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Variable-length adaptive algorithms for sparse filters
Vı́tor H. Nascimento

Abstract— Despite their qualities of robustness, low cost,

and good tracking performance, for many applications the

convergence of the LMS and the normalized LMS algorithms

is too slow. Here we analyze a variation of a recently pro-

posed method that speeds up this convergence rate by vary-

ing the length of the adaptive filter, taking advantage of the

faster convergence rates obtained by short filters. Our re-

sults show that variable-length adaptive filters may improve

the initial convergence rate of sparse filters when the corre-

lation of the regressor input is not too high.

We also provide simulations comparing the new algorithm

with NLMS and sparse-signed LMS.

Keywords—Sparse adaptive filters, convergence rate, LMS

algorithm.

I. Introduction

As is well known, the least-mean-square algorithm
(LMS) has several desirable properties, which explain its
widespread use: LMS is easily implemented, has a low
computational cost, is robust to numerical errors, and has
reasonable tracking performance. Its major drawback is
its slow initial convergence, especially in situations where
there is strong correlation between the entries of the re-
gressor vector [1], [6].

In order to take better advantage of the qualities of LMS,
several methods to speed up its convergence have been pro-
posed, including the recent proportionate normalized LMS
(PNLMS) [2] and sparse-signed LMS (SSLMS) [3] algo-
rithms, that take advantage of sparsity in the optimal filter
sought.

In this paper we give further results on another approach:
variable-length filters, initially proposed by us in [4]. This
approach can substantially accelerate the initial conver-
gence of the LMS and even of the PNLMS and SSLMS
algorithms. We present here a different strategy for filter
length variation than the one proposed in [4], provide a new
analysis showing the conditions under which our method
achieves good results, and present simulations comparing
our method with the normalized-LMS and SSLMS algo-
rithms.

The additional cost in using the variable-length strategy
described here includes both a larger program memory and
a larger number of operations, and depends on the choice of
the minimum sub-filter length. Depending on the choices
made, this additional cost may be small when compared
with the complexity of LMS.

A. Definitions and notation

We need approximations to a desired sequence
{

y(n) ∈

IR
}∞

n=0
through linear combinations of the regressor (col-
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umn) vector sequence
{

xn ∈ IRM
}∞

n=0
, such that ŷ(n) =

w
T
nxn (the superscript T denotes vector transposition).

Both sequences are assumed zero-mean. The vector se-
quence

{

xn

}

is formed from a scalar sequence
{

x(n) ∈

IR
}∞

n=0
, such that

xn =
[

x(n) x(n − 1) . . . x(n − M + 1)
]T

.

The weight vector wn is computed iteratively as (the pos-
itive constant µ is known as the step-size):

wn+1,i = wn,i + µe(n)xn,ig[xn,wn],

where wn,i and xn,i are the i-th elements of each vector,
e(n) = y(n) − w

T
nxn, and

g[xn,wn] =







1 for LMS,
1/(ε1 + x

T
nxn) for NLMS,

ε2 + abs(wn,i) for SSLMS,

with small positive constants ε1 and ε2.
If the desired and regressor sequences are stationary (an

assumption we make in this paper), and their second order
statistics are known, it is possible to compute the optimal
filter weights Ω that minimize E e(n)2 (E(·) is the expec-
tation operator). Defining

R
∆
= E

(

xnx
T
n

)

and p
∆
= E

(

y(n)xn

)

,

we have Ω = R−1
p [1].

II. Variable-length NLMS algorithm

We can achieve a faster convergence rate if we split a
length-M filter into several sub-filters of smaller length.
These sub-filters are trained independently, and, since they
have smaller lengths, their adaptation rate is faster than
that of a full filter [4]. After a few iterations, the sub-filters
are merged, with the training re-starting from a better ini-
tial condition than the original one. Several strategies for
splitting, merging, and passing on the initial conditions to
the merged filters are possible. The strategy described here
is an evolution of the one presented in [4].

Consider a length-M adaptive filter. We begin (Stage
1) with K1 length-M1 sub-filters (M = K1M1), updated
independently through the NLMS algorithm (in fig. 1 we
have an example with M = 4, M1 = 1, and K1 = 4).
After a pre-chosen number N1 of iterations, we merge the
length-M1 sub-filters, forming K1/2 length-2M1 sub-filters
(Stage 2). Again, after N2 iterations, we merge these two
sub-filters, and so on (see also [4]).

As seen in fig. 1, sub-filter j in stage k generates its
own error, ek

j (n). We keep track of these errors to choose
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Fig. 1. Stage1: 4 independent length-1 sub-filters forming a length-4
filter.

the overall filter output, as follows. Choose λ ∈ (0, 1) and
define, for 0 ≤ n < N1 − 1,

σ
1
n+1 = λσ

1
n +

[

(

e1
1(n)

)2
. . .

(

e1
K1

(n)
)2

]T

, (1)

with initial condition σ
1
0 = 0.

The overall output error e(n) is chosen as the e1
I(n)(n)

corresponding to the minimum entry of σ
1
n. Denoting the

i-th entry of σ
1
n by σ1

i (n), e(n) and I(n) are given by

I(n) = arg min
i

σ1
i (n), e(n) = e1

I(n)(n). (2)

In the transition between two stages we need to keep the
coefficients from the best sub-filter and zero the coefficients
of all other sub-filters, otherwise there might appear a large
spike at the estimation error e(n) (see Sec. III and [5] for
an explanation of this behavior).

The transition stragety described here is slightly different
than that of [4]. For example, at the transition from stage
1 to stage 2 (at step N1), we find the two minimum values
of σ

1
N1−1 (corresponding to sub-filters i and j, say). In

the second stage, the i-th and j-th sub-filters are merged
together, i.e., the entries of w corresponding to the i-th
and j-th sub-filters will be updated as a single NLMS filter.
The other sub-filters are merged with their neighbors (see
fig. II, where the smallest and second smallest entries of
σ

1
N1−1 are the 2nd and 3rd, respectively).
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Fig. 2. Stage 2: 2 length-2 sub-filters

The second stage will therefore have K2 = K1/2 sub-
filters, each with length M2 = 2M1. Their initial conditions
are zero, except for the sub-filter corresponding to the best
stage-1 sub-filter (for example, in the M = 4 filter in figures

1 and II, if σ
1
N1−1 = [ .8 .01 .7 .9 ]

T
, all coefficients, except

w2, will be set to zero in step N1). In our M = 4 example,
the initial condition σ

2
N1−1 for stage 2 is as follows:

σ
2
N1−1 =

[

σ2
1(N1 − 1)

σ2
2(N1 − 1)

]

=





min
i=2,3

σ1
i (N1 − 1)

min
i=1,4

σ1
i (N1 − 1)



 =

[

.01
.8

]

.

(3)

The procedure for the other stages is similar.

Note that at the last stage the algorithm returns to
a standard NLMS recursion, and thus the steady-state,
tracking, and robustness properties of NLMS are retained.
The only modification occurs during the initial conver-
gence.

Our example in figs. 1–II starts with length-1 sub-filters
for convenience of presentation. In general, it would be
a better policy to begin with longer sub-filters, for two
reasons:

a) the algorithm will be more likely to choose the best
filters to merge at the end of the first stage;
b) the computational complexity is reduced.

In fact, if we start with K1 length-M1 sub-filters, the extra
work (in addition to the 3M + 1 multiplications, 3M addi-
tions and 1 division required by NLMS) that is needed at
each step is:

i) K1 − 1 comparisons to choose the the smallest entry of
the length-K1 vector σ

1
n (at the transition between the first

two stages, the two smallest entries are needed, and finding
them might require 2.5K1 − 4 comparisons);
ii) K1 − 1 multiplications (to compute µe1

i (n); in NLMS
we only need to compute µe(n));
iii) 2(K1 − 1) additions (to compute the e1

i (n) and the K1

normalizing factors for the NLMS algorithm applied to each
sub-filter),
iv) K1 − 1 divisions,
v) 2K1 multiplications and K1 additions to compute σ

k
n+1.

This gives a total of 2.5K1 − 4 comparisons, 3K1 − 1 mul-
tiplications, 3K1 − 2 additions, and K1 − 1 divisions in
addition to the operations needed by plain NLMS. For the
other stages, since the number of sub-filters will be smaller,
the operation count will also be smaller.

III. Influence of sparsity and eigenvalue

dispersion

The key to good performance of the variable-length al-
gorithm is that the correct sub-filters are chosen at the
transitions between stages. In this section we show how the
sparsity of the optimum weight vector Ω and the eigenvalue
dispersion of the input autocorrelation matrix R = E xnx

T
n

influence the performance of the variable-length algorithm,
affecting the probability of making wrong choices. Assume
then that at stage 1 we have K1 sub-filters of length M1,
for a total filter length M = K1M1, and split Ω into K1

sub-vectors, such that

Ω
T ∆

=
[

Ω
T
1 Ω

T
2 . . . Ω

T
K1

]

.



XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ 3

Similarly, split R as (recall that R is a Toeplitz matrix, and
note that Rk = RT

−k)

R
∆
= E xnx

T
n =











R0 R1 . . . RM1−1

R−1 R0 . . . RM1−2

...
...

. . .
...

R1−M1
R2−M1

. . . R0











.

In [5] we prove that under these conditions, each sub-filter
has optimal weights Ω

s
i with minimum error Js

0,i given by

Ω
s
i = Ωi + R−1

0

K1
∑

k=1,k 6=i

Rk−iΩ
s
i (4)

Js
0,i = σ2

0 +

K1
∑

k=1,k 6=i

Ω
s
k

T R0Ω
s
k, (5)

where σ2
0 = E(y(n) − Ω

T
xn)2.

To begin our discussion, assume that x(n) is a white
process, so that R is diagonal and Ri = 0 for i 6= 0. In
this case, (4) implies that Ω

s
i = Ωi, i.e., the overall filter

obtained from the independent sub-filters with optimum
weights is exactly the optimum length-M filter.

Let us assume also that Ω is sparse, i.e. that for some
small integer p, only the sub-filters corresponding to indices
i ∈ I =

{

i1, i2, . . . , ip
}

are nonzero (i.e., if i /∈ I, then
Ωi = 0). Under these conditions, it is easy to see that,
whenever i /∈ I and j ∈ I, then Js

0,i > Js
0,j . In fact, since

in this case R0 = σ2
xI, whenever i and j are such that

‖Ωs
i‖ > ‖Ωs

j‖, then Js
0,i > Js

0,j (‖Ω‖ is the Euclidean norm
of Ω).

A reasonable approximation to the steady-state mean-
square errors (MSEs) of a sub-filter running NLMS is, for
small step-size µ [7],

Js
i ≈ Js

0,i

[

1 +
µTr(R0)

2
E

(

1

‖x̄i,n‖2

)]

,

where

x̄i,n =
[

x(n − (i − 1)M1) . . . x(n − iM1 − 1)
]T

and Tr(R0) is the trace of matrix R0. From the above
expression for the MSE, we see that for small step-size, J s

i

is approximately equal to Js
0,i.

From the above considerations, we conclude that (when
Ω is sparse and if Ri becomes small as i becomes larger),
we can find the sub-filters that correspond to the largest
entries in Ω by finding the sub-filters with the smallest
Js

0,i. Of course, as one can see from (4) and (5), as the
input correlation increases or the sparsity of Ω decreases,
the MSEs of the sub-filters will become worse indicators
for the nonzero entries of Ω.

We will show this behavior through an example. Con-
sider a filter with length M = 128, for which the only
nonzero entries of Ω are in positions 1, 10, 11, and 120 (all
these entries are equal to 1). The input sequence x(n) is
generated from an autoregressive (AR) model, such that

x(n + 1) = αx(n) + ε(n),

where ε(n) is a white Gaussian noise.
We computed the values of Js

0,i for K1 = 32 sub-filters
of length M1 = 4, for α = 0.5, 0.9, and 0.95 (fig. 3). The
eigenvalue dispersions, λmax(R)/λmin(R), are 9.0, 347, and
1337, respectively. The sub-filters with nonzero coefficients
are the first, third, and 30th. One can see that at these
sub-filters the MSE is indeed smaller than at adjacent sub-
filters, but the difference becomes less pronounced as the
input autocorrelation increases (thus decreasing the prob-
ability of choosing the correct sub-filters at stage transi-
tions).
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sub-filter number i

Js
0,i

Fig. 3. Values of Js
0,i

for each of 32 sub-filters of length 4.

IV. Simulations

We now present a few simulations comparing the
variable-length approach with the NLMS and the SSLMS
algorithms. The first example is a filter with total length
M = 2048, whose input x(n) is the output of a filter with
white Gaussian (unit-variance) input, and transfer function

H(z) =
1 + 0.7z−1

1 − 0.5z−1
.

The NLMS and VLNLMS algorithms are used to identify
a system with output

y(n) = Ω
T
xn + e0(n),

where e0(n) is a white Gaussian noise with variance σ2
0 =

10−4, and Ω is obtained as the convolution of a vector of
length 2048, whose only nonzero coefficients are at posi-
tions

1, 100, 111, 1769, and 1800,

with amplitudes 1, 0.8, 0.7, -0.5, and 0.9; and a vector of
length 21 whose k-th entry is given by 0.3|k−11| (the first 10
and last 11 elements of the convolution are thrown away,
so that the final vector has again length 2048).

We applied the NLMS algorithm with step-size µ = 1
(the condition for maximum convergence speed for NLMS),
and VLNLMS with transitions at points Ni = {100, 200,
300, 400, 600, 1200, 2400, 3600, 4800, 6400, and 9600}.
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The step-sizes were chosen as follows: for the first stage
(128 sub-filters with length 16), µ1 = 0.02, for the second
stage, µ2 = 0.1, third stage, µ3 = 0.2, and for the remain-
ing stages, µi = 1 (so the last stage reverts to an NLMS
filter with µ = 1). For the computation of σ

k
n in (1), we

used λ = 0.999.

The average of 5 simulations with initial condition w0 =
0 is presented in fig. 4. We see that VLNLMS reaches a
point of reasonable MSE (between 0.1–0.01) in approxi-
mately half the number of iterations needed by NLMS.

0 2 4 6 8 10

x 10
4
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10
−2

10
0

10
2

NLMS  

VLNLMS

n

E e(n)2

� NLMS

Fig. 4. MSE for NLMS and VLLMS, average of 5 runs.

The computational complexity of NLMS for this exam-
ple was 6, 144 multiplications, 6, 144 additions, and 1 divi-
sion. For VLLMS, in the worst case (first stage), we have,
in addition to the operations required by NLMS, 316 com-
parisons, 383 multiplications, 382 additions, and 127 di-
visions. Therefore, VLLMS would be approximately 44%
slower than NLMS (considering that multiplications and
additions can be performed simultaneously in one cycle,
that comparisons have the same cost as additions and mul-
tiplications, and that divisions take 16 cycles in a digital
signal processor).

For our next example, we compared the variable-length
approach with SSLMS. Our filter Ω had again M = 2048
coefficients, with nonzero entries only at taps 1, 600, 700,
and 1700, and amplitudes of 0.1, 1, -0.5, and 0.1, respec-
tively. The input regressor x(n) was obtained as in the
previous example, but the measurement noise had variance
σ2

0 = 10−2. For this example, we chose the transition points
at Ni = {300, 900, 1200, 1500, 1800, and 2100}, and again
we started from a zero initial condition, with sub-filters
with 16 coefficients. The step-sizes were 1 for the NLMS
algorithm and 0.002 for the SSLMS algorithm. The first
3 stages of the variable-length algorithm employed NLMS,
with step-sizes 0.02, 0.1, and 0.4. From the fourth stage
on, the sub-filters used the SSLMS recursion, with step-
sizes 0.02, 0.01, 0.005, 0.003, and 0.002. The average of 50
runs can be seen in fig. 5. The figure shows that again the
variable-length algorithm reaches steady-state much faster
than NLMS, and even than SSLMS. Since the first three
stages in our filter used NLMS, the computational count
for the worst case is as in the last example.

We stress that in both examples, we ran NLMS with
step-size µ = 1, which is a good approximation for the con-
dition of maximum convergence speed for this algorithm.
Therefore, we would not achieve faster convergence with
NLMS even if we had used a variable step-size approach.

0 0.5 1 1.5 2
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SSLMS
VL alg.

n

E e(n)2

� NLMS

VL alg.

Fig. 5. MSE for NLMS, SSLMS, and VLLMS – average of 50 runs.

V. Conclusions

In this paper we studied the performance of variable-
length algorithms, concluding that variable-length meth-
ods should give good performance for the identification of
sparse filters, as long as the correlation of the input sig-
nal x(n) is not too high. We compared the behavior of
a variable-length NLMS algorithm with NLMS itself, and
with the recently proposed sparse-signed LMS algorithm.

We are currently studying ways of improving the perfor-
mance of the algorithm in choosing the best sub-filters at
the end of each stage, and methods to choose on-line the
transition points between stages and the step-sizes.
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