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Abstract. The paper describes estimation and control strategies for models with bounded data
uncertainties. We shall refer to them as BDU estimation and BDU control methods, for brevity.
They are based on constrained game-type formulations that allow the designer to explicitly incor-
porate into the problem statement a-priori information about bounds on the expected sizes of the
uncertainties. In this way, the effect of uncertainties is not unnecessarily over-emphasized beyond
what is implied by the a-priori bounds; consequently, overly conservative designs, as well as overly
sensitive designs, are avoided. A feature of these new formulations is that geometric insights and
recursive techniques, which are widely known and appreciated for classical quadratic-cost designs,
can also be pursued in this new framework. Also, algorithms for computing the optimal solutions
with the same computational effort as standard least-squares solutions exist, thus making the new
formulations attractive for practical use. Moreover, the framework is broad enough to encompass
applications across several disciplines, not just estimation and control. Examples will be given of
a quadratic control design, an H control design, a total-least-squares design, image restoration,
image separation, and co-channel interference cancellation.

A major theme in this paper is the emphasis on geometric and linear algebraic arguments. Despite
the interesting results that will be discussed, several issues remain open and indicate potential future
developments; these will be briefly discussed.

1. INTRODUCTION. A fundamental problem in estimation is to recover to
good accuracy a set of unobservable parameters from corrupted, incomplete, or dis-
torted data. Likewise, a fundamental problem in control is to determine suitable
control signals for possibly erroneous models. Examples to both effects abound in the
fields of signal processing, system identification, image processing, digital communi-
cations, statistics, and others, as can be found in many textbooks — see, e.g., [1]-[11]
and the many references therein. In all these fields, several optimization criteria have
been proposed over the years for design purposes. Some of the most distinguished
criteria are the following.

a) The least-squares (LS) method, which has been one of the most widely used
design criteria since its inception by Gauss (around 1795) in his studies on
celestial mechanics (e.g., [12, 13, 14]).
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b) The regularized least-squares method, which is used to combat much of the
ill-conditioning that arises in pure LS problems (e.g., [12, 15, 16]).

c) The total-least-squares (TLS) or errors-in-variables method, which provides
a way to deal with uncertainties in the data (e.g., [17, 18]).

d) The Ho, approach, which combats uncertainties in the data by designing for
the worst possible scenario (e.g., [9, 11]).

e) The [y approach for robust identification and control, which exploits linear
programming and interpolation techniques (e.g., [19]).

f) The set-membership identification approach, which is based on constructing
converging ellipsoids that encircle the unknown parameter (e.g., [20, 21]).

Among the most successful design criteria, which submit to analytical studies and
derivations and which have had the most applications in identification, control, sig-
nal processing, and communications, the least-squares criterion of C. F. Gauss (1795)
stands out unchallenged [14]. Tt was also independently formulated by A. M. Legendre
in 1805, who praised the method in no uncertain terms (e.g., [13]):

“ Of all the principles that can be proposed, | think there is none more general, more
exact, and more easy of application, than that which consists of rendering the sum of
squares of the errors a minimum.”

A. M. Legendre (Paris, 1805)

In this paper, we propose and study new design criteria for estimation and control
purposes that are based on new cost functions. In order to appreciate the significance
of the new formulations, we first provide an overview of some of the existing methods
in Secs. 2 and 3. We then motivate and introduce the new cost functions in Sec. 4.
In Sec. 5 we study in detail the estimation problem and in Sec. 6 we study the
control problem. One major theme in our arguments is the emphasis on geometric
and linear algebraic arguments, which lead to useful insights about the nature of the
new formulations. Also, throughout the paper, several examples from the fields of
image processing, communications, and control are included for illustrative purposes.

We start by reviewing the least-squares problem.

2. THE LEAST-SQUARES CRITERION. The least-squares method forms
the backbone of many well-developed theories in estimation and control including
Kalman filtering, linear quadratic control, and identification methods. Its popularity
is due to several good reasons.

To begin with, the least-squares criterion is extremely simple to state and solve.
Given a noisy measurement vector b that is related to an unknown vector z via the
linear model

(2.1) b=Az+v,
for some known matrix A, we estimate z by solving

(2.2) min [|Az —b||,

where the dimensions of A are taken to be N x n with N > n [we use the capital
letter N to denote the larger dimension of A and the letter n to denote the smaller
dimension of A]. Here, the notation || - || denotes the Euclidean norm of its vector
argument (it will also be used to denote the maximum singular value of a matrix
argument).



2.1. The Orthogonality Condition. The vector v in the model (2.1) denotes a
noise term that explains the mismatch between the measured vector b and the vector
Az. In the absence of v, the vector b would lie in the column span of A, denoted
by R(A). Due to v, the vector b will not in general lie in R(A). The least-squares
problem therefore seeks the vector b = A in R(A) that is closest to b in the Euclidean
norm sense. The solution of (2.2) can be obtained by solving the normal equations

(2.3) (AT A)z = ATb.

These equations can have multiple solutions #, depending on whether A has full
column rank or not. However, regardless of which solution & we pick, the so-called
projection of b onto R(A), given by b= A# is unique. When A is full rank, this is
given by

b= AATA) ATy & Pab

where we use the symbol P4 to denote the orthogonal projection matrix onto the
column span of A (it satisfies P53 = P4 and PZ{ = P4.). These are well-known
properties of least-squares solutions (e.g., [2, 12, 13]).

The normal equations (2.3) also show that the least-squares solution # satisfies
an important geometric property, viz., that the residual vector (AZ — b) is necessarily
orthogonal to the data matrix (see Fig. 2.1),

(2.4) AT (A2 —b)=0.

We shall see later in Sec. 5 that this useful geometric property extends to the BDU

case.
b .
b—b

-
b= Az

R(4)

F1G. 2.1. The residual vector is orthogonal to R(A).

It is further well-known that the solution Z of least-squares problems can be
updated in O(n?) operations when a new row is added to A and a new entry is
added to b. This is achieved via the so-called recursive least-squares (RLS) method
(also derived by C. F. Gauss), and by many of its variants that are nowadays widely
employed in adaptive filter theory (see, e.g., [6, 8, 22]). We may add that there are
also a variety of reliable algorithms and software available for least-squares based
designs [12, 13, 16, 23].

2.2. Sensitivity to Data Errors. Given all the above useful properties of least-
squares solutions, the natural question is to wonder why we would need to consider
alternatives to the least-squares method? Omne prominent reason that has attracted
much attention, especially in the signal processing and control communities, is that
least-squares methods are sensitive to errors in the data.
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More specifically, a least-squares design that is based on given data (A,b) can
perform poorly if the true data happens to be a perturbed version of (4,b), say (4 +
0A,b) for some unknown §A. Indeed, assume that a solution # has been determined
using (2.3), where b is assumed to have been obtained from a noisy measurement of
Az, as in (2.1). Now if the b that we are using has in fact been obtained not from A
but from a perturbed A, say A + §A4,

b=(A+6A)z+v,

then the & computed from (2.3) will result in a residual norm that satisfies, in view
of the triangle inequality of norms,

(2.5) new residual = ||[(A+dA4)2 —b|| < ||[AZ—-Db| + |6 AZ||
——— ———
LS residual additional term

The first term on the right-hand side is equal to the least-squares residual norm that
is associated with (A4, b,2). The second term is the increase in the residual norm due
to the perturbation § A in the data.

Perturbation errors in the data are very common in practice and they can be due
to several factors including the approximation of complex models by simpler ones,
the presence of unavoidable experimental errors when collecting data, or even due
to unknown or unmodelled effects. Regardless of their source, Eq. (2.5) shows that
they can degrade the performance of least-squares designs. Two simple examples
that illustrate this effect in the context of image processing and quadratic control are
discussed below.

2.3. Image Restoration Example. Consider a two-dimensional N x N image
(Fig. 2.2(a)) and collect its pixels into an N2 x 1 vector . Blurring occurs by applying
a matrix A to z, in addition to additive noise, thus leading to a blurred image vector
b, say b = Az + v (see Fig. 2.2(b)). We can recover the original image z from b
by using the least-squares solution, say # = (AT A)~'ATb, as shown in Fig. 2.2(c).
But what if the blur was not caused by A but by (A + §A), for some unknown §A?
That is, what if the vector b that we are using came from b = (A 4+ §A)z + v and
not from b = Az + v? In this case, the Z constructed above need not recover the
original image satisfactorily. The situation is depicted in Figs. 2.2(d) and 2.2(e). Fig.
2.2(d) shows the original image blurred by (A + §A), where the relative size of §A to
A is about 8.5% (measured in terms of the ratio of their maximum singular values).
Figs. 2.2(b) and 2.2(d) are similar, yet Fig. 2.2(e) shows that the least-squares solution
fails in the perturbed case. Several regularization methods that are superior to the
pure least-squares method have been proposed in the literature for image restoration
purposes, some of which are discussed in [24]-[28]. We shall have more to say about
regularization in the sequel (see Secs. 3.1 and 5.6).

2.4. Linear Quadratic Regulator Example. Another well-known manifes-
tation of the sensitivity of least-squares-based designs to modeling errors occurs in
quadratic control (see, e.g., [9, 11, 30, 33]). In the so-called linear quadratic regulator
(LQR) problem, the primary objective is to regulate the state of a linear state-space
model to zero while keeping the control cost low.

Consider the simple one-dimensional state-space model,

(26) Tit+l = f.’]i, + 9u; , f = 097 g = 1 , Lo = 105
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(a) original image

2 4 6 8 10 12 14 16
(b) Blurred image (without uncertainty) (c) restored by LS
(d) Blurred image (with |0 A||/[|A]|=8.5%) (e) restored by LS

Fi1G. 2.2. Recovering an image from its blurred versions.

where zo denotes the value of the initial state, and the {u;} denote the control (input)
sequence. In the LQR problem, we seek a control sequence {u;} that solves

N
(2.7) min pryi1 + Y (el +r2l] |, >0, >0, p>0.
J ]:0

for some given {q,r,p} and over an interval of time 0 < j < N. The cost function
in (2.7) penalizes the control {u;}, the state trajectory {z;}, and the final state (at
time N + 1). Hence, intuitively, the LQR solution tries to keep the state trajectory
close to zero by employing a low energy control sequence.

It is well known that the LQR problem can be solved recursively as follows. We
split the cost function into two terms and write,

N—1
(2.8) min [qu? + r2?] + min [pa},, + qui +rzy] ],
{uo,...,.un—1} =0 J J un
where only the second term, through the state-equation (2.6) for zn41, is dependent
5



on uy. Minimizing over uy then leads to the following state-feedback law,

Uy = —knZn
kn = f9pN 41
(2.9) N = +9Zonm

— 42 kR —
PN = PNt~ Gampns T PN =D

These equations show that the optimal control at time N is a scaled multiple of the
state at the same time instant N. The gain ky is defined in terms of the given model
parameters {f, g,q} and in terms of the cost py;.

50
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Fic. 2.3. An LQR design with a perturbed model.

More generally, at any particular time instant i, the optimal control signal 4;
will be a scaled multiple of the state at that time instant, z;. The gain k; will be
determined in terms of the given quantities { f, g, ¢} and in terms of an intermediate
quantity p; 1 that is propagated via the Riccati recursion

k2
g+ 9*pit1
with boundary condition pyy; = p. The state of the controlled (also called closed-
loop) system will therefore evolve along the trajectory

pi = [*pit1 — +r, 0<i<N.

zit1 = (f — gki)zi -
The solid line in Fig. 2.3 shows the evolution of the state of the closed-loop nominal
system. It decays to zero and the overall cost for N = 80 is 13.86. Also, the closed-
loop pole in steady-state (i.e., the value of f — gk; for large enough 7) tends to 0.79044.
But how does this solution perform when the actual model is not defined by (f,g)
but by (f + 6f) and (g + dg), for some unknown (6f,46¢9)? In this case, the state will
evolve along the perturbed trajectory

Tiy1 = [f+0f — (g+0g)kilz; .
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The dotted line in Fig. 2.3 shows the state evolution of the closed-loop perturbed
system for some {df,dg}; it clearly grows unbounded and the overall cost for N = 80
is 9025.9. The closed-loop pole now tends to 1.02. Similar issues arise in Kalman
filtering design (e.g., [2, 31, 32, 33, 34]).

3. SOME ALTERNATIVE DESIGN METHODS. The alternative design
methods that we listed before in Sec. 1 address in their own ways the sensitivity
of least-squares solutions to uncertain data. In this section we comment briefly on
the regularized least-squares method, the total-least-squares method, and the H.
method.

3.1. Regularized Least-Squares. Regularized least-squares methods have been
proposed to combat the sensitivity of least-squares solutions to ill-conditioned data
[15], where by ill-conditioning it is meant that small changes in the data may lead to
large changes in the result.

Regularization involves choosing in advance a positive parameter v and then
selecting = by solving (e.g., [12, 15, 16])

(3.1) min [v]z[* + || Az — b]|*] .
The solution Z is now unique and given by
(3.2) i =[ATA+~4171ATD.

The uniqueness of Z is due to the fact that the coefficient matrix (AT A+~I) is always
invertible (in fact, positive-definite and better conditioned than AT A in the pure
least-squares method). Applications of such regularized costs in the image processing
context abound and can be found, for example, in [24]-[28].

It will turn out that the BDU methods discussed further ahead in this paper
perform automatic regularization. That is, while the above classical regularization
method still requires an intelligent selection of the parameter v by the designer, the
BDU methods will select the the parameter v from the given data without user in-
tervention and in a certain optimal manner (see Sec. 5.6). We shall also compare
these approaches with the so-called cross-validation method [12, 13, 36], which is a
procedure for the automatic selection of v but one that is not specifically designed to
deal with model uncertainties (as is the case with the BDU methods - see, e.g., the
simulations in Sec. 7).

3.2. The Total-Least-Squares Method. The total least-squares method, also
known as orthogonal regression or errors-in-variables methods in statistics and system
identification, has been proposed to combat uncertainties in the data matrix A. Al-
though orthogonal regression methods have been long studied in statistics, apparently
starting in the 1870’s with a special case in [37], the name total-least-squares (TLS)
was coined in the 1980’s [17], and the method has since received much attention (see,
e.g., [18]).

The TLS method combats uncertainties in A by assuming an erroneous matrix
and by trying to estimate what the true A should have been. It can be explained as
follows. Assume A € IRV *™ is a full rank matrix with N > n, and b € R". Consider
the problem of solving the inconsistent linear system Az = b, where the symbol = is
used to signify that b ¢ R(A). The TLS formulation assumes errors in A and seeks
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an & that solves the consistent linear equations Az = b, where {4, b} solve [18]:

L o2
3.3 min A b|—-]A b .

(3.3) amin (LA 0T[4 b

The notation || - ||p denotes the Frobenius norm of its argument. That is, the TLS

method replaces A and b by estimates A and b with b belonging to the range space
of A. Tt turns out that the A and b are obtained by projecting A and b, respectively,
onto the subspace that is defined by the n dominant singular vectors of the extended
matrix [ A b ] (i.e., by the singular vectors that correspond to the n largest singular
values of the matrix) - see Fig. 3.1.

The spectral norm of the correction (A — A) is determined by the smallest singular
value of [ A b ] This norm can be large even when A is almost precise, e.g., when
b is sufficiently far from the column space of A. In this case, the TLS method may
end up overly correcting A and unnecessarily replacing it by an A far from it, which
may lead to a conservative solution. This is a reflection of the fact that in the TLS
formulation (3.3) there is no a priori bound on the size of the allowable correction to
A — see also some simulation results in Sec. 7.

Subspace spanned by
the n dominant

singular vectors
of [A,b]

R(A)

Fi1G. 3.1. Construction of the TLS solution.

3.3. The H,, or Game-Theoretic Design Method. A design methodology
that handles rather successfully the control of a perturbed version of the state-space
model (2.6), and which has been receiving considerable attention in the literature, is
the Hoo or game-theoretic approach (see, e.g., [9, 11, 29] and [38]-[42] and the many
references therein). The approach is based on the idea of designing for the worst
possible scenario (or model). This is in contrast to the TLS paradigm, where the idea
is to first estimate what the true model should have been and then proceed with the
design using the estimated model.

We explain the H,, method briefly in the context of the quadratic regulator
problem of Sec. 2.4. Detailed treatments can be found in [9, 11]. Here we only wish
to highlight the main ideas, and the discussion in this section is in fact not necessary
for the understanding of the rest of the paper and can be skipped on a first reading
(the reader can go directly to Sec. 4). The results in this section are included for
comparison purposes and for readers that might not be familiar with the H., design
methodology.

Returning to the perturbed version of the state-space model (2.6),

(3.4) Tiv1 = (f+6f)zi + (g +0g)u; ,
8



we first note that the system can be represented in diagram form as shown in Fig. 3.2.
The signals w; and wy denote the perturbations {dgu;,d fz;}, and the block with 2!
indicates a unit time-delay. The block with K(z) indicates the transfer function of a
controller that we wish to determine in order to stabilize the closed-loop system (i.e.,
stabilize the transfer function from col{w;,ws} to col{u;,z;} even in the presence of
the uncertainties {5 f,dg}).

dg of
\L’UA wa

w 9 F=O—=0—=|.~

K(2)

Fia. 3.2. Block diagram representation of the perturbed state-equation.

Define the vector signals

wefa] - (2]
W2 ’ ! ZT; ’
Here w; represents the perturbations and z; contains the signals that we wish to
regulate, viz., the state and the control. We can now re-draw the block diagram of
Fig. 3.2 in an equivalent form that is standard in the literature on H., control, as
shown in Fig. 3.3. The P(z) denotes the transfer function from the input signals
{w;,u;} to the output signals {z;,y;}, where we are denoting the input of K(z) by y;
(clearly in our problem y; = z;). The transfer function A(z) represents the mapping
that relates z; to w;.

It is immediate to verify that in our particular problem, A(z) is diagonal with
constant real entries and is given by

A(z):[ég 5(;].

Moreover, P(z) has a state-space realization that is given by

Tiy1 = fritgui+[1 1]w
zi = ks 0 | v
Yi = Ty

Let F(z) denote the transfer function from the perturbation w; to the regulated output
z; in the absence of A(z). This transfer function is dependent on K(z) and P(z). The
design of a robust stable controller K(z) in an #H ., framework is concerned with the
problem of determining a stable K(z) that stabilizes the closed-loop system for all
possible A(z) of a specified form. [By a stable K(z) we mean one that has poles inside
the open unit disc.]



o 0 B ]
7 wo | P(z) | Z; 7
U; Z;

K(2)
Yi

F1G. 3.3. Representation of the perturbed state-equation in standard form.

A powerful tool in this regard is the so-called structured singular value (SSV) of
a transfer function [11, 43] (see [44] for a survey and also Ch. 8 of [45] for an overview
with several examples). The SSV of the transfer function F'(z) is dependent on the
structure of A(z). It is denoted by ua (F) and is defined as follows. Let ||A||~ denote
the so-called H, norm of a stable transfer function A(z),

[Allc = sup  omax [A(e™)] ,
wel0,27]

where omax is the maximum singular value of its argument. To determine ua (F), we
find the smallest A(z), say A°(z), in the allowed class of uncertainties (measured in
terms of ||A||») that makes the closed-loop system unstable. This corresponds to the
smallest uncertainty A(z) that makes det[] — F'(2)A(z)] = 0. Then

pa(F) = o

[N
Using the notion of SSV, a variant of a well-known theorem in system theory, known
as the small-gain theorem [11, 45], states that the closed-loop transfer function in
Fig. 3.3 is stable for all allowed stable structured A(z) if, and only if, the SSV of F'(z)
and the Ho norm of A(z) satisfy

pa(F)||Alle < 1.

Hence, a robust control design (also known as u—synthesis) reduces to determining
a controller K (z) that minimizes ua (F') so that the resulting closed-loop system will
be stable for the largest class of uncertainties.

It turns out that the computational complexity of computing the SSV of a transfer
function F'(z) is NP-hard. There is also considerable difference in the effort required
when the uncertainty A(z) is real-valued or complex-valued. The former (real-valued
case) is considerably more difficult. In the pu—toolbox of Matlab!, a so-called DK

IMatlab(©is a registered trademark of The MathWorks Inc.
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iteration is used (and a more complex variant for real-valued uncertainties) that min-
imizes an upper bound for ua (F) rather than minimizing ua (F)) itself. Also, most
results and algorithms, even those implemented in the Matlab y—toolbox, are devel-
oped almost exclusively for continuous-time systems.

For our perturbed model (3.4), with the nominal values f = 0.9 and g = 1, and
with a diagonal uncertainty A(z) of norm 0.27 (since 6f = 0.2 and g = —0.27) we
used the u—toolbox for complex-valued diagonal uncertainties? to design a controller
for uncertainties as large as ||Al|oc = 0.28. We found

K(z) = —0.6034 .

Simulation results are shown in Fig. 3.4, where the solid line shows the unstable
evolution of the state trajectory when LQR control is used. The dotted line shows the
evolution of the state vector when H,, control is used. The state of the closed-loop
system goes to zero as desired, even in the presence of the uncertainties. The overall
cost in this case for N = 80 adds up to approximately 71.53.

50 T

T HRge Nominal model: f=0.9 g=1
45y - Perturbed f=1.1 B

Perturbed g=0.73

~
0 i 1 1 1 1

1
0 10 20 30 40 50 60 70 80
F1a. 3.4. H control of the perturbed plant.

The closed-loop pole in steady-state is now located at approximately 0.6595. Us-
ing the p—toolbox, we also determined that the largest |Al|o for which a stabilizing
controller could be found was ||A||s = 0.52 with the corresponding controller being
K(z) = ~0.9 (= —f/g).

We may add that more sophisticated design procedures exist that employ pre-
specified weighting functions, or even bound certain H,, norms subject to #s or
quadratic constraints, in order to guarantee some desired levels of performance. These

2To the authors’ knowledge, a design procedure that deals with the case of real-valued diagonal
uncertainties for discrete-time systems is not immediately available in the Matlab y—toolbox.
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schemes are usually more complex, and in some cases not yet fully developed. In this
section, we opted to illustrate the H,, procedure in one of its most standard forms
without additional constraints.

4. NEW BDU DESIGN CRITERIA. The design techniques reviewed in
Sec. 3 combat modeling uncertainties in several ways. In the TLS case, for example,
the true model is first estimated, but without any bound on how large the correction
A — A can be. In the Hoo formulation, on the other hand, the design procedure can
end up being conservative.

In this section, we study several cost functions for design purposes that explicitly
incorporate a-priori bounds on the size of the data uncertainties. In so doing, the
resulting solutions guarantee that the effect of the uncertainties will not be unneces-
sarily over-emphasized beyond what is reasonably assumed by the a-priori bounds.
In many cases, we will be able to characterize completely the solutions and provide
algorithms for their computation with essentially the same computational effort as
standard least-squares solutions, thus making the new formulations attractive for
practical use.

We start by reconsidering a problem first formulated in [46, 47, 48] and which was
originally fully solved in [47] and via a more costly linear matrix inequality (or convex
optimization) technique in [48]. We shall refer to it as a BDU estimation problem
(with BDU standing for Bounded Data Uncertainties). In this paper (Sec. 5), we
re-solve this problem from a different perspective. Rather than rely on algebraic
arguments similar to those in [47, 48], we shall develop a geometric theory for BDU
estimation. In particular, we shall extend the famed orthogonality principle of least-
squares theory to the context of BDU estimation. In the process of developing the
geometric framework, several concepts from linear algebra and matrix theory will play
a prominent role.

In addition to the geometric formulation, we shall also motivate and formulate
several extensions for BDU estimation and control purposes (see Sec. 4.3 and Secs. 6—
7). In these new formulations, we allow for different sources and levels of uncertainties
in the model, as well as for more general cost functions. Applications in the context
of image processing, co-channel interference cancellation, and quadratic control are
discussed.

4.1. The Data Model. We motivate the BDU framework as follows. Let z €
IR™ be a column vector of unknown parameters, b € IRY a vector of measurements,
and A € RV*", N > n, a known full rank matrix. The matrix A represents nominal
data in the sense that the true matrix that relates b to = is not A itself but rather a
perturbed version of A, say

(4.1) b=(A+6A)z+v.

The perturbation § A is not known. What is known is a bound on how far the true
matrix (A 4+ 6A) can be from the assumed nominal value A, say

(4.2) 16A[ <mn,

in terms of the 2—induced norm of § A, or equivalently, its maximum singular value.
[All the results will apply, and in fact become simpler, if we instead employ the
Frobenius norm of §A, say ||§A||r < 7, rather than the 2—induced norm. We shall
comment on this point later — see the remark after the proof of Lemma 5.4.]
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The standard least-squares criterion (2.2), often used in practical designs, would
seek to recover z from b by relying on the available nominal data A, and without
taking into account the fact that the true data is not A itself but lies around A within
a ball of size n. This is clearly a limitation. On the other hand, the total least-squares
criterion (3.3) is aware of possible perturbations in A and tries to replace it with an
estimate A before seeking to estimate x. It however does not explicitly incorporate
the a-priori bound 7 into its statement. In this way, there is no guarantee that the
estimate A that it finds will lie within the ball of size n; it may end up being overly
corrected.

These difficulties motivate the introduction of new design criteria that explicitly
incorporate bounds on the sizes of the perturbations.

4.2. A BDU Cost Function for Estimation. The first cost function we con-
sider is the following [46, 47]:

(4.3) min max |[(A+d4)z -] .
T |I0Al<n

This formulation seeks a solution £ that performs “best” in the worst-possible scenario.
It can be regarded as a constrained two-player game problem, with the designer trying
to pick an z that minimizes the residual norm while the opponent § A tries to maximize
the residual norm. The game problem is constrained since it imposes a limit on how
large (or how damaging) the opponent §A can be.

In order to further clarify the meaning of (4.3), note that any value that we pick
for  would lead to many residual norms, || (4 + 6 A) z — b||, one for each possible § A.
We want then to determine the £ whose maximum residual is the smallest possible.
Assume, for illustration purposes, that we only have two choices for z, say z; and xs.
In Fig. 4.1 we plot the residual curves as a function of 6 A, i.e., we plot

I(A+6A4)z —b|| and [[(A+8A)zs — b,

for all A satisfying ||0A|| < n. The dark discs indicate the points at which the
residuals attain their maxima. We see from the figure that the maximum residual
attained by z, is smaller than the maximum residual attained by x;. Hence, the
solution to the BDU estimation problem in this case is & = .

--=-

||residual |

FiG. 4.1. Two illustrative residual-norm curves.

It turns out that the solution of (4.3) has an interesting and powerful geometric
interpretation that resembles the orthogonality condition of least-squares problems.
Before establishing this result, and before studying its implications, we list in the
next section several other cost functions and elaborate on their significance. In a later
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section, we shall reconsider some of these newer costs and apply them to problems in
image processing, co-channel interference cancellation, and control design.

4.3. More General BDU Cost Functions. We start by noting that in some
applications, we might be uncertain only about part of the data matrix while the
remaining data is known exactly. This motivates us to formulate a BDU problem
with partial uncertainties as follows [47]:

(4.4) min( max [ A Ay + 54, ]x—b”).

z  \[l6Az]|<n2

We can also handle situations with different levels of uncertainties in different

parts of the data matrix by introducing a BDU problem with multiple uncertainties
[49],

(4.5) min max ||[ Ay +6A; ... Ax +0Ak ]a:—b” .
§ ( 645 < n; )
1<j<K

Here, the {A;} denote submatrices (column-wise) of A. Such cost functions are useful
for multiple-user or multiple-experiment environments and will be applied to image
restoration and co-channel interference later in Sec. 7.

Another useful cost function is a BDU formulation for multi-state or discrete-event
case, where the uncertainty 6 A can be only one of a finite number of possibilities, viz.,

(4.6) min

( max ||(A+6A)a:—b)||>.
z \SA€{dA;,....0AL}

This cost is useful for estimation purposes in multi-state environments where only the
discrete models {A + §A;, A+ 6As,..., A+ 0AL} are possible.

For control purposes, we find it useful to introduce the following two BDU formu-
lations [50]

(4.7) mzin (IMISII;?}IKMISL* | (A+8A)z — (b+ 6b)|)* + p||ac||2> ,
and
(4.8) [(A+64)z — (b+0b)]TW[(A +5A)z — (b+ 6b)],

min max
z  ||6A[<n, ||ob][<pB

where we now allow for uncertainties in A and b, and also employ weighting factors
W and p (with W a matrix and p a scalar). We shall demonstrate an application of
(4.7) later in Sec. 6.

We can also formulate cost functions that treat data uncertainties multiplicatively
rather than additively,

(4.9) min max ||(I +04)Az —b|,
z  [A|<n

and also treat weight uncertainties,

4.10 i a W + 6W)(Az — b)|| .
(4.10) min | max (W +0W)(4z - b)|
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This later cost is a variation of the weighted least-squares criterion in which the
uncertainty is taken to be in the weight matrix itself. Such situations arise, in more
structured forms, in Kalman filtering theory where the noise covariance matrices play
the role of weighting matrices. But since these covariance matrices are not always
known a priori, they need to be estimated before applying the Kalman filter equations
(e.g., [34, 35]). In this way, we may end up employing perturbed weight matrices.
The above cost then seeks an & that performs best in the face of the worst possible
choice for the weight matrix.

We can as well consider BDU formulations with an average (or stochastic) per-
formance index, e.g.,

min avgysa <y || (A +04)z b,

where “avg” denotes symbolically some notion of average, or some alternative cost
functions with stochastic assumptions on both z and §A. Such stochastic extensions
will be discussed elsewhere.

5. BDU ESTIMATION. We now consider the BDU formulation (4.3),

min max |[[(A+d54)z—1?]|,
z  [6A|<n

and study it in some detail. As mentioned earlier, this cost function was studied in [47]
and the solution was found there algebraically. Here we shall re-solve the problem from
a different perspective. Rather than rely on algebraic arguments, we shall develop a
geometric theory for BDU estimation. In particular, we shall extend the orthogonality
principle of least-squares theory to this context. Several concepts from linear algebra
and linear vector spaces will play a prominent role in our arguments.

For ease of exposition, and in order to avoid degenerate cases, we shall assume in
this paper that A is full rank and that b does not lie in the range space of A (and is
nonzero),

(5.1) rank(4) =n and b¢ R(A).

These conditions rule out the case of a square invertible matrix A and therefore require
N > n. However, if these conditions do not hold, then the solution is only slightly
more complex. The geometric arguments given below can still be extended but, for
the sake of clarity and in order to emphasize the main ideas, we shall assume that
conditions (5.1) hold. We shall pursue the geometry of the degenerate case elsewhere
— see though [47] for a statement of the solution in the degenerate case.

5.1. The Uncertainty Set. In the BDU formulation (4.3), the perturbation § A
is restricted to the ball || A|| < 7. It turns out that the solution of the problem will
depend on a crucial property of this ball, viz., whether there exists a A such that the
perturbed matrix (A + §A) becomes orthogonal to b. The following result establishes
when this is possible. Later we shall see why this property is crucial to the solution
of (4.3).

LEMMA 5.1 (A bound on n). The uncertainty set {||0A|| < n} contains a pertur-
bation §A such that (A + §A)Tb =0 if, and only if,

AT b
[ll
15

(5.2) n >




Proof: Assume there exists a 64, say 64, such that (4 4+ 6A)Tb = 0. Then (64)Tb =
—ATb and

—T —T
IATD|| = (|54 bl] < [[SA" | - |18l

This implies that ||[§A|| > ||ATb||/||b|| and, hence, condition (5.2) must hold.
Conversely, assume (5.2) holds and choose

— 1
6A=———bTA.
1012
Then
= 1 AT b
SA|| < — ||| IPT A = <.

This shows that A is a valid perturbation. Now note that

A+TA=A— _ wTa= [I—E]A
[[b]]> o> ]’
where the matrix (I — bb” /|[b]|?) is the projector onto the orthogonal complement
space of b. This implies that (4 + §A4)Tb = 0, as desired.
¢

Fig. 5.1 is a pictorial representation of the case n < ||ATb||/||b||. The uncertainty
set is indicated by the dashed area and it is seen not to include a perturbed matrix
that is orthogonal to b.

o%'&"’:‘:;:::::\
T
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S R S BB EBELE0N
el 2
S N
EOCRRRORIEN
SEEEER

<
<

I

Fic. 5.1. A depiction of the case n < "‘TTTHIJH.

In the sequel we shall establish that when the uncertainty set is large enough to
include a perturbed matrix (A + 0 A) that is orthogonal to b, then the unique solution
of (4.3) is £ = 0. Otherwise, the solution is nonzero and has an interesting regularized
form.
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5.2. Unique Zero Solution. To verify the above claim, we start by considering
the case n > ||ATb||/||b||. We shall show that the solution of (4.3) will be unique and
equal to zero, £ = 0. The result makes sense since intuitively it means that in the
presence of relatively large uncertainty in the data, the true matrix (A+JA4) could be
orthogonal to the measured vector b, in which case there is no information to extract
about z and the best estimate for  would be £ = 0.

To establish the result, we first note that if we set x equal to zero in the BDU
cost function (4.3), we obtain that the residual norm is always equal to ||b|| regardless
of 6A. We now show that when (5.2) holds, for any nonzero z, we can always find
a perturbation §A satisfying ||[§A|| < 7 such that the residual norm ||(4 + §A)z — b||
is strictly larger than ||b]|. This would mean that for any nonzero z, the maximum
residual ||(A + §A)z — b|| over {||6A4|| < n} has to be larger than b, so that £ = 0 has
to be the unique minimum solution since it leads to the smallest residual norm. In
fact, we have a stronger statement.

LEMMA 5.2 (Zero solution vector). The BDU estimation problem (4.3) has a
unique solution at £ = 0 if, and only if, (5.2) holds.

Proof: Assume first that (5.2) holds and let us show that & = 0 is the unique solution.
Choose

— 1

A=———1"A.
|61

(s

We already know from the proof of Lemma 5.1 that 0A is a valid perturbation since
ISA|l < n, and that (A + §4)Tb = 0. We now further show that (A + §A) has full
column rank. Assume otherwise, then there should exist a nonzero vector p such that

T
[I bb

-2 | 4p=0.
||b||2]

If we denote Ap by ¢ (g is also nonzero since A is full column rank), this means that
we must have

boT
I——|g=
[ ||b||2]q 0

which is only possible if ¢ is parallel to the vector b, say ¢ = ab for some « # 0, since

the matrix (I — bbT/||b||?) is the projector onto the orthogonal complement space of

b. Hence, we must have Ap = ab. This contradicts our assumption that b does not

lie in the column span of A. Therefore, the matrix (4 4+ §A4) has full column rank.
Now since b is orthogonal to (A + §A), it follows that

(A +8A)z bl > o]l

for any nonzero vector z. Hence, the smallest residual over z is ||b|| and it is attained
at £ = 0. All other nonzero choices for z would lead to a larger residual. We can now
write, for any nonzero z,

max A+6A)z =b|| > [|(A+84)x —b] > |b].
max it ) = li( ) I > 1lll

This shows that £ = 0 is the unique solution of (4.3).
17



Conversely, assume # = 0 is the unique solution of (4.3) and let us establish that
(5.2) must hold. Indeed, if £ = 0 is the unique solution then for every z,

max_||(4+64)z — bl > [l
l6A]<n

That is, for every z,

max [27(A+5A)T(A + 6A)z — 26T (A +6A)z] > 0.
=7

Choose = as a scaled multiple of ATb, say £ = yATb. Then the above inequality
implies that for any ~,

max [V2bTA(A + 6A)T (A + 6A)ATb — 2ybT(A + 6A)ATb] > 0.
=N

We now claim that for the above inequality to hold, it must be true that

5.3 ax [—26T(A+86A4)ATb] > 0 .
(5:3) ngluén[ ( JATY] 2

Indeed, assume not, say

max |[—2bT(A+64)ATb] = —p <O,
max [=267( JATY) P

for some p > 0. Then
2T (A+064)ATb > p >0,
for all §A. Choose v such that

0
vy < .
61121 Al> ([ All + n)?

Then it is easy to verify that

28z [v*bTA(A +6A4)T (A +6A)ATb — 2907 (A + 64)ATH] < 0,
=N

which is a contradiction. Therefore, (5.3) must hold, i.e.,

(5.4) max [—2bTAATb - 26T6AATY] > 0 .
6 Al <n

The maximum the expression between parenthesis can be is
—206T AATH 4 2n)||b]| - | AT b .
This maximum is in fact achievable. Indeed, choose

bbT A

fA=-np—"
[[o]] (15T Al

Then §A is a valid perturbation since ||§A|| = n and it achieves the above value.
Therefore, we must have

—2[|ATb|” + 2n]8]| |ATb] >0,

which leads to the desired conclusion (5.2).
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5.3. Worst-Case Perturbations. We have therefore identified completely the
condition under which & = 0 is the unique solution, viz., when (5.2) holds. We now
assume to the contrary that

[ATb]

(5:5) LT

Hence, if the problem has a solution Z then it has to be nonzero. In fact, we shall
show that a unique nonzero solution exists. For this reason, we shall focus in the
sequel on nonzero vectors z,

x#0,

and determine conditions for a nonzero z to be a solution.

Returning to (4.3), we shall first identify the perturbations 6 A that maximize the
residual norm. To begin with, note that in view of the triangle inequality of norms,
it holds that for any 0 A,

[(A+0A)z—b)|| < [[Az— bl + [|6Az]],

with equality if, and only if, the perturbation §A is such that the vector dAz is
collinear with the vector (Az —b), i.e.,

(5.6) 0Az = B(Az — b)

for some scalar 8 > 0. Moreover, ||§Az|| < n||z|| with equality if, and only if, the
perturbation 6 A is also such that

(5.7) [6Az| = nllz[| .
Combining (5.7) with (5.6), we see that (5.7) will hold only if

[[z]]
B=mnrF— -
T4z 7]
This expression for § is well-defined since ||Az — b|| # 0 in view of our earlier assump-
tion that b does not lie in the column span of A.
The above discussion shows that if for a nonzero z there exists a perturbation §A
in the valid domain ||[§A|| < n that satisfies

]
5.8 0Az =n ——— (Az —b),
(5.8) Az — 0] ( )
then
. A+ 6A)z —b]| = ||Az — )
(5.9) aax 1(A+6A4)x —bl| = [[Az — bl + nl|=|]

It also follows from (5.6) that any dA that attains the maximum residual in (5.9)
leads to a residual vector (A + §A)z — b that is necessarily collinear with (Az — b),
since

(5.10) (A+6A)z —b= (1+B)(Az —b) .
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(A+64)

Fi1G. 5.2. The residual vectors [(A + dA)z — b] and Az — b are collinear for any A that attains
the maximum residual norm.

Therefore, for any nonzero z, the vectors connecting b to Az, in the column span of
A, and to (A + 6A)z, in the column span of (A + §A)z, are collinear and point in the
same direction. This is depicted in Fig. 5.2 and summarized below.

LeEmMMA 5.3 (Direction of residual vectors). For any nonzero z, if §A is a per-
turbation that achieves the mazimum residual norm in (5.9), viz., ||Az — b|| + nl|z||,
then the residual vectors (A + 6A)xz — b and Az — b are collinear. They also point in
the same direction (i.e., one is a positive multiple of the other).

It is easy to verify that the following choice for § A satisfies (5.8) and has norm
equal to n,

A (Az—1b) 2T
0A° =n—>=r —
@) = M=o Tal

Note that 6A° is a function of z. [Often, we shall drop the argument z and write
simply 6 A° for compactness of notation.] Therefore, the maximum residual in (5.9)
is attainable. It is enough for our purposes to identify one of the perturbations § A
that achieve the maximum residual, e.g., the § A° above.

We remark, however, that in general there can exist many other 6 A’s that satisfy
(5.8) for any given xz. The following statement parametrizes all such perturbations.
The result holds for any 7, regardless of (5.2) or (5.5). Although we shall not use the
next two results in the sequel, we include them here for completeness.

LeEMMA 5.4 (Worst-case perturbation). For any given nonzero z, and for any
7, the perturbations that satisfy (5.8), and therefore attain the mazimum residual in
(5.9), occur on the boundary ||6A|| = n and they are fully parametrized by the following
exrpression

T
(5.11) SA=0A4°+Y (1 v ) ,

]
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for any matriz Y € RNV*™ that satisfies

T T
(5.12) (I—|T;H2>YT(A:1:—Z)):0 and HY (1 i )H <n,

]|

and where

Az —b) 2T
oo Ar-b) 27
A= Mo Tall

Proof: Before we begin the proof let us first note that

m:T>2 ( m:T>
g [ L
( l|l||? |2

since it is the projection matrix onto the orthogonal complement space of z.

Now any perturbation 6 A that satisfies (5.8) must be such that (5.7) holds. This
implies that |6 A|| > 7, which in view of the restriction ||§A|| < n means that any such
0 A has to lie on the boundary ||§A|| = . This establishes part of the Lemma.

To establish the parametrization of all valid §A’s, we note that for any given
nonzero z, A has to be the solution of the under-determined linear system of equa-
tions (5.8). It is well-known that all solutions are given by

nllz|| ; t

(5.13) 0A = ——— (Az—-b)z" + Y (I —z2") ,
| Az — b]| ( )

for an arbitrary matrix Y and where z! denotes the pseudo-inverse of z,

zT

[l

zf =
and where the two terms

% (Az —b) z'  and Y (I - zzf)

are orthogonal, ¢.e.,

(M (Az — b) $*>T (Y [I-2a']) =0
Az — b o

The expression for z! leads to

(Az —b) 2T ( zxT )
§A=p o220 Ty (o)
Az — bl [l ]2

T
— §A° + Y'(I o ) ,

]2

and in view of the above orthogonality,

T
SASAT = §A°(5A4°)T + Y (1 - ﬁ) yT
T
2 T

n T TT T
5.14 =———(Az —b)(Az —b +Y<I——>Y .
G149 HAx—MP( ) ) ]|
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But recall that § A has to satisfy ||§A|| = n. This imposes restrictions on Y. We shall
now verify that the requirement |[§A|| = 7 is satisfied if, and only if, ¥ is chosen
according to (5.12).

Indeed, assume first that (5.12) holds. Using (I — zzT/||z||?)Y T (Az —b) = 0, we
easily conclude from the above that

SASAT (Az —b) = n*(Az — D) .

This shows that the vector (Az — b) is an eigenvector for JASAT with eigenvalue
n?. Let us verify that all other eigenvalues of §A6A” have to be smaller or equal
to n? so that we conclude that ||§A|| = 1. Note first that §ASAT is a symmetric
nonnegative definite matrix and, hence, all its eigenvalues are non-negative. It also
has orthogonal eigenvectors. Let w denote any of the unit-norm eigenvectors of A§ AT
that is orthogonal to the eigenvector (Az —b). Let A2 be the corresponding eigenvalue.

Then from (5.14),

T
wl§ASATw = NwTw = 2?2 = wTY (I — |T$||2> YTw.
T

Using the second condition on Y in (5.12) we see that we must have

QJZET 2
M|V (I-= < n?,
- [z -

and therefore A < 7, as desired. We thus showed that if conditions (5.12) hold, then
any dA in (5.13) satisfies |6 4| = .

Conversely, let us show that if Y is not chosen according to (5.12) then [|§A|| > 7.
So assume that one of the conditions fails, say (I — zzT/||z||?>)YT(Az —b) # 0. Tt
then follows from (5.14) that

T
(Az — b)TSASAT (Az — b) = n?|| Az — b||? + (Az — b)TY (1 - ﬁ) YT (Az —b)
xz

> n?||Az — b||* .

Therefore, ||§A|| > 7. Assume, on the other hand, that the second condition in (5.12)
fails. Hence, there exists a nonzero vector g such that

T T
7Y (I -
| z]|2

2T

)y”q>nwm?

Then using (5.14) again we obtain

2

qT8ASAT g = HAxni_quT(Am —b)(Az —b)Tq+ 7Y (I -

$$T

|2

)Y%>nwm%

which again implies that ||§4]| > 7.
%

Remark 1. Had we originally stated the BDU problem (4.3) with the constraint
[[6A]lr < 7, in terms of the Frobenius norm of § A rather than its 2—induced norm,
then all the arguments in this section will still apply except that the § A that achieves
the maximum residual in (5.9) would be unique and equal to § A°! This is because it
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is known, and can be easily verified, that the solution §A of (5.13) that corresponds
to the choice Y = 0 has the smallest Frobenius norm. Hence, |[§A°||r = 1 and all
other 0A’s solving (5.13) would have |[6A||r > 7.

¢

Remark 2. Note also that the parametrization in Lemma 5.4 is not unique. Two
distinct matrices Y can result in the same §A. For example, given a Y, we can add
to it any matrix that is orthogonal to (I — zz”/||z||?) and obtain the same §A. This
nonuniqueness is not relevant to our future discussions.

¢

Lemma 5.4 parametrizes all possible §A’s that attain the maximum residual in
terms of § A°. The following result now follows immediately.

COROLLARY 5.5. For any given nonzero z, and for any n, if 6A; and § A2 are two

perturbations that satisfy (5.8), and therefore attain the mazimum residual in (5.9),
then there exists a Y € RY*" satisfying

(5.15) (I il ) YT(Az —b) =0,

]2

and such that

T
6A1:5A2+Y<I re ) .

[ ]|?

Proof: For §A; we can write

T
§AL = 6A° + Y, (1 - IT;EII2> ,

for some Y; that satisfies (5.12). Likewise, for Ay we can write

T
§Ay = 6A° + Y, (I—ﬂ) ,

]2

for some Y; that satisfies (5.12). Subtracting we obtain

T
§Ay = 6A; + (Yo — V1) (1 v )

R
where it is easy to see that the difference (Y2 — Y;) satisfies (5.15).
%

It also turns out that for any nonzero z, the worst-case perturbation dA° has a
very useful property. Recall that A is full column rank by assumption. Now we have
the following.

LEMMA 5.6 (Full rank property). For any nonzero x, the worst-case perturbation
0A° is such that

A+ 6A° s still full column rank .
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Proof: Assume A + §A° is rank deficient. This means that there exists a nonzero
vector p such that

(Az —b) 2T

A4t Ty
4z —f] Tle]

The vector p is necessarily not orthogonal to  since otherwise we would obtain Ap = 0,
which contradicts our earlier assumption that A itself has full column rank. Define
the scalar nonzero quantity

_ n(="p)
b= Tz — o] la]

It then follows from the above equality that

1
A [m + —p] =b.
p
This means that b should lie in the column span of A, which again contradicts our

earlier assumption about b.

¢

5.4. The Orthogonality Condition. Once the maximum residual norm over
0 A, or equivalently the worst-case perturbations, have been identified, we are reduced
to studying the equivalent problem

(5.16) min ([[Az — bl +nljz[]) -

[Note that the expression for the maximum residual over the set {||0A| < n} also
holds for z = 0.

The formulation (5.16) is deceptively similar, but significantly distinct, from
the regularized least-squares formulation (3.1), where the squared Euclidean norms
{l|z||?,||Az — b||?} are used rather than the norms themselves!

LEmMMA 5.7 (Existence of nonzero solutions). Assume condition (5.5) holds.
Then a nonzero solution & of (4.3) should exist.

Proof: The equivalence between both problems (4.3) and (5.16) holds for all z. Now
the cost function in (5.16) is convex in z, which means that at least one global min-
imum is guaranteed to exist. When n < ||ATb||/||b||, we already know that & = 0
can not be a global minimum. Therefore, at least one nonzero global minimum must
exist.

¢

To make the connection with least-squares theory more explicit, we shall rewrite
the BDU estimation problem alternatively as

(5.17) min || [A+64°z b,

where, using the result of Lemma 5.4, we know that the perturbed matrix (A + §A°)
attains the maximum residual norm. [We shall explain later — see Remark 3 further
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ahead — that we could have used any of the perturbations that result in the maximum
norm residual for z, and not just 6 A°. The conclusions would be the same.]

For compactness of notation we shall denote the worst-case perturbed matrix used
in (5.17) by A(x),

(Az —b) 2T
Aw) = A+540 = AqpAz=b 2
Az — | ||
then we can write (5.17) more compactly as
(5.18) min |A(z)z — b|| .

This statement looks similar to the least-squares problem (2.2) with two important
distinctions. First, the coefficient matrix A is replaced by a perturbed version of it,
A + 6A(z) and, secondly, the new coefficient matrix is dependent on the unknown z
as well. Hence, what we have is a nonlinear least-squares problem with a special form
for the coefficient matrix A(z). If A(z) were a constant matrix, and therefore not
dependent on z, say A, then we know from the geometry of least-squares estimation
that the solution & is obtained by imposing the orthogonality condition (or normal
equations — recall (2.4))

AT(A2—-b)=0.

In the BDU case, the coefficient matrix is a nonlinear function of z. Interestingly
enough, however, it turns out that the solution & can still be completely characterized
by the same orthogonality condition, with A replaced by A(Z) (see Fig. 5.3),

(5.19) AT (2)[A(2) — b =0.

Since, from (5.6), the residual vector A(£)Z — b is collinear with A% — b, we obtain
the equivalent condition

AT (%) [A% — b =0.

or, equivalently,

T

(A —b) &7 s b =0,

Ny a1 =
1Az — bl (12|

(5.20) A+

or even more compactly,
[A+0A4°(2)]T (A2 —b) =0.

Compared with least-squares theory, we may interpret the result (5.20) as an
oblique projection onto A rather than an orthogonal projection. The orthogonality
conditions (5.19)—(5.20) do not hold for all nonlinear least-squares problems, i.e., for
more general nonlinear functions A(z). They hold for the particular A(z) that arises
in the BDU context. We now establish the above claims.

THEOREM 5.8 (Orthogonality of residual vector). Assume (5.5) holds. Then
a nonzero vector & is a solution of (5.16) or equivalently (5.18) if, and only if, the
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Fia. 5.3. Orthogonality condition for BDU estimation.

residual vector AZ — b is orthogonal to the following rank-one modification of the data
matriz A,

(42 =0) T
1Az —bf| 2] °

(5.21) AZ)=A+
That is, if and only if either (5.19) or (5.20) hold.

Proof: Let & be a nonzero vector that satisfies the orthogonality condition
AT(2)[Az —b] =0.

Let us show that it has to be a minimizer of the cost function in (5.16). Indeed, pick
any other vector z. Then we necessarily have

[A(z)z —bll > ||A(Z)z —bl|.

This is because we know from Lemma 5.4 that for a given z, A(x) is a matrix that
maximizes ||(4 + §A)z — b||. We now verify that

1A@)2 — bl < [[A@)z -l ,
in order to conclude that
1A@)2 — bl < [[A(z)z — bl ,
so that Z is a minimizer. To establish this fact, we perform the following calculations:
1A(2)z — b)) = [|A(&)(z + & — &) — b||?
= [[A(2)2 - 8] + A(&)(z - )|

=[|A(@)z - b]I* + [|A(2)(z — )|]”
> [|A@@)z —b]1*

where in the third step we used the fact that AT (2)[A(%)% — b] = 0. We thus es-
tablished that if Z satisfies the orthogonality condition (5.21) then ||A(2)Z — b|| <
||[A(z)z — b|| for any nonzero z and, therefore, # is a minimizer.
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Conversely, suppose that & is a nonzero minimizer of the cost function in (5.16).
The gradient of the cost function with respect to = has to evaluate to zero at z = 2.
This leads directly to the condition AT (2)[A% — b] = 0.

¢

Remark 3. In view of the parameterization (5.11), and of the first condition on Y
in (5.12), it is easy to verify that the orthogonality condition holds for any §A that
achieves the maximum residual at z, i.e.,

Az —b 2T zzT\17
Aen 272 2 iy (-2 )| (43 -b=0.
s = T ( ||x||2>] A2 =5 =0

We can now establish uniqueness of the solution.

LEMMA 5.9 (Uniqueness of solution). Assume (5.5) holds, then there exists a
unique nonzero solution & of (4.3) or, equivalently, a unique monzero vector & that
solves the nonlinear equation

(42 —b) &T\" o o
(522) (A miz—g ) Be-u =0

Proof: We already know from Lemma 5.7 that a nonzero solution Z exists. Now
assume Z; and Zo are two distinct nonzero solutions. Then

|A(Z1)Z1 — b|| > [|A(22)%1 —b]| ,

This is because we know from Lemma 5.4 that A(Z;) is a matrix that maximizes
[[(A+6A)E; — b||. We claim that since both #; and Z, are assumed to be minimizers,
the above inequality has to be an equality. To see this, assume to the contrary that
we can have strict inequality,

(5.23) |A(21)21 — bl > [[A(22)21 —b]| .
Then note that
|A(&2)%1 — bl]” = ||A(82) (&1 + &2 — &2) — b]?
= [I[A(&2)82 — b] + A(#2)(22 — £2) |

= [|A(Z2)32 = bII* + [|A(22)(21 — &2)|?
> [|A(&2)2 — bl*

o)
Zo
where in the third step we used the fact that Zs is a solution and therefore satisfies

the orthogonality condition AT (£2)[A(22)%2 — b] = 0.
Combining the above inequality with (5.23) we find that we must have

|A(&1)21 — bl| > ||A(22)E2 — 0|,

which contradicts the fact that both #; and Z5 are solutions and must therefore have
equal maximum residual norms. Hence, equality must hold,

(5.24) [A(Z1)21 = bl = [|A(22)21 — bl -
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This means that for Z1, A(Z1) and A(Z2) are two perturbed matrices that achieve the
maximum residual. It follows that A(#2)Z; — b should be orthogonal to A(Z2) just
like A(Z2)Z2 — b is (by the assumed optimality of Z5). To verify this, assume not.
Then the norm of the residual A(Z3)#; — b has to be strictly larger than the norm of
the residual A(&2)Z2 — b,

1A(Z2) 22 — bl < [[A(22)21 — O] -
By (5.24), we obtain ||A(Z2)Z2 — b|| < ||A(£1)#1 — b||. This is a contradiction since
both #; and Z» are minima and must therefore have equal maximum residual norms.
We thus conclude that
(5.25) AT(25)[A(22)21 — b =0.
Using this condition and the orthogonality condition of Zs, viz.,
AT (#2)[A(22)22 — b = 0,
in addition to the full rank property of A(Z2) we obtain that
&1 = [AT (82) A(22)] 7 AT (82)b = &5 .
%

Remark 4. The last part of the above proof could have also been established by
resorting to the parametrization of perturbations that lead to maximum residual
norms. Indeed, equality (5.24) means that for Z;, A(Z;) and A(Z2) are two perturbed
matrices that achieve the maximum residual. Using Corollary 5.5, they must be
related via

A AT
(5.26) Ais) = A(#1) + Y (I— ﬁ) ,
1

for some Y that satisfies

(I h1df ) YT(A# —b) =0

- L —b)=0.
12417

It further follows from (5.10) that the residual vector A(#5)#; — b is collinear with

Ay — b. Using this fact and the orthogonality condition of %, viz.,

AT(3)[A%; - b =0,

if we multiply (5.26) by [A(£2)#1 —b]T from the left we obtain (5.25), and the argument
can now be continued as above.

¢

We therefore established that the solution of (4.3) is unique and nonzero when
(5.5) holds. Using the orthogonality condition of the solution, it is now immediate to
confirm that when (5.5) holds, the nonzero solution indeed has a smaller cost than
the one associated with the zero vector. To see this, recall from Lemma 5.1 that when
(5.5) holds, none of the matrices in the set {A + § A} will be orthogonal to b. Hence,
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the distance from b to any of these matrices will always be strictly smaller than b. In
particular, the optimal nonzero solution  will satisfy

[A(2)2 — bl < [oll ,

since the left-hand side measures the distance from b to the vector A(%)Z in the col-
umn space of A(%) . Recalling that the optimal cost associated with z = 0 is ||b||, and
since ||A(%)Z — b is the maximum residual associated with Z, we see that the nonzero
solution Z does have a smaller cost.

Remark 5. The cost function in (5.16) can be shown to be strictly convex when the
assumptions (5.1) hold. Therefore, a unique global minimum # should exist. This
minimum can occur either at the points where the cost function || Az —b|| +n||z|| is not
differentiable (viz., & = 0) or at the points where the gradient with respect to z is zero.
Since # = 0 is not a solution when 1 < [|ATb||/||b||, we conclude that a unique nonzero
solution Z exists and it is equal to the vector where the gradient of the cost function
is zero. Differentiating the cost function with respect to z, and setting the gradient
equal to zero at z = Z, we obtain the orthogonality condition (5.20). While this
optimization-based argument provides a short route to the solution, it nevertheless
obscures the geometry of the problem. For this reason, in our presentation in this
paper we have opted for emphasizing the geometric and linear algebraic aspects of
the BDU formulation and its solution.

o

5.5. Statement of Solution. Returning to the orthogonality condition (5.22),
we introduce the auxiliary positive number

(5.27) &

Then we can rewrite (5.22) in the form
(5.28) (ATA+al)i=A"b,

where & is clearly a function of Z as well.

Expressions (5.27)-(5.28) define a system of equations with two unknowns {%, &}.
We already know that this system of equations has a unique solution {Z, &}.

We summarize here the conclusions of the earlier sections.

THEOREM 5.10 (Solution of BDU estimation). Consider a full rank matriz A €
RN X" with N > n and a nonzero vector b that does not belong to the column span of
A. The solution of the BDU estimation problem

min max |[(A+d§A)z —b],
T ||5Al<n

s always unique. Two scenarios arise depending on the size of 1.
1. The solution is zero (z = 0) if, and only if, n > ||ATb]|/||b].
2. The solution is nonzero if, and only if, n < ||ATb||/||bl|. In this case, it is
given by the solution of the nonlinear system of equations

T
(A3 —b) &7 o
(“”nAaﬁ—bn ) MAe-d =0
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Alternatively, the unique T can be found by solving the nonlinear system of
equations (5.27)-(5.28) in & and &, viz.,
(ATA+al)z=A"b,
1Az — b _
[12]]

0.

If we replace (5.28) into (5.27) we obtain a nonlinear equation in &,

I[A(AT A + &I)~*ATb — I]b)|
[(ATA + al) LATb]|

(5.29) &=n

The mapping between the variables & and & is bijective. Given & we can evaluate
& uniquely via (5.27) and given & we can evaluate # uniquely via (5.28). Hence,
since the solution # is nonzero and unique when n < ||ATb||/||b]|, the above nonlinear
equation in & has a unique positive solution &. In [47], a method is presented for
finding this root by introducing the SVD of the matrix A in order to further simplify
the nonlinear equation (5.29). The scalar & can be determined, for example, by
employing a bisection-type algorithm to solve the nonlinear equation, thus requiring
O (nlog2) operations, where e is the desired precision.

5.6. Connection to Regularized Least-Squares. We remarked earlier that
the cost function (5.16) looks deceptively similar, but significantly distinct, from
the regularized least-squares formulation (3.1), where the squared Euclidean norms
{l|z|?,||Az — b||?} are used rather than the norms themselves. Indeed, the arguments
in the earlier sections highlighted several of the subtleties involved in solving the BDU
estimation problem, compared to the solution of regularized least-squares.

Interesting enough however, the solution of the BDU problem turns out to have
a regularized form since

i =(ATA+an ATy,

This can be regarded as the exact solution of a regularized least-squares problem of
the form:

(5.30) mjin (&llz||> + [|Az — b]]?)

with squared Euclidean distances, and where the regularization parameter & is de-
termined by the algorithm itself rather than specified by the designer. In this sense,
the solution of the BDU problem (5.16) (with norms only rather than squared norms)
can be seen to perform automatic regularization; it first determines a regularization
parameter & and then uses it to solve a regularized least-squares problem of the above
form.

This observation allows us to also establish the following robustness property for
the classical regularized least-squares solution.

THEOREM 5.11 (Robustness of regularized least-squares). Consider a reqularized
least-squares problem of the form

min [y[lz]* + (|42 —b]*] ,
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where v is a given positive number. Let &5 denote its unique solution. Assume
A € RN*™ is full rank with N > n and that b does not belong to the column span
of A. Assume also that ATb # 0 so that i, is nonzero. The solution of every such
problem is also the solution of a BDU problem of the form

(5.31) min max [[(A+d4)z — b,
z  |A|<n

for the following n:

’YHirlsH
5.32 =
(5:32) 1= TAdas — 0]

Proof: To prove the result we need to verify that

2 P llEnsl? [ ATb]”

5.33 = — < s
(5.33) [ ETE

so that the unique solution of the BDU problem (5.31)—(5.32) is #,5. For this purpose,
we introduce the SVD of A, say

_ D
A—U[O]V ,

where U is N x N unitary, ¥ is n x n diagonal, and V' is n x n unitary. We denote
the entries of & by {o1,...,0,}. Let b= UTb with entries {b;,1 <i < N}. Then

n 2
52 72 2 v
el = ket ()
2 N
2 2 72
b, 017 = 3 (—W) .Y #
i=1 i=n+1

| ATb||? = sz
b)) = sz

The fact that b does not belong to R(A) guarantees that S~
(5.33) now follows by verifying that

impni1 b7 # 0. The result

2
H2 42 Y -
S 8ot (557) S Bl
. A
7 b2
SR () + S8 i

using v/(y + 0?) < 1.
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5.7. Back to the Image Processing Example. In order to demonstrate the
performance of the BDU method, we reconsider the image processing example in
Fig. 5.4. Fig. 5.4(a) shows the original image. Fig. 5.4(b) shows the blurred image
with approximately 8.5% perturbation in A (i.e., ||[6A]|/||A]| is approximately 8.5%).
Fig. 5.4(c) shows the failed least-squares restoration, while Fig. 5.4(d) shows a rea-
sonably good restoration by the BDU solution. Figs. 5.4(e) and 5.4(f) show that both
the LS and the BDU solutions perform well on the original blurred image when there
are no perturbations in A.

(a) original image (b) worst—case blurred matrix

(c) restored by LS (d) restored by BDU

(e) restored by LS (no uncertainty) (f) restored by BDU (no uncertainty)

F1G. 5.4. Image processing example revisited.

6. BDU CONTROL. For the one-dimensional state-space regulation problem
of Sec. 2.4, we consider the cost function (4.7), viz.,

: 2 2

min (| max (4454 0~ (0 37 + plel?)
where we allow for uncertainties in both A and b, in addition to a further weighting
on z. While we shall treat this cost function and (4.8) in more detail elsewhere [50],
here we only summarize its solution.

Let A € RY*™ be full rank with N > n and assume b does not belong to the
column span of A. If n > ||ATb||/||b|| then the unique solution is again & = 0.
Otherwise, the unique solution is given by

(6.1) 3= (ATA + Mr)_1 ATb
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where ) is the unique positive root of the nonlinear equation:

n||AZ — bl pllAZ — b

(6.2) A= . _ ! .
[12]] 1AZ — bl + nll2|l + 8

[In our problem below, however, b lies in the range space of A. The solution will
generally have the same form (6.1)-(6.2) except in two cases where we choose either
A =0or A = oo — details are given in [50].]

For the quadratic regulator problem of Sec. 2.4 with parametric uncertainty, we
can reformulate each step of the LQR design as follows:

min [pz i1 + quiy +rzy] .

max
N ( 6fn| < ny )
|dgn| <y

Here, 6 fy and dgn denote the uncertainties in f and g at step N. They are both
bounded by ns and 7, respectively. If we now replace 1 by

tyy1 = (f+0fn)zn + (9 + dgn)un

the above cost reduces, after grouping terms, to one of the form

i ) — (b + b)) 2
min (| max (@ da)u = 6+ 0 + glunl?)

unN
where
a=p"%g, b=—p"2fan, n=0"n,, B=p" nslzn].

Using the solution of the BDU control cost we obtain the following state-feedback
law (when the expression for Ay below evaluates to a positive number):

( A~

UunN = —kNa:N

— f9pN 41
kv = AN+92DPN 41

= g2 AN+159°pV 41 e 2+ £29%apX 14 n
bN = PN+1 | XN+ 9%pn [f] Ont92pv41)®
= 2ot - (349

7 — g N+19
ik | 1-7a Fl [£]

The difference between the above solution and the LQR solution is that the gain
constant ky has a term Ay in the denominator rather than g. The Ay is propagated
by the algorithm and enters into the recursion for py. [When the expression for Ay
evaluates to a negative value, it can be shown that Ay should be set to zero, Ay =0
[50]. Also, when n,/|g| > 1, we must set Ay = 00.]

The BDU control law has some interesting and meaningful features. When 7y =
ng = 0, it collapses to the Riccati recursion of the LQR case. In other words, the BDU
solution collapses to the expected one in the absence of uncertainties. Moreover, when
An = 0 (which occurs for large uncertainties), the gain constant becomes ky = f/g,
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which is the optimal H ., solution in this case for the largest possible diagonal uncer-
tainty A(z) (as we saw earlier at the end of Sec. 3.3). Finally, when 7n,/|g| > 1 the
uncertainty in g is so large that the sign of g itself is unknown (it can be positive as
well as negative). In this case, the BDU solution cancels the control and sets it equal
to zero.

50

e LQR stat i = -
- Hgstesuge Nominal model: f=0.9 g=1

B~ Bbuste Perturbed f=1.1

Perturbed g=0.73
40+ E

35- q

30F q

25 7

20 q

15+ q

10 q

0 10 20 30 40 50 60 70 80

F1a. 6.1. Comparison of the LQR, H~, and BDU designs.

Once the problem has been solved at step N, we can proceed to the next step
and solve

min max [pvay + qui_y +ran_y] -
N ( 6fn-1] <y
|0gn—1| < Mg

Fig. 6.1 shows the results obtained with this design procedure. The solid line shows
the divergence of the LQR design. The dashed line shows the convergence of the H .,
state to zero, while the dash-dotted line shows the convergence of the BDU state to
zero at a total cost of 56.65. Also, the closed-loop pole is now located at 0.8449. This
is in contrast to the H . cost of 71.53 and to the location of the ., closed-loop pole
at 0.6595.

Fig. 6.2 compares the performance (cost) of the LQR, H, and BDU designs in
terms of the resulting control and state energies over 300 random runs. The figure
demonstrates a consistent performance of the BDU method (dark line). The almost
horizontal line refers to the ., design. The curve with occasional spikes refers to
the LQR design. Still, despite these results, there are several important issues to
be addressed, such as stability results, comparison with parametric approaches in the
literature, and extensions to MIMO systems. We shall pursue these studies elsewhere.
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FiG. 6.2. 300 random runs with ny = 0.2 and ng = 0.27.

7. BDU ESTIMATION WITH MULTIPLE UNCERTAINTIES. We now
demonstrate briefly an application of the BDU cost function (4.5) that deals with the
case of multiple sources of uncertainties in the data [49], viz.,

(7.1) min( max H[A1+5A1 ... A +06Ak ]a:—b”),
z [16A;]<n;

where the {4} denote column-wise partitions of A.
Again, it can be verified that the nontrivial solution Z is of the form

i = (AT A + diag{as, do,...,ax ) AT,

with K regularization parameters that are now used in diagonal form. If we partition

& accordingly with the A;, say & = col{#1,#2,...,8k}, then the &s are found by
solving the K coupled nonlinear equations,
. 142 — b ‘
PE T 1<j<K.
J

An application arises in the context of co-channel interference cancellation, as depicted
in a simplified form in Fig. 7.1 for the case of two sources.

Assume there are 2 emitters sending at time ¢ the signals {x;,0;} from different
angles to an antenna array. The antenna array has 4 elements that are equally spaced.
The signal received by the elements of the antenna array can be presented in vector
form as

(7.2) b; = Azzi + Agb; + v;
35



User 1
User 2

T T TT

FiG. 7.1. Spatial-processing with multiple users.

where v; denotes a measurement noise vector. Moreover, A; and Ay are column
vectors. The j—th entry of A, is the gain from source z to the j—th antenna. Likewise,
the j—th entry in Ag is the gain from source 6 to the j—th antenna. In practice, these
gains are estimated by a variety of methods (e.g., MUSIC, ESPRIT, and many others
— see [51, 52] and the many references therein) and are therefore subject to errors.
They can also be subject to different levels of errors. The BDU formulation allows us
to handle such situations with multiple sources of uncertainties, say

10Azll < ma s 11046l < 7.

We can recover the {z;,0;} by solving

min m
z;

ax ,
i 164z (1<na,|6AglI<ne

T
[Az+(5Az A9+5A9]|:6i:| - b

which is a special case of (4.5). Fig. 7.2 compares the performance (in terms of mean-
square error) of the BDU solution with alternative methods such as least-squares,
total least-squares, and cross-validation [36] for 4PAM modulation with 7% and 22%
relative uncertainties in the path gains. The top curve corresponds to total-least-
squares while the bottom curve corresponds to BDU. The second curve from top is
least-squares and the third curve is generalized cross-validation.

Figure 7.3 repeats the same experiment in a different context, where the signals
{z;,6;} now represent the pixels of two 128 x 128 images that are being transmitted
over different paths. Hence, the purpose is to identify and separate the superimposed
images. In this particular simulation, we took 7, = ng = 7%. We see that the result
from the BDU solution is the clearest. In Fig. 7.4 we further perform median filtering
on the outputs of Fig. 7.3. Again, the BDU solution comes out most enhanced.
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FiG. 7.2. 4PAM modulation, N = 4000 runs, nz &~ 7%, ng ~ 22%.

8. CONCLUDING REMARKS. This paper developed a geometric frame-
work for BDU problems and exhibited several examples that demonstrate the perfor-
mance of the BDU methods in estimation and control. The results show that there is
merit to these methods, but there are many issues and extensions that remain to be
addressed.

In particular, it would be useful to study the statistical properties of the BDU
estimators in terms of bias and consistency. It would also be useful to study the
stability properties of BDU designs for closed-loop estimation and control, as well as
extend the control results to higher-dimensional state-space models.

For on-line operation, it is also useful to develop recursive (adaptive) variants
for BDU estimation. Preliminary and encouraging results in this direction appear in
[63, 54], where an RLS-type result was developed for BDU estimation. The algorithm
exploits a fundamental contraction property of the nonlinear mapping (5.29) for &
and uses it to determine the fixed point & recursively.

Solution methods that exploit structure, as well as sparsity, in the data are also
of interest in order to further reduce the computational cost.

Extensions to continuous-time results can also be pursued, where now operators
should replace matrices. Also, more general BDU cost functions can be studied, as
well as stochastic formulations where the variables {z,dA} are described statistically.

Finally, we may add that some of the cost functions that we introduced here are
convex in the unknown z. They can therefore be solved via convex optimization tech-
niques. These methods, however, are costlier than the direct solution methods of this
paper. They are also iterative techniques that obscure the geometry of the underly-
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F1G. 7.3. Image separation.

ing problems. In our approach, we have relied almost entirely on the geometry of the
BDU problem and have characterized its solution in these terms. Nevertheless, the
convex optimization approach can handle situations that are possibly more difficult
to handle directly or for which no direct solutions are yet known (see, e.g., [48, 55]).
We end by mentioning a non-convex BDU cost function introduced in [56], viz.,

min  ||[(A+d5A)z -} .
(2,16 A][<n)
This cost is useful for design purposes where the objective is to select system param-
eters that would result in the smallest cost possible. This is a good example of a

non-convex optimization problem with some of the headaches that come with it (e.g.,
multiple minima) — but is still solvable [56].
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