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Abstract. This paper introduces and solves a weighted game-type cost criterion
for estimation and control purposes that allows for a general class of uncertainties
in the model or data. Both structured and unstructured uncertainties are allowed,
including some special cases that have been used in the literature. The optimal
solution is shown to satisfy an orthogonality condition similar to least-squares de-
signs, except that the weighting matrices need to be modified in a certain optimal
manner. One particular application in the context of state regulation for uncertain
state-space models is considered. It is shown that in this case, the solution leads
to a control law with design equations that are similar in nature to LQR designs.
The gain matrix, however, as well as the Riccati variable, turn out to be state-
dependent in a certain way. Further applications of these game-type formulations
to image processing, estimation, and communications are discussed in [1–3].

1 INTRODUCTION

This paper develops a technique for estimation and control purposes that is
suitable for models with bounded data uncertainties. The technique will be
referred to as a BDU design method for brevity, and it expands on earlier
works in the companion articles [1–4]. It is based on a constrained game-
type formulation that allows the designer to explicitly incorporate into the
problem statement a-priori information about bounds on the sizes of the
uncertainties in the model. A key feature of the BDU formulation is that
geometric insights (such as orthogonality conditions and projections), which
are widely appreciated for classical quadratic-cost designs, can be pursued
in this new framework. This geometric viewpoint was discussed at some
length in the article [1] for a special case of the new cost function that we
introduce in this paper.

The optimization problem (1) that we pose and solve here is of inde-
pendent interest in its own right and it can be applied in several contexts.
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Examples to this effect can be found in [1] where similar costs were applied
to problems in image restoration, image separation, array signal processing,
and estimation. Later in this paper we shall discuss one additional applica-
tion in the context of state regulation for state-space models with parametric
uncertainties.

2 FORMULATION OF THE BDU PROBLEM

We start by formulating a general optimization problem with uncertainties
in the data. Thus consider the cost function

J(x, y) = xT Qx + R(x, y) ,

where xT Qx is a regularization term, while the residual cost R(x, y) is de-
fined by

R(x, y)
∆
=

(
Ax− b + Hy

)T

W

(
Ax− b + Hy

)
.

Here, Q > 0 and W ≥ 0 are given Hermitian weighting matrices, x is an
n−dimensional column vector, A is an N × n known or nominal matrix,
b is an N × 1 known or nominal vector, H is an N × m known matrix,
and y denotes an m× 1 unknown perturbation vector. We now consider the
problem of solving:

x̂ = arg min
x

max
‖y‖≤φ(x)

J(x, y) , (1)

where the notation ‖·‖ stands for the Euclidean norm of its vector argument
or the maximum singular value of its matrix argument. The non-negative
function φ(x) is a known bound on the perturbation y and it is only a
function of x (it can be linear or nonlinear).

Problem (1) can be regarded as a constrained two-player game problem,
with the designer trying to pick an x̂ that minimizes the cost while the
opponent {y} tries to maximize the cost. The game problem is constrained
since it imposes a limit (through φ(x)) on how large (or how damaging) the
opponent can be. Observe further that the strength of the opponent can
vary with the choice of x.

2.1 Special Cases

The formulation (1) allows for both structured and unstructured uncertain-
ties in the data. Before proceeding to its solution, let us exhibit two special
cases. Consider first the problem

min
x

max
‖δA‖≤η

‖δb‖≤ηb

[
x

T
Qx +

(
(A + δA)x − (b + δb)

)
T

W

(
(A + δA)x − (b + δb)

)]



where {δA} denotes an N × n perturbation matrix to the nominal matrix
A, and δb denotes an N×1 perturbation vector to the nominal vector b. We
showed in the companion article [3] that the above problem is equivalent to
one of the following form:

min
x

max
‖y‖≤η‖x‖+ηb

[
xT Qx +

(
Ax− b + y)

)T

W

(
Ax− b + y

)]
,

which is a special case of (1), with H = I and φ(x) = η‖x‖ + ηb. In this
example, the uncertainties {δA, δb} are not related in any way and we shall
say that they are unstructured. The special case Q = 0 and W = I was
treated in [1,4,5]. In particular, a geometric framework was developed in [1]
for such problems that is similar in nature to the geometry of least-squares
problems. We shall comment briefly on this aspect further ahead. On the
other hand, reference [5] solves the case Q = 0 and W = I by using LMI

techniques, which for this particular problem turn out to be more costly
than the direct solution methods proposed in [1,4]. When W is non-unity,
the problem becomes more rich, and also more involved, even when Q = 0.

Consider now the alternative problem

min
x

max
δA
δb

[
x

T
Qx +

(
(A + δA)x − (b + δb)

)
T

W

(
(A + δA)x − (b + δb)

)]

where the perturbations {δA, δb} are now assumed to be generated by a
model of the form

[
δA δb

]
= HS

[
Ea Eb

]
, (2)

where S is a contraction, ‖S‖ ≤ 1, and {H,Ea, Eb} are known. Then it can
be easily seen that this problem is equivalent to the following

min
x

max
‖y‖≤‖Eax−Eb‖

[
xT Qx +

(
Ax− b + Hy)

)T

W

(
Ax− b + Hy

)]
,

which is again a special case of (1) with φ(x) = ‖Eax−Eb‖. Here, the per-
turbations {δA, δb} are related (for example, they both lie in the range space
of H). We shall say that they are structured. Such structured perturbations
have been used in robust control design (see, e.g., [6]).

The formulation (1) that we consider in this paper is more general in
that it allows for other classes of perturbations through the choice of the
function φ(x).

3 SOLUTION OF THE BDU PROBLEM

We now proceed to the solution of (1). It turns out that the derivation given
in [3] for a special case of (1) extends to this more general scenario with the
appropriate modifications.



First we note that for any given y, the residual cost R(x, y) is convex in
x. Therefore, the maximum

C(x)
∆
= max

‖y‖≤φ(x)
R(x, y) , (3)

is a convex function in x. Now since xT Qx is strictly convex in x when
Q > 0, we conclude that xT Qx + C(x) is strictly convex in x, which shows
that problem (1) has a unique global minimum x̂.1 To determine x̂ we
proceed in steps.

3.1 The Maximization Problem

We now solve (3) for any fixed x. Note first that the cost R(x, y) is convex
in y, so that the maximum over y is achieved at the boundary, ‖y‖ = φ(x).
We can therefore replace the inequality constraint in (3) by an equality.
Introducing a Lagrange multiplier λ, the solution to (3) can then be found
from the unconstrained problem:

max
y,λ

[(
Ax− b + Hy

)T
W
(
Ax− b + Hy

)
− λ

(
‖y‖2 − φ2(x)

)]
. (4)

Note that since the original problem has an inequality constraint, the La-
grange multiplier must be nonnegative: λ ≥ 0 [7]. Differentiating (4) with
respect to y and λ, and denoting the optimal solutions by {yo, λo}, we obtain
the equations

(λoI −HT WH)yo = HT W (Ax− b) , ‖yo‖ = φ(x) . (5)

It turns out that the solution λo should satisfy λo ≥ ‖HT WH‖. This is
because the Hessian of the cost in (4) w.r.t y must be nonpositive-definite
[7].2 We should further stress that the solutions {yo, λo} are functions of x

and we shall therefore sometimes write {yo(x), λo(x)}.
At this stage, we do not need to solve the equations (5) for {yo, λo}. It

is enough to know that the optimal {yo, λo} satisfy (5).3 Using this fact, we
can verify that the maximum cost in (4) is equal to

C(x) = (Ax− b)T
[
W + WH

(
λo(x)I −HT WH

)†
HT W

]
(Ax− b)

+ λo(x)φ2(x) , (6)

where X† denotes the pseudo-inverse of X.
1 It can be easily seen that in the special case φ(0) = 0 and Wb = 0, the unique

solution of (1) is x̂ = 0. In the sequel we shall therefore assume that φ(0) and
Wb are not zero simultaneously.

2 We refer to the case λo = ‖HT WH‖ as the singular case, while λo > ‖HT WH‖
is called the regular case. Both cases are handled simultaneously in our frame-
work through the use of the pseudo-inverse notation.

3 In fact, we can show that the solution λo is always unique while there might be
several yo.



3.2 The Minimization Problem

The original problem (1) is therefore equivalent to:

min
x

[
xT Qx + C(x)

]
. (7)

However, rather than minimizing the above cost over n variables, which are
the entries of the vector x, we shall instead show how to reduce the problem
to one of minimizing a certain cost function over a single scalar variable (see
(14) further ahead). For this purpose, we introduce the following function
of two independent variables x and λ,

C(x, λ) = (Ax − b)T

[
W + WH

(
λI − H

T
WH

)†
H

T
W
]
(Ax − b) + λφ

2(x) .

Then it can be verified, by direct differentiation with respect to λ and by
using the expression for λo(x) from (5), that

λo(x) = arg min
λ≥‖HT WH‖

C(x, λ) .

This means that problem (1) is equivalent to

min
λ≥‖HT WH‖

min
x

[
xT Qx + C(x, λ)

]
. (8)

The cost function in the above expression, viz., J(x, λ) = xT Qx + C(x, λ),
is now a function of two independent variables {x, λ}. This should be con-
trasted with the cost function in (7). Now define, for compactness of nota-
tion, the quantities M(λ) = Q + AT W (λ)A and d(λ) = AT W (λ)b, where

W (λ) = W + WH
(
λI −HT WH

)†
HT W .

To solve problem (8), we first search for the minimum over x for every fixed
value of λ, which can be done by setting the derivative of J(x, λ) w.r.t. x

equal to zero. This shows that any minimum x must satisfy the equality

M(λ)x +
1

2
λ∇φ2(x) = d(λ) , (9)

where ∇φ2(x) is the gradient of φ2(x) w.r.t. x.

Special Cases

Let us reconsider the special cases φ(x) = ‖Eax − Eb‖ and φ(x) =
η‖x‖+ ηb. For the first choice we obtain ∇φ2(x) = 2ET

a (Eax− Eb) so that
the solution of Eq. (9), which is dependent on λ, becomes

xo(λ) =

[
M(λ) + λET

a Ea

]−1 (
d(λ) + λET

a Eb

)
. (10)



The second choice, φ(x) = η‖x‖ + ηb, was studied in the companion
article [3]. In this case, solving for xo is not so immediate since Eq. (9) now
becomes, for any nonzero x,

x =

[
M(λ) + λη

(
η +

ηb

‖x‖

)]−1

d(λ) . (11)

Note that x appears on both sides of the equality (except when ηb = 0,
in which case the expression for x is complete in terms of {M,λ, η, d}). To
solve for x in the general case we define α = ‖x‖2 and square the above
equation to obtain the scalar equation in α:

α2 − dT (λ)
[
M(λ) + λη

(
η +

ηb

α

)]−2

d(λ) = 0 . (12)

It can be shown that a unique solution αo(λ) > 0 exists for this equation if,
and only if, ληηb < ‖d(λ)‖2. Otherwise, αo(λ) = 0. In the former case, the
expression for xo, which is a function of λ, becomes

xo(λ) =

[
M(λ) + λη

(
η +

ηb

αo(λ)

)]−1

d(λ) . (13)

In the latter case we clearly have xo(λ) = 0.

The General Case

Let us assume that (9) has a unique solution xo(λ), as was the case
with the above two special cases. This will also be always the case whenever
φ(x) is a differentiable and strictly convex function (since then J(x, λ) will
be differentiable and strictly convex in x). We thus have a procedure that
allows us to determine the minimizing xo for every λ. This in turn allows
us to re-express the resulting cost J(xo(λ), λ) as a function of λ alone, say
G(λ) = J(xo(λ), λ). In this way, we conclude that the solution x̂ of the

original optimization problem (1) can be solved by determining the λ̂ that
solves

min
λ≥‖HT WH‖

G(λ) , (14)

and by taking the corresponding xo(λ̂) as x̂. That is, x̂ solves (9) when

λ = λ̂. We summarize the solution in the following statement.

Theorem 1 (Solution). The unique global minimum of (1) can be deter-
mined as follows. Introduce the cost function

G(λ) = xoT (λ)Qxo(λ) + C[xo(λ), λ] , (15)



where xo(λ) is the unique solution of (9). Let λ̂ denote the minimum of
G(λ) over the interval λ ≥ ‖HT WH‖. Then the optimum solution of (1)

is x̂ = xo(λ̂).
♦

We thus see that the solution of (1) requires that we determine an opti-

mal scalar parameter λ̂, which corresponds to the minimizing argument of a
certain nonlinear function G(λ) (or, equivalently, to the root of its derivative
function). This step can be carried out very efficiently by any root finding

routine, especially since the function G(λ) is well defined and, moreover, λ̂

is unique. We obtain as corollaries the following two special cases.

Corollary 1 (Structured Uncertainties). When φ(x) = ‖Eax − Eb‖,
xo(λ) is given by (10) and the global minimum of (1) becomes

x̂ =
[
Q̂ + AT ŴA

]−1

AT Ŵ b
∆
= Kb (16)

where Q̂ = Q + λ̂ET
a Ea and Ŵ = W + WH(λ̂I −HT WH)†HT W .

♦

Corollary 2 (Unstructured Uncertainties). When φ(x) = η‖x‖ + ηb,
xo(λ) is given by (13) if ληηb < ‖d(λ)‖2 (otherwise it is zero). Moreover,

αo(λ) in (13) is the unique positive root of (12). Let λ̂ denote the minimum
of G(λ) over the interval λ ≥ ‖W‖. Then

x̂ =
[
Q̂ + AT ŴA

]−1

AT Ŵ b
∆
= Kb , (17)

if λ̂ηηb < ‖d(λ̂)‖2 (otherwise x̂ = 0), where

Q̂ = Q + λ̂η

(
η +

ηb

αo(λ̂)

)
I , Ŵ = W + W (λ̂I −W )†W .

♦

3.3 The Orthogonality Condition

Observe that the optimal solution x̂ in the above cases satisfies an orthog-
onality condition of the form Q̂x̂ + AT Ŵ (Ax̂ − b) = 0, for some {Q̂, Ŵ}.
Compared with the solution to the standard regularized least-squares prob-
lem,

min
x

[
xT Qx + (Ax− b)T W (Ax− b)

]
,



whose unique solution satisfies Qx̂ + AT W (Ax̂ − b) = 0, we see that the
solution to the BDU problem satisfies a similar orthogonality condition, with
the given weighting matrices {Q,W} replaced by new matrices {Q̂, Ŵ}! To
determine the necessary corrections to {Q,W}, one determines the optimal

scalar λ̂ from the minimization (14). The convenience of such a geometric
viewpoint is discussed in [1] for the special case Q = 0 and W = I.

4 APPLICATION TO STATE REGULATION

As mentioned earlier, the BDU cost functions can be useful in different con-
texts, including image restoration, image separation, array signal processing,
and estimation (see [1] for some examples). Here we discuss another appli-
cation for the weighted BDU problem in the context of state regulation for
state-space models with parametric uncertainties.

Thus consider the linear state-space model xi+1 = Fixi + Giui, where
x0 denotes the value of the initial state, and the {ui} denote the control
(input) sequence. The classical linear quadratic regulator (LQR) problem
seeks a control sequence {ui} that regulates the state vector towards zero
while keeping the control cost low. This is achieved as follows. Introduce,
for compactness of notation, the local cost

Vi(xi+1, ui)
∆
=
(
xT

i+1Ri+1xi+1 + uT
i Qiui

)
, RN+1 = PN+1 .

Then the optimal control is determined by solving

min
{u0,u1,... ,uN}


xT

N+1PN+1xN+1 +
N∑

j=0

[
uT

j Qjuj + xT
j Rjxj

]

 ,

with Qj > 0, Rj ≥ 0, and PN+1 ≥ 0. We shall write the above problem
more compactly as (note that x0 does not really affect the solution):

xT
0 R0x0 + min

{u0,u1,... ,uN}
(V0 + V1 + . . . + VN ) , (18)

It is well known that the LQR problem can be solved recursively by re-
expressing the LQR cost as nested minimizations of the form:

xT
0 R0x0 + min

u0

{
V0 + min

u1

{
V1 + . . . + min

uN

{VN}

}}
, (19)

where only the last term, through the state-equation for xN+1, is dependent
on uN . Hence we can determine ûN by solving

min
uN

VN , given xN , (20)



and then progress backwards in time to determine the other control val-
ues. By carrying out this argument one finds the well-known state-feedback
solution:





ûi = −Kixi ,

Ki = (Qi + GT
i Pi+1Gi)

−1GT
i Pi+1Fi ,

Pi = Ri + KT
i QiKi + (Fi −GiKi)

T Pi+1(Fi −GiKi) .

(21)

It is well known that the above LQR controller is sensitive to modeling errors.
Robust design methods to ameliorate these sensitivity problems include the
H∞ design methodology (e.g., [8–11]) and the so-called guaranteed-cost
designs (e.g., [12–14]). We suggest below a procedure that is based on the
BDU problem solved above. At the end of this exposition, we shall compare
our result with a guaranteed-cost design. [A comparison with an H∞ design
is given in [1] for a special first-order problem.]

4.1 State Regulation

Consider now the state-equation with parametric uncertainties:

xi+1 = (Fi + δFi)xi + (Gi + δGi)ui , (22)

with known x0, and where the uncertainties {δFi, δGi} are assumed to be
generated via

[
δFi δGi

]
= HS

[
Ef Eg

]
, (23)

for known H, Ef , Eg, and for any contraction ‖S‖ ≤ 1. The solution of
the case with unstructured uncertainties {δFi, δGi}, say ‖δFi‖ ≤ ηf,i and
‖δGi‖ ≤ ηg,i, is very similar and is treated in [3]. We focus here on the above
structured case (23) for the sake of demonstration. Still, we should mention
that by choosing different φ(x), the approach described in the earlier sections
can handle other classes of uncertainties as well.

Consider the problem of determining a control sequence {ûj , 0 ≤ j ≤ N}
that solves the nested min-max optimizations:

xT
0 R0x0 + min

u0

max
δF0
δG0

{
V0 + min

u1

max
δF1
δG1

{
V1 + . . . + min

uN

max
δFN
δGN

{
VN

}}
(24)

where we are writing, for compactness of notation, {δFi, δGi} under the
max symbols instead of the complete notation.

In order to illustrate the structure of the solution of (24), let us consider
the simple case N = 1, viz.,

xT
0 R0x0 + min

u0

max
δF0
δG0

{
V0 + min

u1

max
δF1
δG1

{
V1

}}
. (25)



To be even more explicit, recall that V0 is a function of {x1, u0} while V1 is
a function of {x2, u1}. Hence, V0 is a function of {x0, u0, δF0, δG0} and we
shall denote this explicitly as V0(x0, u0, δF0, δG0). Likewise, we shall write
V1(x0, u0, δF0, δG0, u1, δF1, δG1). If we now solve the inner-most min-max
problem in (25), for any {u0, δF0, δG0}, i.e.,

min
u1

max
δF1
δG1

V1(x0, u0, δF0, δG0, u1, δF1, δG1) , (26)

we obtain a representation for the solution {û1, δ̂F 1, δ̂G1} in terms of the
unknowns {x0, u0, δF0, δG0}. That is, we find

û1 = f1(x0, u0, δF0, δG0) ,

δ̂F 1 = g1(x0, u0, δF0, δG0) ,

δ̂G1 = h1(x0, u0, δF0, δG0) ,

for some functions {f1(·), g1(·), h1(·)}. The resulting cost in (26) will also
be a function of {x0, u0, δF0, δG0}, say

V ∗
1 (x0, u0, δF0, δG0} = min

u1

max
δF1
δG1

V1(x0, u0, δF0, δG0, u1, δF1, δG1) .

Returning to (25), we now solve the outer-most min-max problem over
{u0, δF0, δG0},

xT
0 R0x0 + min

u0

max
δF0
δG0

{V0 + V ∗
1 } ,

which would then lead to a representation for {û0, δ̂F 0, δ̂G0} in terms of x0,

û0 = f0(x0) , δ̂F 0 = g0(x0) , δ̂G0 = h0(x0) .

Therefore, the optimal control values that solve (25) will be

û0 = f0(x0) and û1 = f1(x0, û0, δ̂F 0, δ̂G0) ,

where the arguments of f1(·) are now defined in terms of {û0, δ̂F 0, δ̂G0}.
If we thus reconsider the original problem (24), and focus first on the

inner-most optimization, say

min
uN

max
δFN ,δGN

subject to (23)

[
uT

NQNuN + xT
N+1PN+1xN+1

]
,

then the above argument shows that in order to determine an expression
for ûN from the above, the state vector xN has to be taken as x̂N , which is
the value that would result had the earlier optimal control signals {ûj , 0 ≤



j ≤ N −1} been determined already and using the worst-case disturbances.
Then expanding the term xT

N+1PN+1xN+1 by using the state equation for
xN+1,

xN+1 = (FN + δFN )x̂N + (GN + δGN )uN ,

the above problem reduces to a problem of the same form as the structured
BDU problem (2) that we considered before with the identifications:

A← GN , W ← PN+1 , Q← QN , H ← H , b← −FN x̂N ,

x← uN , Ea ← Eg, Eb ← Ef x̂N , δA← δGN , δb← −δFN x̂N .

Using (16), and the above identifications, we conclude that the optimal
control value ûN is given by (compare with the LQR recursions)





ûN = −KN x̂N ,

KN =
(
Q̂N + GT

NŴN+1GN

)−1

GT
NŴN+1FN ,

Q̂N = QN + λ̂NET
g Eg ,

ŴN+1 = PN+1 + PN+1H
(
λ̂NI −HT PN+1H

)†
HT PN+1 ,

where λ̂N is the optimal parameter that corresponds to the above data
{A, b,W,Q,H,Ea, Eb}, and which can be found as explained in Thm. 1 (or
Cor. 1).

Moreover, using (6)–(7) and the above identifications again, we find that

x̂T
NRN x̂N +

(
min
uN

max
δFN
δGN

VN

)
= x̂T

NPN x̂N ,

where PN is given by (compare with the Riccati recursion in (21)):

PN = RN + KT
NQNKN + (FN −GNKN )T ŴN+1(FN −GNKN ) +

+ λ̂N

[
KT

NET
g EgKN −KT

NET
g Ef − ET

f EgKN + ET
f Ef

]
. (27)

We now proceed to determine an approximation for the optimal control
value at time N − 1 by solving

min
uN−1

max
δFN−1,δGN−1

[
uT

N−1QN−1uN−1 + xT
NPNxN

]
,

where we assume that x̂N−1 is available. We take the solution as ûN−1, and
so on. Note that this step is an approximation because we are employing the
PN found above, which is a function of x̂N . For optimality, we would need to
determine the functional form PN (xN ) — this form is defined by the same
equations as above with xN replacing x̂N . It turns out that for single-state



models, the value of PN is independent of the state and therefore the above
ûN−1 agrees with the optimal value — see further ahead.

Remarks

Several remarks are due now.

1. The control values {ûi} found above are in terms of the worst-case state
x̂i, which we show how to evaluate in the next section.

2. Compared with the solution to the LQR problem we see that there
are three main differences in the recursions. First, the gain matrix KN

is not defined directly in terms of the original quantities {QN , PN+1}
but in terms of modified quantities {Q̂N , ŴN+1}. Secondly, the term
PN+1 in the LQR Riccati recursion is replaced by ŴN+1 in (27), in

addition to a new correction term that is equal to λ̂Nφ2(ûN ). Finally,
the above solution in fact has the form of a two-point boundary value
problem (TPBVP). This is because the expressions for {KN , PN} are

dependent on the worst-case state x̂N (through λ̂N ). We can denote
this dependency more explicitly by writing, for any i,

ûi = −Ki(x̂i)x̂i . (28)

A reasonable state-feedback implementation would be to choose ûi =
−Ki(x̂i)xi (see, e.g., [3] for a simulation in this case). We should men-
tion that for single-state models, the state-dependency disappears (as
we show in a later section).

3. Similar recursions and remarks are valid for the solution of problems
with other kinds of uncertainties, e.g., unstructured uncertainties [3].

4.2 An Iterative Solution to the TPBVP

We are currently studying the TPBVP more closely. An iterative solution
that we found performs reasonably well is the following.

I. Initialization. Choose initial values for all variables P0 to PN (for example,
by running the LQR Riccati recursion or by using a suboptimal guaranteed-
cost design). Choose also initial values for all λ̂i, say λ̂i > ‖HT Pi+1H‖F.

II. Forwards Iteration. Given values {x0, Pi+1, λ̂i}, we evaluate the quantities
{Ŵi+1, Q̂i,Ki, ŷi, ûi} by using the recursions derived above, as well as prop-
agate the state-vectors {x̂i} by using x̂i+1 = Fix̂i + Giûi + ŷi where, from
(5), ŷi is found by solving the equation

(
λ̂iI −HT Pi+1H

)
ŷi = HT Pi+1(Fix̂i + Giûi) .



If the matrix
(
λ̂iI −HT Pi+1H

)
is singular, then among all possible solu-

tions we choose one that satisfies ‖ŷi‖
2 = ‖Ef x̂i + Egûi‖

2.

III. Backwards Iteration. Given values {PN+1, ûi, x̂i} we find new approxi-

mations for {Pi, λ̂i} by using the recursions derived above for the state
regulation problem.

IV. Recursion. Repeat steps II and III.

♦

4.3 The One-Dimensional Case

Several simplifications occur for one-dimensional systems. In particular,
there is no need to solve a two-point boundary value problem. This is be-
cause for such models, the state-dependency in the recursions disappears
and we can therefore explicitly describe the optimal control law.

To show this, let us verify that the value of λ̂N (and more generally λ̂i)

becomes independent of x̂N (x̂i). Indeed, recall from (15) that λ̂N is the
argument that minimizes

G(λ) =
[
K2

NQN + (FN −GNKN )2
(
WN+1 + E2

gK2
N + E2

f )
]
x̂2

N ,

over λ ≥ ‖H2PN+1‖. Here

WN+1 = PN+1 + P 2
N+1H

2(λ−H2PN+1)
† .

Therefore, the minimum of G(λ) is independent of x̂N . It then follows that

λ̂N and KN are independent of x̂N and we can iterate the recursion for PN

backwards in time.

4.4 A Simulation

We compare below in Fig. 1 the performance of this design with a guaranteed-
cost design. The example presented here is of a 2-state system. The nominal
model is stable with only one control variable. Moreover, H = I, Ef = 0,

Eg =
[

0 0 0.4
]T

, G =
[

1 −0.5
]T

, and N = 20. The lower horizontal line is
the worst-case cost that is predicted by our BDU construction. The upper
horizontal line is an upper bound on the optimal cost. It is never exceeded
by the guaranteed-cost design. The situation at the right-most end of the
graph corresponds to the worst-case scenario. Observe (at the right-end of
the graph) the improvement in performance in the worst-case.
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Fig. 1. 100 random runs with a stable 2-dimensional nominal model

5 CONCLUDING REMARKS

Regarding the state-regulator application, earlier work in the literature on
guaranteed-cost designs found either sub-optimal steady-state and finite-
horizon controllers (e.g., [13]), or optimal steady-state controllers over the
class of linear control laws [12]. Our solution has the following properties: i)
It has a geometric interpretation in terms of an orthogonality condition with
modified weighting matrices, ii) it does not restrict the control law to linear
controllers, iii) it also allows for unstructured and other classes of uncertain-
ties (see [3]), and iv) it handles both regular and degenerate situations. We
are currently studying these connections more closely, as well as the TPBVP.

In this paper we illustrated one application of the BDU formulation in
the context of state regulation. Other applications are possible [1].
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