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On the Stability of the Least-Mean Fourth
(LMF) Algorithm

Vı́tor H. Nascimento∗ and José Carlos M. Bermudez+

Abstract— We show that the least-mean fourth (LMF)
adaptive algorithm is not mean-square stable when the
regressor input is not strictly bounded (as happens, for
example, if the input has a Gaussian distribution). This
happens no matter how small the step-size is made. We
prove this result for a slight modification of the Gaussian
distribution in a length M = 1 filter (in order to simplify
our arguments), and provide several examples of divergence
when the regressor is Gaussian.

Our results provide tools for filter designers to better
understand what can happen when the LMF algorithm is
used, and in which situations it might not be a good idea
to use this algorithm.

I. INTRODUCTION

The least-mean fourth (LMF) algorithm was proposed
almost 20 years ago [1] as an alternative to the least-
mean square (LMS) algorithm. The goal was to achieve
a lower steady-state misadjustment for a given speed of
convergence using a different cost-function. It is not dif-
ficult to intuitively understand how this is accomplished
if we compare the update laws of both algorithms:
LMS:

W 2(n + 1) = W 2(n) + µe2(n)X(n),

e2(n) = d(n) − W 2(n)T
X(n),

(1)

LMF:

W (n + 1) = W (n) + µe(n)3X(n),

e(n) = d(n) − W (n)T
X(n),

(2)

where W 2(n) and W (n) ∈ IRM are current estimates of
a parameter (column) vector W o ∈ IRM . X(n) ∈ IRM

is a known regressor vector, and d(n) is a known scalar
sequence, usually called desired sequence.

It is well-known [2], [3] that, if
{

d(n),X(n)
}

are
zero-mean, jointly wide-sense stationary sequences, one
can always model the relationship between d(n) and
X(n) as

d(n) = W
T
o X(n) + e0(n), (3)
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where e0(n) is a zero-mean scalar sequence, uncorre-
lated with X(n) and with variance E e0(n)2 = σ2

0

(E(·) is the statistical expectation operator). In this
context, W o is called the Wiener solution. The LMS
estimate W 2(n) converges in the mean to W o with a
finite covariance matrix, as long as the step-size µ is
small enough. It is also known that, for small µ, the
LMS steady-state mean-square estimation error (MSE)
is approximately given by

lim
n→∞

E e2(n)2 ≈ σ2
0 + µσ2

0

Tr(Rx)

2
, (4)

where Rx = E X(n)X(n)T is the autocorrelation
matrix of X(n), and Tr(Rx) is its trace.

The second term on the right-hand side of (4) is
the steady-state excess MSE, which is caused by the
fluctuations of W 2(n) around W o after convergence.
This term is proportional to µ.

It can also be shown that the rate of convergence of
E e2(n)2 is 1 − 2µλmin for small µ, where λmin is the
smallest eigenvalue of Rx.

One can see that µ controls the behavior of the
algorithm, and that two important goals are competing:
for fast convergence, one would use a large step-size
µ, but to achieve low steady-state MSE, a smaller step-
size would be better. One intuitive way to understand
the LMF algorithm is to consider it as a variant to LMS
with a variable step-size µ̄(n) = e(n)2µ. When the error
is large, adaptation is faster, when the error is small,
adaptation is slower, resulting in a fast convergence with
small steady-state error.

Regarding the LMF algorithm in this way also high-
lights its main drawback: if the error gets too large, the
“equivalent step-size” µ̄(n) will get large, and one would
expect the algorithm to diverge. This is exactly what
happens.

Recent works [4], [5], [6], [7] studied the behavior of
the LMF algorithm for Gaussian noise and regressors,
finding approximate mean-square stability conditions.
Several other works also studied the stability of LMF.
For example, [8] proves that W (n) converges to a
ball around W o when the regressor vector sequence
is bounded, i.e., when there is a B < ∞ such that
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||X(n)|| < B for all n (|| · || is the Euclidean norm).
In this work we argue that there is always a nonzero

probability of divergence in any given realization of
the LMF algorithm when the entries of X(n) have a
probability density function (pdf) with infinite support,
i.e., there is a small (but nonzero) probability that an
entry is larger than any C > 0. This is what happens,
for example, with the Gaussian distribution.

We prove this property for a simple case, when M = 1
(scalar filter) and the distribution of X(n) is a slight
modification of the normal, with pdf given by

pX(x) =

{

0, if |x| < ε,

1√
2πσx

e
− (|x|−ε)2

2σ2
x , if |x| ≥ ε,

(5)

for ε > 0.
This result means that the LMF algorithm is not

mean-square stable with these near-Gaussian inputs. In
other words, the steady-state mean-square error (MSE)
is unbounded.

Notice that this result does not imply that every
realization of the LMF algorithm will result in diver-
gence. In fact, for finite time intervals, the probability of
divergence on a single realization of the algorithm tends
to zero as the step-size is decreased to zero, as we show
in a few examples further on. We are currently working
on an approximation for the probability of divergence.
The purpose of this paper is only to show the important
property that this probability of divergence is nonzero
even for very small step-sizes.

In light of this result, we can better understand
the approximations given in the literature for the
MSE of the LMF algorithm. For small step-sizes, the
probability of divergence is very small and the ap-
proximations in the literature are in fact computing
E
{

e(n)2| the filter coefficients did not diverge
}

. Thus,
there is not a step-size boundary µ = µmax above
which the algorithm starts diverging. What happens is
that the probability of divergence increases with µ. This
property has a similarity with what happens with LMS,
as explained in [9] — LMS has a range of step-sizes
for which the algorithm converges with probability one,
but diverges in the mean-square (MS) sense; a range
for which the algorithm diverges almost always (and
in the MS sense); and a range for which it converges
in the MS sense. One of the main differences between
LMS and LMF is that the last case only happens for the
LMF algorithm when both the regressor and the noise
are bounded.

In the next sections we prove our assertions for a
simple situation, and provide several simulations corrob-
orating our theoretical results.

II. A SIMPLE EXAMPLE OF INSTABILITY

Our goal here is to give a simple example showing
that LMF will have a nonzero probability of divergence
for a rather nice distribution of the regressor input, no
matter how small we choose the (nonzero) step-size. We
believe that this scalar example explains clearly what
is the mechanism of divergence, so there is no need to
expand the example for longer filters.

A. Proof of instability for scalar filters

Consider the LMF algorithm (2) applied with filter
length M = 1 to identify a constant Wo, given a scalar
independent and identically distributed (iid) sequence
X(n) with pdf given by (5). Assume also that d(n) is
given by

d(n) = WoX(n),

i.e., there is no noise. Defining the weight estimation
error

V (n) = Wo − W (n),

the LMF weight-error update equation is written

V (n + 1) =
(

1 − µX(n)4V (n)2
)

V (n). (6)

We will show first that there is a value 0 < K <
∞ such that, if for any n it holds that |V (n)| > K,
then limn→∞ |V (n)| = ∞. Later we will show that the
probability of |V (n + 1)| > K given |V (n)| = α is
nonzero for all α > 0.

Let K be such that, say,

µε4K2 − 1 > 3 ⇔ K >
2√
µε2

. (7)

Given inequality (7) and since |X(n)| ≥ ε by (5), it
necessarily holds that

|1 − µX(n)4K2| > |1 − µε4K2| > 3. (8)

If we now assume that |V (n)| > K, (6) yields

|V (n + 1)| =
∣

∣1 − µX(n)4V (n)2
∣

∣|V (n)| >

> |1 − µε4K2||V (n)| > 3|V (n)|, (9)

and we conclude that |V (n)| → ∞ if at any time instant
it happens that |V (n)| > K.

We complete our argument by showing that the prob-
ability of |V (n + 1)| > K given |V (n)| = α is nonzero
for any α > 0. Define, for a given α > 0,

β(α)
∆
=

K

µα3
+

1

µα2
. (10)
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Then, for |V (n)| = α, an input X(n) such that X(n)4 >
β(α) leads to

µX(n)4V (n)2 − 1 >
K

|V (n)| , (11)

and thus

|V (n + 1)| = |1 − µX(n)4V (n)2||V (n)| > K. (12)

Expressions (9) and (12) show that |V (n)| → ∞ if
X(n)4 > β(α) for any given |V (n)| = α. Thus, to
prove that there is a nonzero probability of divergence,
it remains to show that there is a nonzero probability
that X(n)4 > β(α), given that |V (n)| = α.

Using (5), is follows that

Pr {|V (n + 1)| > K | |V (n)| = α}
> Pr

{

X(n)4 > β(α)
∣

∣ |V (n)| = α
}

= 2

∫ ∞

β(α)1/4

pX(x)dx > 0,

where Pr{A|B} is the probability of ocurrence of A
given B. This concludes the proof.

B. Gaussian regressors

When X(n) is normal (ε = 0 in (5)), the simple
proof above does not apply. However, we now present
simulations showing that the result still holds.

Assume that LMF is applied to the same situation as
before, but with ε = 0. In our simulations, we evaluated:

• The probability of divergence of LMF, measured
as follows: we ran L = 106 realizations of the
algorithm, starting from the same initial condition
V (0) = 1 and with zero noise. We counted a
“divergence” everytime the absolute error |V (n)|
became larger than 10100 (choosing this value in a
very large range does not affect the results),

• The probability P> of |V (1)| > |V (0)|,
• The value V1/2 for which the probability Pr

{

|V (n+
1)| > |V (n)| | |V (n)| = V1/2

}

= 0.5,
• The probability P>V1/2

that |V (1)| > V1/2, given
the initial condition.

The probability of divergence was obtained experimen-
tally. All other values can be computed as follows.

We start by computing the pdf of V (n + 1) given
V (n). From (6), it is clear that

Pr{V (n + 1) < z|V (n) = Z > 0}
= Pr{(1 − µX(n)4Z2)Z < z}

or, equivalently,

Pr{V (n + 1) < z|V (n) = Z > 0}

= Pr

{

X(n)4 >
1 − z/Z

µZ2

}

The pdf of X(n)4 is given by

pX4(y) =
dPr{X4 < y}

dy

=

d

(

2

∫ y1/4

0

1√
2πσx

e
− x2

2σ2
x dx

)

dy

=
1√

8πσxy3/4
e
−

√
y

2σ2
x , y ≥ 0. (13)

Thus

Pr{V (n + 1) < z | V (n) = Z > 0}

= Pr

{

X(n)4 >
1 − z/Z

µZ2

}

=

∫ ∞

1−z/Z

µZ2

1√
8πσxy3/4

e
−

√
y

2σ2
x dy, (14)

Finally, the desired pdf is obtained by differentiating (14)
with respect to z:

pV (n+1) | V (n)(z | V (n) = Z)

=
dPr{V (n + 1) < z|V (n) = Z > 0}

dz

=
1√

8πσxµ1/4Z3/4(Z − z)3/4
e
−

√
Z−z

2σ2
x

√
µZ3 .

(15)

Assuming σ2
x = 1, we can use (15) with V (0) = 1

(deterministic) to determine the probabilities

P> = Pr{|V (1)| > |V (0)|}

and

P>V1/2
= Pr{|V (1)| > |V1/2| | V (0) = 1},

and the point V1/2 > 0 for which

Pr{|V (1)| > V (0) | V (0) = V1/2} = 0.5.

These values are given, for several choices of µ, in
Table I. Column P> gives the probability of |V (1)| >
|V (0)| (for |V (0)| = 1), column V1/2 gives the value
of |V (0)| for which the corresponding P> would be 0.5.
Column P>V1/2

gives the probability that |V (1)| > V1/2,
given that |V (0)| = 1, and the last column gives the
observed probability of divergence. The table also shows
Ndiv, the observed number of realizations of the LMF
algorithm for which |V (n)| > 10100, as explained above.

The last column in Table I shows that the probability
of divergence grows with the step-size. Even for the
largest step-size in the table, the filter coefficients behave
rather nicely in most realizations. Fig. 1 shows three
realizations for a scalar filter (M = 1 coefficient), with
Gaussian iid input X(n) with unit variance, step-size
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TABLE I

OBSERVED PROBABILITY OF DIVERGENCE, FOR M = 1 AND

|V (0)| = 1. THE LAST COLUMN GIVES THE OBSERVED

PROBABILITY OF DIVERGENCE, USING L = 106 REALIZATIONS OF

THE FILTER. EXPLANATIONS FOR THE OTHER COLUMNS ARE GIVEN

IN THE TEXT.

µ P> V1/2 P>V1/2
Ndiv/L

0.01 1.7 × 10−4 31.1 5.2 × 10−14 7 × 10−6

0.02 1.6 × 10−3 22.0 5.8 × 10−9 3.0 × 10−4

0.03 4.3 × 10−3 17.9 5.4 × 10−7 1.6 × 10−3

0.04 7.8 × 10−3 15.5 6.5 × 10−6 4.4 × 10−3

0.05 1.2 × 10−2 13.9 3.3 × 10−5 8.5 × 10−3

0.06 1.6 × 10−2 12.7 1.0 × 10−4 1.4 × 10−2

0.07 2.1 × 10−2 11.7 2.4 × 10−4 2.0 × 10−2

0.08 2.5 × 10−2 11.0 4.7 × 10−4 2.8 × 10−2

0.09 3.0 × 10−2 10.4 8.0 × 10−4 3.5 × 10−2

0.10 3.4 × 10−2 9.8 1.3 × 10−3 4.3 × 10−2

0.20 7.5 × 10−2 7.0 1.2 × 10−2 1.3 × 10−1

µ = 0.03 (probability of divergence of 0.16% according
to Table I), and initial condition V (0) = 1. The figure
shows two realizations where the algorithm converged,
and one for which the algorithm diverged. Note that
divergence does not take long to become clear. This
has been verified to be a typical algorithm behavior.
In addition, we note that the probability of divergence
depends on the initial condition: the larger the initial
error V (0), the larger the probability of divergence.
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Fig. 1. Three runs of LMF with scalar regressors, true Wo = 0,
V (0) = W (0) = 1, µ = 0.03, X(n) ∼ N(0, 1).

We also provide an example of a filter with M = 10
coefficients, in order to show that this behavior is not
restricted to scalar filters. Fig. 2 shows simulations sim-
ilar to those of Fig. 1 (again we show three simulations,
two converging and one diverging). The parameters used
were: X(n) was an iid vector sequence with zero mean

and covariance matrix equal to the identity (I), the step-
size chosen was µ = 0.02, and the initial condition was
V (0) = [ 1 0 ... 0 ]T .
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Fig. 2. Three runs of LMF with M = 10, true W o = [ 0 0 ... 0 ]T ,
V (0) = W (0) = [ 1 0 ... 0 ]T , µ = 0.02, X(n) Gaussian with
covariance equal to I .

III. CONCLUSIONS

In this paper we argued that the least-mean fourth al-
gorithm cannot be mean-square stable when the regressor
sequence is not strictly bounded. In practice (since all
actual regressor sequences are bounded), this means that
the algorithm is very sensitive to bursts of large noise
(noise of impulsive type).

The behavior of the LMF algorithm in this respect
is very different from that of LMS. If the weight error
vector V (n) is taken by chance to a large value in
a particular realization of the LMS algorithm, it tends
to return quickly to reasonable behavior [9]. The LMF
algorithm, on the other hand, may become completely
unstable if the weight error vector becomes too large.
This behavior is due to its cubic nonlinearity.

We are currently working on an approximation for
the probability of divergence of LMF, given the initial
condition, the step-size, the filter length, the noise distri-
bution, and the covariance matrix of the regressor vector
X(n). The goal is to provide designers with tools to
decide whether using the LMF algorithm in a particular
situation is a sensible choice, and later on, to look for
the best ways to increase algorithm robustness.
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