed in order to
handle, for example, quadratic control and estimation problems where regularization
and weighting are prevalent (see, e.g., [5, 6, 9]). It turns out that the treatment of
these generalizations requires some care and is not an immediate extension of the
unregularized and unweighted case.

2. PROBLEM FORMULATION. A generalization of the cost function in
(1.1) that accounts for uncertainties in the data {A, b} can be obtained as follows.
Introduce the two-variable cost function

J(x, y)
∆
= xT Qx + R(x, y)

where R(x, y) is a modified residual term that is defined by

R(x, y)
∆
=

(
Ax − b + Hy

)T

W

(
Ax − b + Hy

)

Here, H is an N × m known matrix, and y denotes an m × 1 unknown perturbation
vector. When H = 0, J(x, y) reduces to the standard regularized cost function in
(1.1). The presence of H and y in the expression for R(x, y) allows us to account
for uncertainties in the data, as will become more evident from the discussions in the
sequel.
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To guarantee optimal performance in a worst-case scenario, we consider a min-
max optimization problem of the form

x̂ = arg min
x

max
‖y‖≤φ(x)

J(x, y), (2.1)

where the notation ‖ · ‖ stands for the Euclidean norm of its vector argument or the
maximum singular value of its matrix argument. The non-negative function φ(x) is
assumed to be a known bound on the perturbation y and is a function of x only.

Problem (2.1) can be interpreted as a constrained two-player game problem, with
the designer trying to pick an x̂ that minimizes the cost while the opponent {y} tries
to maximize the cost (e.g., [8]). The game problem is constrained since it imposes a
limit (through φ(x)) on how large (or how damaging) the opponent {y} can be. We
shall assume in the sequel that H and φ(x) are not identically zero, i.e,

H 6= 0 and φ(x) 6≡ 0,

since if either is zero, the game problem (2.1) trivializes to the standard regularized
least-squares problem (1.1). The choice of H allows us to handle situations in which
the uncertainties are known to be restricted to a certain subspace.

An initial study of problem (2.1) appears in [9] without the full details and new
properties that are offered in this article and, in particular, without the arguments
and proofs that appear in the appendices for general functions φ(x).

Two useful special cases of the formulation (2.1) are described below. They
correspond to special choices of the function φ(x). These examples are meant to show
how the freedom in selecting φ(x) allows us to handle different uncertainty models.

2.1. A Special Case: Bounded Uncertainties. Consider uncertainties {δA, δb}
that are only known to lie within certain balls of radii {η, ηb}, i.e., they are known to
be bounded and satisfy

‖δA‖ ≤ η, ‖δb‖ ≤ ηb.

Now consider an optimization problem of the form

min
x

max
‖δA‖ ≤ η

‖δb‖ ≤ ηb

[
x

T
Qx +

(
(A + δA)x − (b + δb)

)T

W

(
(A + δA)x − (b + δb)

)]
(2.2)

It can be verified that this problem is a special case of (2.1) since it can be shown to
be equivalent to a problem of the form

min
x

max
‖y‖≤η‖x‖+ηb

[
xT Qx +

(
Ax − b + y

)T

W

(
Ax − b + y

)]
(2.3)

which corresponds to the special choices H = I and φ(x) = η‖x‖ + ηb.
To verify that problems (2.1) and (2.3) are indeed equivalent, we proceed as in

[5] and show that the two variables {δA, δb} in (2.1) can be replaced by a single
variable y, which would therefore allow us to replace the maximization in (2.1) over
two constrained variables, by a maximization over a single constrained variable as in
(2.3).
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Indeed, for any fixed value of x, let Zx denote the set of all vectors z that are
generated as follows:

Zx = {z : z = δAx − δb , ‖δA‖ ≤ η , ‖δb‖ ≤ ηb}

for all possible {δA, δb} within the prescribed bounds. Let also Yx denote the set of
all vectors y that are generated as follows:

Yx = {y : ‖y‖ ≤ η‖x‖ + ηb} .

Then Zx = Yx. That is, if z ∈ Zx then z ∈ Yx (this direction is immediate and
follows from the triangle inequality of norms). Conversely, if y ∈ Yx then y ∈ Zx. To
establish the result for x 6= 0, define for a given y the perturbations:

δA(y) =
η

η‖x‖ + ηb

yxT

‖x‖
, δb(y) = −

ηby

η‖x‖ + ηb
(2.4)

Then {δA(y), δb(y)} are valid perturbations and y = δA(y)x − δb(y) so that y ∈ Zx,
which justifies our claim. [When x = 0, we select δb = −y and δA arbitrary.]

As mentioned before, the special case Q = 0 and W = I was treated in [3, 4] by
different methods; one uses SVD techniques while the other uses LMI techniques. For
this special case, a geometric framework that is similar in nature to the geometry of
least-square problems was also developed in [10, 11].

2.2. A Special Case: Uncertainties in Factored Form. Consider now a
problem of the form

min
x

max
δA,δb

[
xT Qx +

(
(A + δA)x − (b + δb)

)T

W

(
(A + δA)x − (b + δb)

)]
, (2.5)

where the perturbations {δA, δb} are assumed to satisfy a model of the form

[
δA δb

]
= HS

[
Ea Eb

]
(2.6)

where S is an arbitrary contraction, ‖S‖ ≤ 1, and {H,Ea, Eb} are known quantities
of appropriate dimensions. Perturbation models of this form are common in robust
filtering and control and can arise from tolerance specifications on physical parameters
(see [12] for an example). The quantity H allows the designer to restrict the range
of allowable uncertainties {δA, δb} to a certain column span. Assume, for example,
that one wishes to model only uncertainties in the (0, 0) entry of A. Then one could
choose

H = col{1, 0, . . . , 0}, Ea =
[

1 0 . . . 0
]
, Eb = 0,

and S would denote in this case an arbitrary scalar that is less than unity in mag-
nitude. Other choices for {H,Ea, Eb} would correspond to different assumptions on
the uncertainties.

In order to see how (2.5) is related to (2.1), we rewrite the cost in (2.5) as

[
xT Qx +

(
Ax − b + (δAx − δb)

)T

W

(
Ax − b + (δAx − δb)

)]
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so that with y defined as y = S(Eax − Eb) and Hy defined as

Hy
∆
= δAx − δb = HS(Eax − Eb)

problem (2.5) can be verified to be equivalent to the following problem

min
x

max
‖y‖≤‖Eax−Eb‖

[
xT Qx +

(
(Ax − b + Hy

)T

W

(
(Ax − b + Hy

)]

which is again a special case of (2.1) for the particular choice φ(x) = ‖Eax − Eb‖.

2.3. An Application: State Estimation. Before proceeding to a discussion of
the solution and properties of the general problem (2.1), we motivate this optimization
problem by considering an application in the context of state-space estimation.

Thus consider a state-space model of the form

xi+1 = Fixi + Giui, i ≥ 0, (2.7)

yi = Hixi + vi, (2.8)

where {x0, ui, vi} are uncorrelated zero-mean random variables with variances

E







x0

ui

vi







x0

uj

vj




T

 =




Π0 0 0
0 Qiδij 0
0 0 Riδij


 (2.9)

that satisfy Π0 > 0, Ri > 0, and Qi > 0. Here, δij is the Kronecker delta function that
is equal to unity when i = j and zero otherwise. The well-known Kalman filter [13]
provides the optimal linear least-mean-squares (l.l.m.s., for short) estimate of the state
variable given prior observations. It admits the following deterministic interpretation
[14].

Fix a time instant i and assume that a so-called filtered estimate x̂i|i of xi has
already been computed with the corresponding error variance matrix Pi|i. Given
a new measurement yi+1, one can seek to improve the estimate of xi, along with
estimating ui, by solving

min
xi,ui

[
‖xi − x̂i|i‖

2

P
−1

i|i

+ ‖ui‖
2

Q
−1

i

+ ‖yi+1 − Hi+1xi+1‖
2

R
−1

i+1

]
(2.10)

Substituting xi+1 by the state-equation xi+1 = Fixi + Giui, the above cost function
becomes one of the regularized and weighted least-squares form (1.1) and its solution
leads to the Kalman filter recursions.

Now, assume that the state-space model includes parametric uncertainties, say of
the form

xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, i ≥ 0, (2.11)

yi = Hixi + vi, (2.12)

where the uncertainties {δFi, δGi} lie in a certain domain, say of the form

[
δFi δGi

]
= MiS

[
Ef,i Eg,i

]
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for some known matrices {Mi, Ef,i, Eg,i} and an arbitrary contraction S. We can
then consider replacing (2.10) by

min
{xi,ui}

max
δFi,δGi

[
‖xi − x̂i|i‖

2
P−1

i|i

+ ‖ui‖
2
Q−1

i

+ ‖yi+1 − Hi+1xi+1‖
2
R−1

i+1

]
(2.13)

If we substitute xi+1 by its state-equation xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, the
above min-max problem becomes again a special case of the robust cost function (2.1);
actually one of the form (2.5)–(2.6) — see [6] for the details, including numerical ex-
amples and comparison with several other classes of state-space estimation algorithms
such as Kalman filters, H∞ filters, guaranteed-cost filters, and set-valued estimation
filters.

3. SOLUTION OF THE OPTIMIZATION PROBLEM. We now proceed
to the solution of problem (2.1). In particular, we shall show that the solution has a
regularized form, albeit one that operates on corrected data, i.e., it replaces {Q,W}

by corrections {Q̂, Ŵ}. In addition, and significantly, we shall show that the corrected
parameters are determined in terms of the unique minimizing scalar argument, λo,
of a unimodal cost function. In this way, we end up with a technique that enforces
robustness via regularization, rather than de-regularization as is common in many
robust procedures in the literature, and whose optimal solution involves determining
the minimizing argument of a scalar unimodal function; a step that simplifies the
complexity of the solution to great extent.

3.1. Uniqueness of Solution. We start by noting that the condition Q > 0
implies that (2.1) has a unique, finite solution. Indeed, for any given y, the residual
cost R(x, y) is convex in x. Therefore, the maximum

C(x)
∆
= max

‖y‖≤φ(x)
R(x, y) (3.1)

is a convex function in x. In addition, the first term in J(x, y), xT Qx, is strictly
convex in x and radially unbounded (i.e., |xT Qx| goes to infinity as ‖x‖ → ∞) when
Q > 0. We conclude that xT Qx + C(x) is also strictly convex in x and radially
unbounded, which implies that problem (2.1) has a unique global minimum x̂. To
determine x̂, we proceed in steps.

3.2. The Maximization Problem. We first solve (3.1) for any fixed x. Note
that for fixed x, both the cost R(x, y) and the constraint ‖y‖ ≤ φ(x) are convex in y,
so that the maximum

max
‖y‖≤φ(x)

R(x, y)

is achieved at the boundary, ‖y‖ = φ(x). We can therefore replace the inequality
constraint in (3.1) by an equality. Introducing a Lagrange multiplier λ, the solution
to (3.1) can then be found from the unconstrained problem:

max
y,λ

[(
Ax − b + Hy

)T
W

(
Ax − b + Hy

)
− λ

(
‖y‖2 − φ2(x)

)]
. (3.2)

Differentiating (3.2) with respect to y and λ, and denoting the optimal solutions by
{yo, λo}, we obtain the equations

(λoI − HT WH)yo = HT W (Ax − b), ‖yo‖ = φ(x). (3.3)
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It turns out that the solution λo should satisfy λo ≥ ‖HT WH‖. This is because the
Hessian of the cost in (3.2) with respect to y, which is equal to

HT WH − λI

must be nonpositive-definite [15] at λ = λo.1 We should further stress that the solu-
tions {yo, λo} depend on x and we shall therefore sometimes denote this dependence
explicitly by writing {yo(x), λo(x)}2.

At this stage, we do not need to solve the equations (3.3) for {yo, λo}. It is enough
to know that the optimal {yo, λo} satisfy (3.3). Using this fact, we can verify that
the maximum cost in (3.2) is equal to

C(x) = (Ax − b)T
[
W + WH

(
λo(x)I − HT WH

)†
HT W

]
(Ax − b) (3.4)

+ λo(x)φ2(x),

where the notation X† denotes the pseudo-inverse of X.

3.3. The Minimization Problem. The original problem (2.1) is therefore
equivalent to

min
x

[
xT Qx + C(x)

]
. (3.5)

However, rather than minimizing the above cost over n variables, which are the entries
of the vector x, we can instead reduce the problem to one of minimizing a certain cost
function over a single scalar variable (see (3.9) further ahead). For this purpose, we
introduce the following function of two independent variables x and λ,

C(x, λ) = (Ax − b)T
[
W + WH

(
λI − HT WH

)†
HT W

]
(Ax − b) + λφ2(x),

where λ is an independent variable. Then it can be verified, by direct differentiation
with respect to λ and by using the expression for λo(x) from (3.3), that

λo(x) = arg min
λ≥‖HT WH‖

C(x, λ) . (3.6)

In other words, the optimal λo(x) from (3.3) coincides with the argument that mini-
mizes C(x, λ) over λ (with λ restricted to the interval

[
‖HT WH‖,∞

)
.

In this way, problem (2.1) becomes equivalent to

min
x

min
λ≥‖HT WH‖

[
xT Qx + C(x, λ)

]
= min

λ≥‖HT WH‖
min

x

[
xT Qx + C(x, λ)

]
. (3.7)

The cost function in the above expression, viz., J(x, λ) = xT Qx + C(x, λ), is now a
function of two independent variables {x, λ}. This should be contrasted with the cost
function in (3.5). Now, for compactness of notation, introduce the quantities:

W (λ)
∆
= W + WH

(
λI − HT WH

)†
HT W,

M(λ)
∆
= Q + AT W (λ)A,

D(λ)
∆
= AT W (λ)b.

1We refer to the case λo = ‖HT WH‖ as the singular case, while λo > ‖HT WH‖ is called
the regular case. Both cases are handled simultaneously in our framework through the use of the
pseudo-inverse notation.

2In fact, we show in Appendix A that the solution λo(x) is always a continuous function of x;
while there might exist several yo when λo(x) = ‖HT WH‖.
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To solve problem (3.7), we first search for the minimum over x for every fixed value
of λ, which can be done (if φ2(x) is differentiable) by setting the derivative of J(x, λ)
w.r.t. x equal to zero. This shows that any minimum x must satisfy the equation

M(λ)x +
1

2
λ∇φ2(x) = D(λ), (3.8)

where ∇φ2(x) is the gradient of φ2(x) w.r.t. x. Any x satisfying this equation will of
course be a function of λ, and we shall denote it by xo(λ). Now let G(λ) denote the
minimum value of the cost over x, i.e.,

G(λ)
∆
= min

x
[xT Qx + C(x, λ)] = xoT (λ)Qxo(λ) + C(xo(λ), λ).

Then problem (3.7) becomes equivalent to

min
λ≥‖HT WH‖

G(λ).

Thus we see that the solution of (2.1) simply requires that we determine an optimal
scalar parameter λo. The scalar minimization problem that defines λo is simple,
since (as we show in Thm. 3.1 below) G(λ) is unimodal (i.e., there is a unique global
minimum λo, and no other local minima).

3.4. Statement of Solution in the General Case. Whenever φ(x) is a convex
function, the cost J(x, λ) will be strictly convex in x, and the minimization over x on
the right-hand side of Eq. (3.7) will have a unique solution xo(λ) (as was the case with
the above two special cases). We thus have a procedure that allows us to determine
the minimizing xo for every λ. This in turn allows us to re-express the resulting
cost J(xo(λ), λ) as a function of λ alone, say G(λ) = J(xo(λ), λ). In this way, we
concluded above that the solution xo of the original optimization problem (2.1) can
be solved by determining the λo that solves

min
λ≥‖HT WH‖

G(λ) , (3.9)

and by taking the corresponding xo(λo) as xo. We summarize the solution in the
following statement.

Theorem 3.1 (Solution). Consider a regularized and weighted robust least-
squares problem of the form

x̂ = arg min
x

max
‖y‖≤φ(x)

[
xT Qx +

(
Ax − b + Hy

)T

W

(
Ax − b + Hy

)]
(3.10)

where {A, b,H} are known quantities of appropriate dimensions, W ≥ 0, and Q > 0
are known weighting matrices, and φ(x) is a given convex function. It is further
assumed that H and φ(x) are not identically zero. Then problem (3.10) has a unique
global minimum x̂ that can be determined as follows:

1. Introduce the modified matrices

W (λ)
∆
= W + WH

(
λI − HT WH

)†
HT W,

M(λ)
∆
= Q + AT W (λ)A,

D(λ)
∆
= AT W (λ)b.
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2. Let xo(λ) denote the unique solution of the minimization problem

min
x

[
xT Qx + (Ax − b)T W (λ)(Ax − b) + λφ2(x)

]

When φ2(x) is differentiable, xo(λ) can also be found as the unique solution
of the equation

M(λ)x +
1

2
λ∇φ2(x) = D(λ)

where the notation ∇φ2(x) denotes the gradient of φ2(x) w.r.t. x.
3. Introduce the cost function

G(λ) = xoT (λ)Qxo(λ) + C[xo(λ), λ]

4. Let λo denote the solution of the scalar-valued minimization problem

λo = arg min
λ≥‖HT WH‖

G(λ)

5. Then the optimum solution of (3.10) is x̂ = xo(λo). In addition, it holds that
the cost function G(λ) is unimodal, i.e., it has a unique global minimum and
no local minima.

Proof. The only point not yet proven is the fact that G(λ) is unimodal. This
follows from Lemma C.2 in Appendix C, and from the continuity of λo(x) in (3.6),
which is established in Appendix A.2.

We now illustrate the solution method by reconsidering the two special cases we
introduced before. In both examples, φ(x) is convex, so the minimization problem
over x in (3.7) has a unique solution and is easily computable. In one of the examples,
φ2(x) is not differentiable at x = 0.

3.5. Uncertainties in Factored Form. Consider first the special case of Sec. 2.2
with

φ(x) = ‖Eax − Eb‖.

For this choice of φ(x), we obtain

∇φ2(x) = 2ET
a (Eax − Eb) ,

so that the solution of Eq. (3.8), which is dependent on λ, becomes

xo(λ) =

[
M(λ) + λET

a Ea

]−1 (
D(λ) + λET

a Eb

)
. (3.11)

Using this expression for xo(λ) we find that the corresponding function G(λ) is given
by

G(λ) = λET
b Eb + bT W (λ)b − BT (λ)E−1(λ)B(λ),

where W (λ) is as before, and the functions {B(λ), E(λ)} are given by

B(λ) = AT W (λ)b + λET
a Eb,

E(λ) = Q + λET
a Ea + AT W (λ)A.
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We are thus led to the following statement.

Theorem 3.2 (Uncertainties in Factored Form). Consider a regularized and
weighted robust least-squares problem of the form

min
x

max
δA,δb

[
xT Qx +

(
(A + δA)x − (b + δb)

)T

W

(
(A + δA)x − (b + δb)

)]
, (3.12)

where {A, b} are known quantities of appropriate dimensions, W ≥ 0, and Q > 0
are known weighting matrices, and the perturbations {δA, δb} are assumed to satisfy
a model of the form

[
δA δb

]
= HS

[
Ea Eb

]

for some known quantities {H,Ea, Eb} and where S denotes an arbitrary contraction.
Then problem (3.12) has a unique global minimum x̂ that is given by (compare with
(1.2)):

x̂ =
[
Q̂ + AT ŴA

]−1 [
AT Ŵ b + λoET

a Eb

]
(3.13)

where the modified weighting matrices {Q̂, Ŵ} are obtained from {Q,W} via

Q̂
∆
= Q + λoET

a Ea

Ŵ
∆
= W + WH(λoI − HT WH)†HT W

and the nonnegative scalar parameter λo is determined from the scalar-valued opti-
mization

λo = arg min
λ≥‖HT WH‖

G(λ)

where the function G(λ) is defined as

G(λ) = ‖xo(λ)‖2
Q + λ‖Eaxo(λ) − Eb‖

2 + ‖Axo(λ) − b‖2
W (λ)

Here

W (λ)
∆
= W + WH

(
λI − HT WH

)†
HT W

Q(λ)
∆
= Q + λET

a Ea

and

xo(λ)
∆
=

[
Q(λ) + AT W (λ)A

]−1 [
AT W (λ)b + λET

a Eb

]

We thus see that the solution of (3.12) requires that we first determine an optimal
nonnegative scalar parameter, λo, which corresponds to the minimizing argument of
the function G(λ) over the semi-open interval [‖HT WH‖,∞). Compared with the
solution (1.2) of the standard regularized least-squares problem (1.1), we see that the
expression for x̂ in (3.13) is distinct in two important ways:

10



a) First, the weighting matrices {Q,W} need to be replaced by corrected ver-

sions {Q̂, Ŵ}. These corrections are defined in terms of the optimal parameter
λo and they are also dependent on the uncertainty model.

b) Second, the right-hand side of (3.13) contains an additional term that is equal
to λoET

a Eb. This means that, with λo given, the x̂ in (3.13) can be interpreted
as the solution to a regularized least-squares problem of the form

min

x

([
1 xT

] [
λ̂‖Eb‖

2 −λ̂ET
b Ea

−λ̂ET
a Eb Q̂

] [
1
x

]
+

+ (Ax − b)T Ŵ (Ax − b)

)

with a cross-coupling term between x and unity.
The complexity of the solution in the factored uncertainty case is therefore comparable
to that of a standard regularized least-squares problem with the additional task of
determining the optimal scalar parameter λo by minimizing the cost function G(λ)
over the open interval [‖HT WH‖,∞). As is clear from the statement of Theorem 3.1
in the general case, this function is unimodal and has a unique global minimum
over the interval of interest. Therefore, the determination of λo can be pursued by
employing standard search procedures without worries about convergence to undesired
local minima.

3.6. Bounded Uncertainties. Consider next the special case of Sec. 2.1 with

φ(x) = η‖x‖ + ηb.

In this case, solving for xo is not so immediate since Eq. (3.8) now becomes, for any
nonzero x,

x =

[
M(λ) + λη

(
η +

ηb

‖x‖
I

)]−1

D(λ) . (3.14)

Note that x appears on both sides of the equality (except when ηb = 0, in which case
the expression for x is complete in terms of {M(λ), λ, η,D(λ)}). To solve for x in
the general case we let α = ‖x‖ and square the above equation to obtain the scalar
equation in α:

α2 − DT (λ)
[
M(λ) + λη

(
η +

ηb

α

)
I
]−2

D(λ) = 0 . (3.15)

It is shown in Appendix B that a unique solution αo(λ) > 0 exists for this equation if,
and only if, ληηb < ‖D(λ)‖. Otherwise, αo(λ) = 0. In the former case, the expression
for xo, which is a function of λ, becomes

xo(λ) =

[
M(λ) + λη

(
η +

ηb

αo(λ)

)
I

]−1

D(λ) . (3.16)

In the latter case we clearly have xo(λ) = 0.
Substituting the expression for xo(λ) into (3.16) we get

G(λ) = xo(λ)T Qxo(λ) +
(
Axo(λ) − b

)T
W (λ)

(
Axo(λ) − b

)
+ λφ2

(
xo(λ)

)
.

11



We are thus led to the following statement.

Theorem 3.3 (Bounded Uncertainties). Consider a regularized and weighted
robust least-squares problem of the form

min
x

max
‖δA‖ ≤ η

‖δb‖ ≤ ηb

[
x

T
Qx +

(
(A + δA)x − (b + δb)

)T

W

(
(A + δA)x − (b + δb)

)]
(3.17)

where {A, b} are known quantities of appropriate dimensions, W ≥ 0, and Q > 0 are
known weighting matrices, and the perturbations {δA, δb} are assumed to be bounded
by {η, ηb}. Then problem (3.3) has a unique global minimum x̂ that can be determined
as follows:

1. Introduce the modified matrices

W (λ)
∆
= W + W

(
λI − W

)†
W,

M(λ)
∆
= Q + AT W (λ)A,

D(λ)
∆
= AT W (λ)b.

2. For every λ, define

xo(λ) =

{
0 if ληηb < ‖D(λ)‖[
M(λ) + λη

(
η + ηb

αo(λ)

)
I
]−1

D(λ) otherwise

where in the second case, αo(λ) is the unique positive solution of the equation

α2 − DT (λ)
[
M(λ) + λη

(
η +

ηb

α

)
I
]−2

D(λ) = 0

3. Introduce the cost function

G(λ) = xo(λ)T Qxo(λ) +
(
Axo(λ) − b

)T
W (λ)

(
Axo(λ) − b

)
+ λφ2

(
xo(λ)

)

where φ(x) = η‖x‖ + ηb.
4. Let λo denote the solution of the scalar-valued minimization problem

λo = arg min
λ≥‖W‖

G(λ)

5. Then the optimum solution of (3.3) is

x̂ =

{
0 if λoηηb < ‖D(λo)‖
xo(λo) otherwise

where in the second case, the solution x̂ admits the form

x̂ =
[
Q̂ + AT ŴA

]−1

AT Ŵ b

where the modified weighting matrices {Q̂, Ŵ} are obtained from {Q,W} via

Q̂
∆
= Q + λoη

(
η +

ηb

αo(λo)

)
I, Ŵ

∆
= W + W (λoI − W )†W

12



Here again we find that the solution requires that we first determine an optimal
nonnegative scalar parameter, λo, which corresponds to the minimizing argument of
the corresponding function G(λ) over the semi-open interval [‖W‖,∞). In the special
case ηb = 0, we do not need to worry about determining αo(·) anymore since the
expression for the solution x̂ simplifies to

x̂ =
[
Q̂ + AT ŴA

]−1

AT Ŵ b

with

Q̂ = Q + λoη2I, Ŵ = W + W (λoI − W )†W

and G(λ) is now defined in terms of

xo(λ) =
[
M(λ) + λη2I

]−1
D(λ)

4. CONCLUDING REMARKS. In this paper we formulated and solved a
robust optimization problem that involves a least-squares criterion with both regu-
larization and weighting. The solution turns out to be in regularized form, albeit one
that involves corrected weighting matrices. Compared with other robust solutions,
the technique does not perform de-regularization and, consequently, does not require
existence conditions. This fact is useful for applications that involve real-time opera-
tions. In such applications, existence conditions can be a burden since when they fail,
the optimality of the solution breaks down. Applications of the proposed method-
olody to recursive Kalman estimation, quadratic control, and data fusion problems in
wireless communications appear in [5]–[7] and they show promising performance.

Appendix A. Properties of λ
o(x).

In this appendix, we prove that a solution λo of (3.3) exists and is unique for
every x ∈ IRn. We also prove that the function λo(x) is continuous, a fact that was
used in Sec. 3.4.

Before we proceed, however, we remark that the arguments are made simpler if
we assume that HT WH is a diagonal matrix. This can be done without any loss of
generality, by a change of variables in y. Indeed, define

ȳ = Uy, H̄ = HUT ,

where U is an orthogonal matrix (UT U = I) such that U(HT WH)UT = Ω =
diag(ωi); and note that the two sets below are equal:

{ȳ : ‖ȳ‖ ≤ φ(x)} = {y : ‖y‖ ≤ φ(x)},

since ‖ȳ‖ = ‖Uy‖ = ‖y‖, by the orthogonality of U . In addition, H̄ȳ = Hy and
H̄T WH̄ = Ω. In the following appendices we shall therefore assume that HT WH =
diag(ωi).

A.1. Solution of (3.3). The entries of the diagonal matrix (see above) HT WH =
diag(ωi) can be ordered such that

‖HT WH‖ = ω1 = ω2 = · · · = ωp > ωp+1 ≥ · · · ≥ ωm ≥ 0, (A.1)
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where p is the multiplicity of the largest eigenvalue of HT WH, ω1 = ‖HT WH‖.

Partition HT WH as follows,

HT WH = Ω =

[
ω1Ip 0

0 Ω2

]
,

where Ω2 = diag(ωp+1, . . . , ωm). Define also the vector

z(x) =

[
z1(x)
z2(x)

]
= HT W (Ax − b),

where z1(x) ∈ IRp and z2(x) ∈ IRm−p. For every λ > ω1, the matrix (λI − HT WH)
is invertible, and we can define

y(λ, x) =

[
y1(λ, x)
y2(λ, x)

]
=

[
1

λ−ω1
z1(x)

(λIm−p − Ω2)
−1z2(x)

]
= (λI − HT WH)−1z(x),

with y1 ∈ IRp and y2 ∈ IRm−p. We found previously that the worst-case disturbance
yo and the Lagrange multiplier λo must satisfy (3.3), repeated below,

(λoI − HT WH)yo = HT W (Ax − b), ‖yo‖2 = φ2(x).

If {yo, λo} are such that λo > ω1, these conditions reduce to

‖y(λo, x)‖ = φ(x). (A.2)

We now study the behavior of ‖y(λ, x)‖2, to find when there is a λo > ω1 satisfying
the above condition. Note that, for fixed x, ‖y(λ, x)‖2 is a differentiable function of
λ, with

d‖y(λ, x)‖2

dλ
= z(x)T


 d

dλ




1
(λ−ω1)2

. . . 0

. . .

0 . . . 1
(λ−ωm)2





 z(x)

= z(x)T

[
− 2

(λ−ω1)3
Ip 0

0 −2(λIm−p − Ω2)
−3

]
z(x).

The derivative is therefore negative for z(x) 6= 0, since the above matrix is negative
definite when λ > ω1. Note that when z(x) = 0, y(λ, x) = 0 for all λ > ω1. We show
further ahead that in this case the solution will be λo = ω1.

Fact 1. We conclude that for λ > ω1, ‖y(λ, x)‖2 is a strictly decreasing, con-
tinuous function of λ (except when z(x) = 0). Therefore, the solution to (A.2), if it
exists, is unique (see Fig. A.1).

Consider now the following cases:

1. z1(x) 6= 0 (in this case, limλ↓ω1
‖y(λ, x)‖ = ∞);

2. z1(x) = 0, but ‖y2(ω1, x)‖ > φ(x) (in this case, limλ↓ω1
‖y(λ, x)‖ > φ(x));

3. z1(x) = 0 and ‖y2(ω1, x)‖ ≤ φ(x).

14



φ(x)

λ

‖y(λ, x)‖

ω1 λo(x)
Fig. A.1. Solution of (3.3).

Fact 2. In all cases, the limit of ‖y(λ, x)‖ as λ goes to infinity is zero. This
observation and Fact 1 imply that (A.2) will have a solution λo > ω1 if and only if

lim
λ↓ω1

‖y(λ, x)‖ > φ(x),

which is the situation in cases 1 and 2. We refer to a point x ∈ IRn for which
λo(x) > ω1 as a regular point. A point x satisfying the conditions in case 3 will be
called a singular point.

We argue now that if x is a singular point (i.e., if case 3 happens), the corre-
sponding Lagrange multiplier must be λo(x) = ω1. In case 3, ‖y2(ω1, x)‖ ≤ φ(x),
and condition (A.2) will not be satisfied even in the limit as λ → ω1. The original
condition (3.3) can still be satisfied, however, as we show next.

Assume that the conditions in case 3 hold, and choose λ = ω1. Then condition
(3.3) reads

[
0 0
0 ω1Im−p − Ω2

] [
y1

y2

]
=

[
0

z2(x)

]
, ‖y‖2 = ‖y1‖

2 + ‖y2‖
2 = φ2(x).

The first condition is satisfied for

y2 = (ω1Im−p − Ω2)
−1

z2(x),

where the inverse exists since by definition ω1 > ωp+1 = ‖Ω2‖. The second condition
in case 3 is ‖y2‖ ≤ φ(x). Therefore, to satisfy the norm condition in (3.3), we just
choose any y1 ∈ IRp whose norm satisfies

‖y1‖
2 = φ2(x) −

∥∥∥(ω1Im−p − Ω2)
−1

z2(x)
∥∥∥

2

.

Lemma A.1 (Solution to the maximization problem). If a point x ∈ IRn is
regular, viz.,

z1(x) 6= 0 and lim
λ↓ω1

‖y(λ, x)‖ > φ(x), (A.3)
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then the Lagrange multiplier at the maximum λo(x) > ω1 is the unique solution to
(A.2). (although the first condition implies the second, we want to state it explicitly
here for further reference). In this case, the worst-case disturbance

yo = y(λo, x) = (λoI − HT WH)−1HT W (Ax − b), ‖yo‖ = φ(x),

is also unique.
On the other hand, if x is singular, viz.,

z1(x) = 0 and lim
λ↓ω1

‖y(λ, x)‖ ≤ φ(x), (A.4)

then the Lagrange multiplier will be λo(x) = ω1. Now the worst-case disturbance is
no longer unique — any disturbance of the form below will achieve the maximum:

yo =

[
yo
1

yo
2

]
,

with yo
1 ∈ IRp, and

yo
2 = (ω1Im−p − Ω2)

−1z2(x), ‖yo
1‖

2 = φ2(x) − ‖yo
2‖

2.

In addition, using the pseudo-inverse notation we can write

yo = (ω1I − HT WH)†HT W (Ax − b) +

[
yo
1

0

]
,

where

‖yo
1‖

2 = φ2(x) −
∥∥(ω1I − HT WH)†HT W (Ax − b)

∥∥2
.

A.2. Continuity of λ
o(x). This property of λo(x) was invoked in Sec. 3.4 to

argue that G(λ) is unimodal (see Thm. 3.1). We again treat regular and singular
points separately.

Regular points: By definition, at a regular point x̃, λo(x̃) > ω1 and

f(λo, x̃)
∆
= φ2(x̃) − (Ax̃ − b)T WH(λo(x̃)I − HT WH)−2HT W (Ax̃ − b) = 0.

Now from the implicit function theorem [16], the function λo(x) defined by the above
condition is continuous at a given point x if the gradient ∇λf(λ, x) is nonzero at
λ = λo. To check this condition, compute the partial derivative

∂f(λ, x)

∂λ
= 2(Ax − b)T WH(λI − HT WH)−3HT W (Ax − b).

At a regular point x̃, recall that we must have either z1(x̃) 6= 0 or ‖y2(ω1, x)‖ > φ(x̃)
(se eq. (A.3)). Both these conditions would be violated if Ax̃ − b = 0, so our
assumption that x̃ is regular implies that Ax̃− b 6= 0. With this fact, and noting that
(λo(x̃)I − HT WH)−3 > 0 (from the regularity of x̃), we conclude that

∂f(λo(x), x)

∂λ
> 0,
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satisfying the condition of the implicit function theorem. We have thus proved that
λo(x) is continuous at any regular point x̃.

Singular points: Let now x̄ ∈ IRn be a singular point. We prove the continuity
of λo(·) at x = x̄ from the definition. Given an ε > 0, we shall find δ(ε) > 0 such that
(λo(x̄) = ω1)

‖x − x̄‖ < δ ⇒ |λo(x) − ω1| < ε.

To find such a δ, we shall need some properties of singular points and of φ2(x) and
z(x) — if x̄ is a singular point, then from the previous sections we have:

1. φ(x̄) ≥ ‖(ω1I − HT WH)†HT W (Ax̄ − b)‖,
2. z1(x̄) = 0,
3. ‖y2(λ, x)‖2 is continuous in (λ, x) on (ω1,∞) × IRn, and continuous and

strictly decreasing in λ > ω1 for fixed x.

Recalling that z(x) = HT W (Ax − b), we also have:
4. ‖z1(x)‖2 and ‖z2(x)‖2 are continuous functions for all x ∈ IRn.

Finally, we must make an assumption on the uncertainty bound, namely we assume
that

5. φ2(x) is continuous for all x ∈ IRn (in fact, this follows from our assumption
in Thm. 3.1 that φ2(x) is convex).

Two situations may occur:
A. There exists a neighborhood N(x̄) whose points are all singular, i.e., x ∈

N(x̄) ⇒ λo(x) = ω1. In this situation, the continuity of λo(·) at x̄ is trivial;
B. Every neighborhood of x̄ contains a regular point x∗.

Let us consider the second case. We now find a ball Bδ(x̄) = {x : ‖x − x̄‖ < δ} for
which

sup
x∈Bδ(x̄)

λo(x) < λo(x̄) + ε = ω1 + ε.

The above properties and assumptions imply that for any K1, K2 and K3, it is
possible to find δ1, δ2 and δ3 > 0 such that

‖x − x̄‖ < δ1 ⇒

∣∣∣∣∣∣
‖z1(x)‖2 − ‖z1(x̄)‖2

︸ ︷︷ ︸
=0

∣∣∣∣∣∣
<

ε

K1
,

‖x − x̄‖ < δ2 ⇒ ‖z2(x) − z2(x̄)‖
2

<
ε

K2
,

‖x − x̄‖ < δ3 ⇒
∣∣φ2(x) − φ2(x̄)

∣∣ <
ε

K3
.

(A.5)

Choose the Ki such that

K1 =
K̄1

ε2
,

1

K̄1
+

1

(ω1 − ωp+1)2K2
+

1

K3
<

‖y2(ω1, x̄)‖2

2(ω1 − ωp+1)
, (A.6)

and let δ = min{δ1, δ2, δ3}. Remark that the Ki cannot be choosen to satisfy (A.6)
only if y2(ω1, x̄) = 0. We shall assume for now that y2(ω1, x̄) 6= 0, and treat the other
case later.
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Since we are studying case B, let x∗ be a regular point in Bδ(x̄). As a regular
point, x∗ satisfies λo(x∗) > ω1 and

‖y(λo(x∗), x∗)‖ = φ(x∗) and lim
λ↓ω1

‖y(λ, x∗)‖ > φ(x∗)

(the limit may be infinity).

We now show that for λ∗ = ω1 + ε, it necessarily holds that

‖y(λ∗, x∗)‖ < φ(x∗),

which means that ω1 < λo(x∗) < ω1 + ε, which is our desired result. Let us then
evaluate ‖y(λ, x∗)‖2:

‖y(λ, x∗)‖2 =

∥∥∥∥(λI − HT WH)−1

[
z1(x

∗)
z2(x

∗)

]∥∥∥∥
2

=

= (λ − ω1)
−2‖z1(x

∗)‖2 +

∥∥∥∥∥∥∥∥




λ − ωp+1 . . . 0
. . .

0 . . . λ − ωm




−1

z2(x
∗)

∥∥∥∥∥∥∥∥

2

.

We use (A.5) to bound these norms,

‖y(λ, x∗)‖2 <
ε

(λ − ω1)2K1
+ ‖y2(λ, x̄)‖2 +

ε

(λ − ωp+1)2K2
, (A.7)

where we used ‖diag
(
(λ − ωj)

−1
)
‖ = (λ − ωp+1)

−1, and z2(x
∗) = z2(x̄) +

(
z2(x

∗) −

z2(x̄)
)
.

To bound the second term, write

y2(λ, x̄) =




ω1−ωp+1

λ−ωp+1

. . .
ω1−ωm

λ−ωp+1







ω1 − ωp+1

. . .

ω1 − ωm




−1

z2(x̄)

=




ω1−ωp+1

λ−ωp+1

. . .
ω1−ωm

λ−ωp+1


 y2(ω1, x̄)

∆
= P (λ)y2(ω1, x̄).

Let λ = ω1 + ε, then the largest element of P (λ) will be (if ε is small enough)

ω1 − ωp+1

ω1 + ε − ωp+1
= 1 −

ε

ω1 − ωp+1
+

ε2

(ω1 − ωp+1)2
−

(
ε3

(ω1 − ωp+1)3
+ . . .

)

︸ ︷︷ ︸
≥0 if ε/(ω1−ωp+1)<1/2

< 1 −
ε

ω1 − ωp+1
+

ε2

(ω1 − ωp+1)2
< 1 −

ε

2(ω1 − ωp+1)
,
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and thus,

‖y2(λ, x̄)‖2 <

(
1 −

ε

2(ω1 − ωp+1)

)
‖y2(ω1, x̄)‖2

< φ2(x̄) −
ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2

< φ2(x∗) +
ε

K3
−

ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2.

Using this bound in (A.7), we obtain,

‖y(ω1 + ε, x∗)‖2 <
ε

ε2K1
+

ε

(ω1 + ε − ωp+1)2K2
+ φ2(x∗) +

+
ε

K3
−

ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2 < φ2(x∗),

where the last inequality follows from our choice of the Ki in (A.6). The inequality
shows that λo(x∗) < ω1 + ε. Since the above argument holds for any regular point in
Bδ(x̄), we have

x ∈ Bδ(x̄) ⇒ ω1 ≤ λo(x) < ω1 + ε,

which proves the continuity of λo(·) at singular points x̄ for which y2(ω1, x̄) 6= 0.

Finally we consider singular points x̄ for which y2(ω1, x̄) is zero. In this case,
Ax̄ − b is necessarily zero (since z1(x̄) = 0 for singular points). Again, two situations
may happen:

i. φ(x̄) = 0 — in this situation, the solution of the maximization problem is
trivial, as the uncertainty will be identically zero;

ii. φ(x̄) > 0 — now, from the continuity of ‖y2(λ, x̄)‖2 and of φ2(x), there exists
a ball Bδ4

(x̄) such that

x ∈ Bδ4
(x̄) ⇒ ‖y2(ω1, x)‖2 <

φ2(x̄)

2
.

With this inequality, if we choose K1 and K3 such that

K1 =
K̄1

ε2
,

1

K̄1
+

1

2K3
<

φ2(x̄)

2
−

1

2K3
,

then if δ = min{δ1, δ3, δ4}, for all regular points x∗ ∈ Bδ(x̄), we can replace
(A.7) by the simpler expression

‖y(λ, x∗)‖2 <
ε

(λ − ω1)2K1
+ ‖y2(λ, x∗)‖2 <

ε

(λ − ω1)2K1
+

φ2(x̄)

2
,

where we used the fact that ‖y2(λ, x∗)‖2 is decreasing with λ. With our choice
of K1, for λ = ω1 + ε we obtain

‖y(ω1 + ε, x∗)‖2 <
ε

K̄1
+

φ2(x̄)

2
<

ε

K̄1
+

ε

2K3
+

φ2(x∗)

2

<
φ2(x̄)

2
−

ε

2K3
+

φ2(x∗)

2
< φ2(x∗),

which implies that λo(x∗) < ω1 + ε.
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Appendix B. Computation of x
o(λ) in the bounded uncertainty case.

With φ(x) = η‖x‖+ηb, the vector x that achieves the minimum on the right-hand
side of (3.7) is the solution to the equation

x
∆
= xo(λ) =

(
Q + AT W (λ)A + λη2I +

ληηb

‖x‖
I

)−1

AT W (λ)b. (B.1)

The value of x is clearly a function of λ. Observe however that this equation defines
x implicitly since x appears on both sides of the equality. To proceed, we consider
two cases.

(1) ηb = 0. In this case, the expression for xo(λ) collapses to

xo(λ) =

[
Q + λη2I + AT W (λ)A

]−1

AT W (λ)b.

That is, the term ‖x‖ disappears from the right-hand side of (B.1). Consequently,
this expression defines xo(λ) explicitly.

(2) ηb 6= 0. In this case, the term ‖x‖ does not disappear from the right-hand side of
(B.1). In order to solve for x we proceed as follows. First, we introduce the scalar
α = ‖x‖ and square both sides of (B.1). This leads to the following nonlinear equation
in α:

α2 − DT (λ)
[
M(λ) + λη

(
η +

ηb

α

)
I
]−2

D(λ) = 0, (B.2)

where

M(λ) = Q + AT W (λ)A, D(λ) = AT W (λ)b.

The value of α is again dependent on λ. The following result indicates that the solu-
tion to the above nonlinear equation for α is either at α = 0 or at a unique positive
value.

Lemma B.1. Let xo(λ) minimize the inner cost on the right-hand side (RHS) of
(3.7). If, and only if, ληηb < ‖D(λ)‖, the norm ‖xo(λ)‖ is equal to the the unique
positive solution of equation (B.2), αo(λ). Otherwise, the solution to the minimiza-
tion problem is xo(λ) = 0, i.e., αo(λ) = 0.

Proof. We shall first find the solutions of (B.2) when ληηb < ‖D(λ)‖, afterwards
we relate these conditions to the solutions of the inner minimization problem on the
RHS of (3.7).

Introduce the SVD of the symmetric positive-definite matrix M(λ), say M(λ) =
UΣUT , where {U,Σ} are also dependent on λ. We denote the entries of Σ by {σi}.
Substituting this decomposition into the left side of (B.2), it reduces to the function

f(α)
∆
= α2 −

n∑

i=1

d̄2
i

[σi + λη(η + ηb

α )]2

where the {d̄i} denote the entries of the transformed vector UT D(λ). We are seeking
the roots of f(α).
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Note that α = 0 is always a solution if ηb > 0. Let us search for a solution α > 0.
Assuming α > 0, we can write

f(α) = α2

[
1 −

n∑

i=1

d̄2
i

(σiα + λη2α + ληηb)2

]
∆
= α2g(α),

where we introduced the function g(α). Taking the limits as α → 0 and α → ∞ we
find that

lim
α→0

g(α) = 1 −
n∑

i=1

d̄2
i

(ληηb)2

lim
α→∞

g(α) = 1 > 0

Therefore, g(α) will have a zero for α > 0 if, and only if, the first limit above is
negative, i.e., if {λ, η, ηb} satisfy

ληηb < ‖D(λ)‖.

In addition, since the derivative of g(α) with respect to α is

dg(α)

dα
= 2

n∑

i=1

d̄2
i (λη2 + σi)

[ασi + λη(αη + ηb)]3
> 0,

we conclude that the root is necessarily unique.
Let us verify now that this root really corresponds to the solution of our mini-

mization problem. The point that may cause trouble is x = 0, where the cost function
is not differentiable. The cost at this point is

C(0, λ) = bT W (λ)b + λη2
b .

If we move a little away from x = 0, say to x = δx, then the cost becomes

C(δx, λ) = (Aδx − b)T W (λ)(Aδx − b) + λ(η‖δx‖ + ηb)
2 =

= bT W (λ)b − 2δxT AT W (λ)b + δxT AT W (λ)Aδx + λη2‖δx‖2 +

+ 2ληηb‖δx‖ + λη2
b ,

and thus, for small δx,

C(δx, λ) = C(0, λ) − 2δxT D(λ) + 2ληηb‖δx‖ + O(‖δx‖2) ≥

≥ C(0, λ) − 2‖δx‖

(
‖D(λ)‖ − 2ληηb

)
+ O(‖δx‖2).

We conclude that, for small δx, C(δx, λ) is smaller than C(0, λ) if and only if
ληηb < ‖D(λ)‖. In this situation, x = 0 cannot be a minimum of C(x, λ), and the
optimum xo(λ) must be such that its norm solves (B.2) with αo(λ) > 0.

On the other hand, if ληηb ≥ ‖D(λ)‖, the cost for small δx satisfies C(δx, λ) >

C(0, λ) (we can include the case when equality holds, since the terms in O(‖δx‖2)
above are all positive). The point x = 0 must thus be a local minimum to C(x, λ).
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Since we know that this cost is strictly convex in x for fixed λ, x = 0 must be the
global minimum.

Appendix C. A result on convex optimization problems.
In this appendix we establish a result that was used to show that G(λ) is unimodal.

Let f(x, y) be a real function of variables x ∈ X, y ∈ Y . We shall study the problem

min
x∈X,y∈Y

f(x, y).

Define the functions

g : X → IR

g(x) = min
y∈Y

f(x, y),

and

h : Y → IR

h(y) = min
x∈X

f(x, y).

We denote by (xop, yop) one of the (possibly many) global minimum points of f(x, y)
in X × Y , by xg one of the global minima of g(x) in X, and by yh one of the global
minima of h(y) in Y . With these definitions, we prove the following results.

Lemma C.1. If any of the minima below is attainable, then it holds that

min
(x,y)∈X×Y

f(x, y) = min
x∈X

g(x) = min
y∈Y

h(y), and (xop, yop) = (xg, yxg
) = (xyh

, yh).

Proof. This is a classic result. To prove it, simply notice that all points (x, y)
are compared in the minimization of all three functions above. If the minima are not
attainable, the result is still true if we substitute the min by inf.

Lemma C.2. Let X,Y be subsets of a metric space, and assume that the functions
below,

f(x̄, y) : Y → IR for all x̄ ∈ Xfixed,

f(x, ȳ) : X → IR for all ȳ ∈ Y fixed,

g(x) : X → IR,

have unique global minima, and are unimodal in their respective domains, i.e., assume
that each function does not admit local minima different than their global minima.

We now define the functions

ym : X → Y

ym(x) = arg min
y∈Y

f(x, y),
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and

xm : Y → X

xm(y) = arg min
x∈X

f(x, y).

Under these conditions, and if ym(x) is continuous in X, then h(y) is also unimodal.
Proof. ym(x) is a function, since, by hypothesis, f(x̄, y), x̄ fixed, is unimodal in Y .

A similar argument implies that xm(y) is a function. Now assume (by contradiction)
that h(y) is not unimodal, i.e., it has a local minimum at yl 6= yop. This means that
there is an open ball Bδ(yl) ∈ Y such that yl is the global minimum of h(y) inside
the ball.

From the previous lemma, we find that

min
(x,y)∈X×Bδ(yl)

f(x, y) = min
y∈Bδ(yl)

h(y),

and (xl, yl) = (xm(yl), yl). This implies that (xl, yl) is a local minimum of f(x, y) in
X × Y different from the global minimum (xop, yop). In particular, this means that,
fixing xl, f(xl, y) has a (local) minimum at y = yl.

Since we assumed that f(xl, y) is unimodal, it must hold that ym(xl) = yl. Func-
tion ym(·) is continuous on X by hypothesis, thus there exists a ball Bγ(xl) whose
points satisfy

x ∈ Bγ(xl) ⇒ ym(x) ∈ Bδ(yl).

Since (xl, yl) is the global minimum of f in X×Bδ(yl), xl must be the global minimum
of g(x) = f(x, ym(x)) in Bγ(xl), that is, xl is a local minimum of g(x).

Finally, note that we assumed that yl 6= yop. Since ym(xl) = yl and ym(xop) = yop,
we must have xl 6= xop — that is, we found a local minimum of g(x) different than
xop, contradicting our initial assumption that g(x) is unimodal.
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