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b) The regularized least-squares method, which is used to combat much of theill-conditioning that arises in pure LS problems (e.g., [12, 15, 16]).c) The total-least-squares (TLS) or errors-in-variables method, which providesa way to deal with uncertainties in the data (e.g., [17, 18]).d) The H1 approach, which combats uncertainties in the data by designing forthe worst possible scenario (e.g., [9, 11]).e) The l1 approach for robust identi�cation and control, which exploits linearprogramming and interpolation techniques (e.g., [19]).f) The set-membership identi�cation approach, which is based on constructingconverging ellipsoids that encircle the unknown parameter (e.g., [20, 21]).Among the most successful design criteria, which submit to analytical studies andderivations and which have had the most applications in identi�cation, control, sig-nal processing, and communications, the least-squares criterion of C. F. Gauss (1795)stands out unchallenged [14]. It was also independently formulated by A. M. Legendrein 1805, who praised the method in no uncertain terms (e.g., [13]):\ Of all the principles that can be proposed, I think there is none more general, moreexact, and more easy of application, than that which consists of rendering the sum ofsquares of the errors a minimum." A. M. Legendre (Paris, 1805)In this paper, we propose and study new design criteria for estimation and controlpurposes that are based on new cost functions. In order to appreciate the signi�canceof the new formulations, we �rst provide an overview of some of the existing methodsin Secs. 2 and 3. We then motivate and introduce the new cost functions in Sec. 4.In Sec. 5 we study in detail the estimation problem and in Sec. 6 we study thecontrol problem. One major theme in our arguments is the emphasis on geometricand linear algebraic arguments, which lead to useful insights about the nature of thenew formulations. Also, throughout the paper, several examples from the �elds ofimage processing, communications, and control are included for illustrative purposes.We start by reviewing the least-squares problem.2. THE LEAST-SQUARES CRITERION. The least-squaresmethod formsthe backbone of many well-developed theories in estimation and control includingKalman �ltering, linear quadratic control, and identi�cation methods. Its popularityis due to several good reasons.To begin with, the least-squares criterion is extremely simple to state and solve.Given a noisy measurement vector b that is related to an unknown vector x via thelinear model b = Ax + v ;(2.1)for some known matrix A, we estimate x by solvingminx kAx� bk ;(2.2)where the dimensions of A are taken to be N � n with N � n [we use the capitalletter N to denote the larger dimension of A and the letter n to denote the smallerdimension of A]. Here, the notation k � k denotes the Euclidean norm of its vectorargument (it will also be used to denote the maximum singular value of a matrixargument). 2



2.1. The Orthogonality Condition. The vector v in the model (2.1) denotes anoise term that explains the mismatch between the measured vector b and the vectorAx. In the absence of v, the vector b would lie in the column span of A, denotedby R(A). Due to v, the vector b will not in general lie in R(A). The least-squaresproblem therefore seeks the vector b̂ = Ax̂ inR(A) that is closest to b in the Euclideannorm sense. The solution of (2.2) can be obtained by solving the normal equations(ATA)x̂ = AT b:(2.3)These equations can have multiple solutions x̂, depending on whether A has fullcolumn rank or not. However, regardless of which solution x̂ we pick, the so-calledprojection of b onto R(A), given by b̂ = Ax̂ is unique. When A is full rank, this isgiven by b̂ = A(ATA)�1AT b �= PAbwhere we use the symbol PA to denote the orthogonal projection matrix onto thecolumn span of A (it satis�es P2A = PA and PTA = PA.). These are well-knownproperties of least-squares solutions (e.g., [2, 12, 13]).The normal equations (2.3) also show that the least-squares solution x̂ satis�esan important geometric property, viz., that the residual vector (Ax̂� b) is necessarilyorthogonal to the data matrix (see Fig. 2.1),AT (Ax̂� b) = 0 :(2.4)We shall see later in Sec. 5 that this useful geometric property extends to the BDUcase.
�������������� ���������>-6R(A)

b b� b̂b̂ = Ax̂Fig. 2.1. The residual vector is orthogonal to R(A).It is further well-known that the solution x̂ of least-squares problems can beupdated in O(n2) operations when a new row is added to A and a new entry isadded to b. This is achieved via the so-called recursive least-squares (RLS) method(also derived by C. F. Gauss), and by many of its variants that are nowadays widelyemployed in adaptive �lter theory (see, e.g., [6, 8, 22]). We may add that there arealso a variety of reliable algorithms and software available for least-squares baseddesigns [12, 13, 16, 23].2.2. Sensitivity to Data Errors. Given all the above useful properties of least-squares solutions, the natural question is to wonder why we would need to consideralternatives to the least-squares method? One prominent reason that has attractedmuch attention, especially in the signal processing and control communities, is thatleast-squares methods are sensitive to errors in the data.3



More speci�cally, a least-squares design that is based on given data (A; b) canperform poorly if the true data happens to be a perturbed version of (A; b), say (A+�A; b) for some unknown �A. Indeed, assume that a solution x̂ has been determinedusing (2.3), where b is assumed to have been obtained from a noisy measurement ofAx, as in (2.1). Now if the b that we are using has in fact been obtained not from Abut from a perturbed A, say A+ �A,b = (A+ �A)x + v ;then the x̂ computed from (2.3) will result in a residual norm that satis�es, in viewof the triangle inequality of norms,new residual = k(A+ �A)x̂� bk � kAx̂� bk| {z }LS residual + k�Ax̂k| {z }additional term(2.5)The �rst term on the right-hand side is equal to the least-squares residual norm thatis associated with (A; b; x̂). The second term is the increase in the residual norm dueto the perturbation �A in the data.Perturbation errors in the data are very common in practice and they can be dueto several factors including the approximation of complex models by simpler ones,the presence of unavoidable experimental errors when collecting data, or even dueto unknown or unmodelled e�ects. Regardless of their source, Eq. (2.5) shows thatthey can degrade the performance of least-squares designs. Two simple examplesthat illustrate this e�ect in the context of image processing and quadratic control arediscussed below.2.3. Image Restoration Example. Consider a two-dimensionalN �N image(Fig. 2.2(a)) and collect its pixels into an N2�1 vector x. Blurring occurs by applyinga matrix A to x, in addition to additive noise, thus leading to a blurred image vectorb, say b = Ax + v (see Fig. 2.2(b)). We can recover the original image x from bby using the least-squares solution, say x̂ = (ATA)�1AT b, as shown in Fig. 2.2(c).But what if the blur was not caused by A but by (A + �A), for some unknown �A?That is, what if the vector b that we are using came from b = (A + �A)x + v andnot from b = Ax + v? In this case, the x̂ constructed above need not recover theoriginal image satisfactorily. The situation is depicted in Figs. 2.2(d) and 2.2(e). Fig.2.2(d) shows the original image blurred by (A+ �A), where the relative size of �A toA is about 8:5% (measured in terms of the ratio of their maximum singular values).Figs. 2.2(b) and 2.2(d) are similar, yet Fig. 2.2(e) shows that the least-squares solutionfails in the perturbed case. Several regularization methods that are superior to thepure least-squares method have been proposed in the literature for image restorationpurposes, some of which are discussed in [24]{[28]. We shall have more to say aboutregularization in the sequel (see Secs. 3.1 and 5.6).2.4. Linear Quadratic Regulator Example. Another well-known manifes-tation of the sensitivity of least-squares-based designs to modeling errors occurs inquadratic control (see, e.g., [9, 11, 30, 33]). In the so-called linear quadratic regulator(LQR) problem, the primary objective is to regulate the state of a linear state-spacemodel to zero while keeping the control cost low.Consider the simple one-dimensional state-space model,xi+1 = fxi + gui ; f = 0:9; g = 1 ; x0 = 10;(2.6) 4



(b) Blurred image (without uncertainty) (c) restored by LS

(d) Blurred image (with ||δ A||/||A||=8.5%) (e) restored by LS
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Fig. 2.2. Recovering an image from its blurred versions.where x0 denotes the value of the initial state, and the fuig denote the control (input)sequence. In the LQR problem, we seek a control sequence fuig that solvesminfujg 0@px2N+1 + NXj=0 �qu2j + rx2j �1A ; q > 0; r � 0; p > 0:(2.7)for some given fq; r; pg and over an interval of time 0 � j � N . The cost functionin (2.7) penalizes the control fujg, the state trajectory fxjg, and the �nal state (attime N + 1). Hence, intuitively, the LQR solution tries to keep the state trajectoryclose to zero by employing a low energy control sequence.It is well known that the LQR problem can be solved recursively as follows. Wesplit the cost function into two terms and write,minfu0;:::;uN�1g 0@N�1Xj=0 �qu2j + rx2j � + minuN [px2N+1 + qu2N + rx2N ]1A ;(2.8)where only the second term, through the state-equation (2.6) for xN+1, is dependent5



on uN . Minimizing over uN then leads to the following state-feedback law,8>>>>><>>>>>: ûN = �kNxNkN = fgpN+1q+g2pN+1pN = f2pN+1 � k2Nq+g2pN+1 + r ; pN+1 = p(2.9)These equations show that the optimal control at time N is a scaled multiple of thestate at the same time instant N . The gain kN is de�ned in terms of the given modelparameters ff; g; qg and in terms of the cost pN+1.
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Fig. 2.3. An LQR design with a perturbed model.More generally, at any particular time instant i, the optimal control signal ûiwill be a scaled multiple of the state at that time instant, xi. The gain ki will bedetermined in terms of the given quantities ff; g; qg and in terms of an intermediatequantity pi+1 that is propagated via the Riccati recursionpi = f2pi+1 � k2iq + g2pi+1 + r ; 0 � i � N:with boundary condition pN+1 = p. The state of the controlled (also called closed-loop) system will therefore evolve along the trajectoryxi+1 = (f � gki)xi :The solid line in Fig. 2.3 shows the evolution of the state of the closed-loop nominalsystem. It decays to zero and the overall cost for N = 80 is 13:86. Also, the closed-loop pole in steady-state (i.e., the value of f�gki for large enough i) tends to 0:79044.But how does this solution perform when the actual model is not de�ned by (f; g)but by (f + �f) and (g + �g), for some unknown (�f; �g)? In this case, the state willevolve along the perturbed trajectoryxi+1 = [f + �f � (g + �g)ki]xi :6



The dotted line in Fig. 2.3 shows the state evolution of the closed-loop perturbedsystem for some f�f; �gg; it clearly grows unbounded and the overall cost for N = 80is 9025:9. The closed-loop pole now tends to 1:02. Similar issues arise in Kalman�ltering design (e.g., [2, 31, 32, 33, 34]).3. SOME ALTERNATIVE DESIGN METHODS. The alternative designmethods that we listed before in Sec. 1 address in their own ways the sensitivityof least-squares solutions to uncertain data. In this section we comment briey onthe regularized least-squares method, the total-least-squares method, and the H1method.3.1. Regularized Least-Squares. Regularized least-squaresmethods have beenproposed to combat the sensitivity of least-squares solutions to ill-conditioned data[15], where by ill-conditioning it is meant that small changes in the data may lead tolarge changes in the result.Regularization involves choosing in advance a positive parameter  and thenselecting x by solving (e.g., [12, 15, 16])minx �kxk2 + kAx� bk2� :(3.1)The solution x̂ is now unique and given byx̂ = [ATA+ I ]�1AT b :(3.2)The uniqueness of x̂ is due to the fact that the coe�cient matrix (ATA+I) is alwaysinvertible (in fact, positive-de�nite and better conditioned than ATA in the pureleast-squares method). Applications of such regularized costs in the image processingcontext abound and can be found, for example, in [24]{[28].It will turn out that the BDU methods discussed further ahead in this paperperform automatic regularization. That is, while the above classical regularizationmethod still requires an intelligent selection of the parameter  by the designer, theBDU methods will select the the parameter  from the given data without user in-tervention and in a certain optimal manner (see Sec. 5.6). We shall also comparethese approaches with the so-called cross-validation method [12, 13, 36], which is aprocedure for the automatic selection of  but one that is not speci�cally designed todeal with model uncertainties (as is the case with the BDU methods - see, e.g., thesimulations in Sec. 7).3.2. The Total-Least-Squares Method. The total least-squares method, alsoknown as orthogonal regression or errors-in-variablesmethods in statistics and systemidenti�cation, has been proposed to combat uncertainties in the data matrix A. Al-though orthogonal regression methods have been long studied in statistics, apparentlystarting in the 1870's with a special case in [37], the name total-least-squares (TLS)was coined in the 1980's [17], and the method has since received much attention (see,e.g., [18]).The TLS method combats uncertainties in A by assuming an erroneous matrixand by trying to estimate what the true A should have been. It can be explained asfollows. Assume A 2 IRN�n is a full rank matrix with N � n, and b 2 IRN . Considerthe problem of solving the inconsistent linear system Ax � b, where the symbol � isused to signify that b =2 R(A). The TLS formulation assumes errors in A and seeks7



an x̂ that solves the consistent linear equations Âx̂ = b̂, where fÂ; b̂g solve [18]:minÂ; b̂2R(Â) � A b �� � Â b̂ �2F :(3.3)The notation k � kF denotes the Frobenius norm of its argument. That is, the TLSmethod replaces A and b by estimates Â and b̂ with b̂ belonging to the range spaceof Â. It turns out that the Â and b̂ are obtained by projecting A and b, respectively,onto the subspace that is de�ned by the n dominant singular vectors of the extendedmatrix � A b � (i.e., by the singular vectors that correspond to the n largest singularvalues of the matrix) - see Fig. 3.1.The spectral norm of the correction (A�Â) is determined by the smallest singularvalue of � A b �. This norm can be large even when A is almost precise, e.g., whenb is su�ciently far from the column space of A. In this case, the TLS method mayend up overly correcting A and unnecessarily replacing it by an Â far from it, whichmay lead to a conservative solution. This is a reection of the fact that in the TLSformulation (3.3) there is no a priori bound on the size of the allowable correction toA { see also some simulation results in Sec. 7.
b b̂ R(A)Â Subspace spanned bythe n dominantsingular vectorsof [A; b]

Fig. 3.1. Construction of the TLS solution.3.3. The H1 or Game-Theoretic Design Method. A design methodologythat handles rather successfully the control of a perturbed version of the state-spacemodel (2.6), and which has been receiving considerable attention in the literature, isthe H1 or game-theoretic approach (see, e.g., [9, 11, 29] and [38]{[42] and the manyreferences therein). The approach is based on the idea of designing for the worstpossible scenario (or model). This is in contrast to the TLS paradigm, where the ideais to �rst estimate what the true model should have been and then proceed with thedesign using the estimated model.We explain the H1 method briey in the context of the quadratic regulatorproblem of Sec. 2.4. Detailed treatments can be found in [9, 11]. Here we only wishto highlight the main ideas, and the discussion in this section is in fact not necessaryfor the understanding of the rest of the paper and can be skipped on a �rst reading(the reader can go directly to Sec. 4). The results in this section are included forcomparison purposes and for readers that might not be familiar with the H1 designmethodology.Returning to the perturbed version of the state-space model (2.6),xi+1 = (f + �f)xi + (g + �g)ui ;(3.4) 8



we �rst note that the system can be represented in diagram form as shown in Fig. 3.2.The signals w1 and w2 denote the perturbations f�gui; �fxig, and the block with z�1indicates a unit time-delay. The block with K(z) indicates the transfer function of acontroller that we wish to determine in order to stabilize the closed-loop system (i.e.,stabilize the transfer function from colfw1; w2g to colfui; xig even in the presence ofthe uncertainties f�f; �gg).
fK(z)
z�1w2w1 xiui g�g �f

Fig. 3.2. Block diagram representation of the perturbed state-equation.De�ne the vector signalswi �= � w1w2 � ; zi �= � uixi � :Here wi represents the perturbations and zi contains the signals that we wish toregulate, viz., the state and the control. We can now re-draw the block diagram ofFig. 3.2 in an equivalent form that is standard in the literature on H1 control, asshown in Fig. 3.3. The P (z) denotes the transfer function from the input signalsfwi; uig to the output signals fzi; yig, where we are denoting the input of K(z) by yi(clearly in our problem yi = xi). The transfer function �(z) represents the mappingthat relates zi to wi.It is immediate to verify that in our particular problem, �(z) is diagonal withconstant real entries and is given by�(z) = � �f 00 �g � :Moreover, P (z) has a state-space realization that is given by8>><>>: xi+1 = fxi + gui + � 1 1 �wizi = � 01 �xi + � 10 �uiyi = xiLet F (z) denote the transfer function from the perturbation wi to the regulated outputzi in the absence of �(z). This transfer function is dependent on K(z) and P (z). Thedesign of a robust stable controller K(z) in an H1 framework is concerned with theproblem of determining a stable K(z) that stabilizes the closed-loop system for allpossible �(z) of a speci�ed form. [By a stableK(z) we mean one that has poles insidethe open unit disc.] 9



K(z)
P (z)

yi
uiwi = � w1w2 � � uixi � = zi

�(z)
xi

Fig. 3.3. Representation of the perturbed state-equation in standard form.A powerful tool in this regard is the so-called structured singular value (SSV) ofa transfer function [11, 43] (see [44] for a survey and also Ch. 8 of [45] for an overviewwith several examples). The SSV of the transfer function F (z) is dependent on thestructure of �(z). It is denoted by ��(F ) and is de�ned as follows. Let kAk1 denotethe so-called H1 norm of a stable transfer function A(z),kAk1 = sup!2[0;2�] �max �A(ej!)� ;where �max is the maximum singular value of its argument. To determine ��(F ), we�nd the smallest �(z), say �o(z), in the allowed class of uncertainties (measured interms of k�k1) that makes the closed-loop system unstable. This corresponds to thesmallest uncertainty �(z) that makes det[I � F (z)�(z)] = 0. Then��(F ) = 1k�ok1 :Using the notion of SSV, a variant of a well-known theorem in system theory, knownas the small-gain theorem [11, 45], states that the closed-loop transfer function inFig. 3.3 is stable for all allowed stable structured �(z) if, and only if, the SSV of F (z)and the H1 norm of �(z) satisfy��(F )k�k1 < 1 :Hence, a robust control design (also known as ��synthesis) reduces to determininga controller K(z) that minimizes ��(F ) so that the resulting closed-loop system willbe stable for the largest class of uncertainties.It turns out that the computational complexity of computing the SSV of a transferfunction F (z) is NP-hard. There is also considerable di�erence in the e�ort requiredwhen the uncertainty �(z) is real-valued or complex-valued. The former (real-valuedcase) is considerably more di�cult. In the ��toolbox of Matlab1, a so-called DK1Matlab cis a registered trademark of The MathWorks Inc.10



iteration is used (and a more complex variant for real-valued uncertainties) that min-imizes an upper bound for ��(F ) rather than minimizing ��(F ) itself. Also, mostresults and algorithms, even those implemented in the Matlab ��toolbox, are devel-oped almost exclusively for continuous-time systems.For our perturbed model (3.4), with the nominal values f = 0:9 and g = 1, andwith a diagonal uncertainty �(z) of norm 0:27 (since �f = 0:2 and �g = �0:27) weused the ��toolbox for complex-valued diagonal uncertainties2 to design a controllerfor uncertainties as large as k�k1 = 0:28. We foundK(z) = �0:6034 :Simulation results are shown in Fig. 3.4, where the solid line shows the unstableevolution of the state trajectory when LQR control is used. The dotted line shows theevolution of the state vector when H1 control is used. The state of the closed-loopsystem goes to zero as desired, even in the presence of the uncertainties. The overallcost in this case for N = 80 adds up to approximately 71:53.
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Fig. 3.4. H1 control of the perturbed plant.The closed-loop pole in steady-state is now located at approximately 0:6595. Us-ing the ��toolbox, we also determined that the largest k�k1 for which a stabilizingcontroller could be found was k�k1 = 0:52 with the corresponding controller beingK(z) = �0:9 (= �f=g).We may add that more sophisticated design procedures exist that employ pre-speci�ed weighting functions, or even bound certain H1 norms subject to H2 orquadratic constraints, in order to guarantee some desired levels of performance. These2To the authors' knowledge, a design procedure that deals with the case of real-valued diagonaluncertainties for discrete-time systems is not immediately available in the Matlab ��toolbox.11



schemes are usually more complex, and in some cases not yet fully developed. In thissection, we opted to illustrate the H1 procedure in one of its most standard formswithout additional constraints.4. NEW BDU DESIGN CRITERIA. The design techniques reviewed inSec. 3 combat modeling uncertainties in several ways. In the TLS case, for example,the true model is �rst estimated, but without any bound on how large the correctionA � Â can be. In the H1 formulation, on the other hand, the design procedure canend up being conservative.In this section, we study several cost functions for design purposes that explicitlyincorporate a-priori bounds on the size of the data uncertainties. In so doing, theresulting solutions guarantee that the e�ect of the uncertainties will not be unneces-sarily over-emphasized beyond what is reasonably assumed by the a-priori bounds.In many cases, we will be able to characterize completely the solutions and providealgorithms for their computation with essentially the same computational e�ort asstandard least-squares solutions, thus making the new formulations attractive forpractical use.We start by reconsidering a problem �rst formulated in [46, 47, 48] and which wasoriginally fully solved in [47] and via a more costly linear matrix inequality (or convexoptimization) technique in [48]. We shall refer to it as a BDU estimation problem(with BDU standing for Bounded Data Uncertainties). In this paper (Sec. 5), were-solve this problem from a di�erent perspective. Rather than rely on algebraicarguments similar to those in [47, 48], we shall develop a geometric theory for BDUestimation. In particular, we shall extend the famed orthogonality principle of least-squares theory to the context of BDU estimation. In the process of developing thegeometric framework, several concepts from linear algebra and matrix theory will playa prominent role.In addition to the geometric formulation, we shall also motivate and formulateseveral extensions for BDU estimation and control purposes (see Sec. 4.3 and Secs. 6{7). In these new formulations, we allow for di�erent sources and levels of uncertaintiesin the model, as well as for more general cost functions. Applications in the contextof image processing, co-channel interference cancellation, and quadratic control arediscussed.4.1. The Data Model. We motivate the BDU framework as follows. Let x 2IRn be a column vector of unknown parameters, b 2 IRN a vector of measurements,and A 2 IRN�n, N � n, a known full rank matrix. The matrix A represents nominaldata in the sense that the true matrix that relates b to x is not A itself but rather aperturbed version of A, say b = (A+ �A)x + v :(4.1)The perturbation �A is not known. What is known is a bound on how far the truematrix (A+ �A) can be from the assumed nominal value A, sayk�Ak � � ;(4.2)in terms of the 2�induced norm of �A, or equivalently, its maximum singular value.[All the results will apply, and in fact become simpler, if we instead employ theFrobenius norm of �A, say k�AkF � �, rather than the 2�induced norm. We shallcomment on this point later { see the remark after the proof of Lemma 5.4.]12



The standard least-squares criterion (2.2), often used in practical designs, wouldseek to recover x from b by relying on the available nominal data A, and withouttaking into account the fact that the true data is not A itself but lies around A withina ball of size �. This is clearly a limitation. On the other hand, the total least-squarescriterion (3.3) is aware of possible perturbations in A and tries to replace it with anestimate Â before seeking to estimate x. It however does not explicitly incorporatethe a-priori bound � into its statement. In this way, there is no guarantee that theestimate Â that it �nds will lie within the ball of size �; it may end up being overlycorrected.These di�culties motivate the introduction of new design criteria that explicitlyincorporate bounds on the sizes of the perturbations.4.2. A BDU Cost Function for Estimation. The �rst cost function we con-sider is the following [46, 47]:minx maxk�Ak�� k (A+ �A)x� bk :(4.3)This formulation seeks a solution x̂ that performs \best" in the worst-possible scenario.It can be regarded as a constrained two-player game problem, with the designer tryingto pick an x that minimizes the residual norm while the opponent �A tries to maximizethe residual norm. The game problem is constrained since it imposes a limit on howlarge (or how damaging) the opponent �A can be.In order to further clarify the meaning of (4.3), note that any value that we pickfor x would lead to many residual norms, k (A+ �A) x� bk, one for each possible �A.We want then to determine the x̂ whose maximum residual is the smallest possible.Assume, for illustration purposes, that we only have two choices for x, say x1 and x2.In Fig. 4.1 we plot the residual curves as a function of �A, i.e., we plotk(A+ �A)x1 � bk and k(A+ �A)x2 � bk ;for all �A satisfying k�Ak � �. The dark discs indicate the points at which theresiduals attain their maxima. We see from the �gure that the maximum residualattained by x2 is smaller than the maximum residual attained by x1. Hence, thesolution to the BDU estimation problem in this case is x̂ = x2.kresidualk
�A

x1x2
Fig. 4.1. Two illustrative residual-norm curves.It turns out that the solution of (4.3) has an interesting and powerful geometricinterpretation that resembles the orthogonality condition of least-squares problems.Before establishing this result, and before studying its implications, we list in thenext section several other cost functions and elaborate on their signi�cance. In a later13



section, we shall reconsider some of these newer costs and apply them to problems inimage processing, co-channel interference cancellation, and control design.4.3. More General BDU Cost Functions. We start by noting that in someapplications, we might be uncertain only about part of the data matrix while theremaining data is known exactly. This motivates us to formulate a BDU problemwith partial uncertainties as follows [47]:minx � maxk�A2k��2 � A1 A2 + �A2 �x� b� :(4.4)We can also handle situations with di�erent levels of uncertainties in di�erentparts of the data matrix by introducing a BDU problem with multiple uncertainties[49], minx max� k�Ajk � �j1 � j � K �� A1 + �A1 : : : AK + �AK �x� b :(4.5)Here, the fAjg denote submatrices (column-wise) of A. Such cost functions are usefulfor multiple-user or multiple-experiment environments and will be applied to imagerestoration and co-channel interference later in Sec. 7.Another useful cost function is a BDU formulation for multi-state or discrete-eventcase, where the uncertainty �A can be only one of a �nite number of possibilities, viz.,minx � max�A2f�A1;:::;�ALg k(A+ �A)x� b)k� :(4.6)This cost is useful for estimation purposes in multi-state environments where only thediscrete models fA+ �A1; A+ �A2; : : : ; A+ �ALg are possible.For control purposes, we �nd it useful to introduce the following two BDU formu-lations [50] minx � maxk�Ak��; k�bk�� k (A+ �A)x� (b+ �b)k2 + �kxk2� ;(4.7)and minx maxk�Ak��; k�bk�� [(A + �A)x� (b+ �b)]TW [(A+ �A)x� (b+ �b)] ;(4.8)where we now allow for uncertainties in A and b, and also employ weighting factorsW and � (with W a matrix and � a scalar). We shall demonstrate an application of(4.7) later in Sec. 6.We can also formulate cost functions that treat data uncertainties multiplicativelyrather than additively, minx maxk�Ak�� k(I + �A)Ax � bk ;(4.9)and also treat weight uncertainties,minx maxk�Wk��w k(W + �W )(Ax � b)k :(4.10) 14



This later cost is a variation of the weighted least-squares criterion in which theuncertainty is taken to be in the weight matrix itself. Such situations arise, in morestructured forms, in Kalman �ltering theory where the noise covariance matrices playthe role of weighting matrices. But since these covariance matrices are not alwaysknown a priori, they need to be estimated before applying the Kalman �lter equations(e.g., [34, 35]). In this way, we may end up employing perturbed weight matrices.The above cost then seeks an x̂ that performs best in the face of the worst possiblechoice for the weight matrix.We can as well consider BDU formulations with an average (or stochastic) per-formance index, e.g., minx avgk�Ak�� k (A+ �A) x� bk ;where \avg" denotes symbolically some notion of average, or some alternative costfunctions with stochastic assumptions on both x and �A. Such stochastic extensionswill be discussed elsewhere.5. BDU ESTIMATION. We now consider the BDU formulation (4.3),minx maxk�Ak�� k (A+ �A)x� bk ;and study it in some detail. As mentioned earlier, this cost function was studied in [47]and the solution was found there algebraically. Here we shall re-solve the problem froma di�erent perspective. Rather than rely on algebraic arguments, we shall develop ageometric theory for BDU estimation. In particular, we shall extend the orthogonalityprinciple of least-squares theory to this context. Several concepts from linear algebraand linear vector spaces will play a prominent role in our arguments.For ease of exposition, and in order to avoid degenerate cases, we shall assume inthis paper that A is full rank and that b does not lie in the range space of A (and isnonzero), rank(A) = n and b =2 R(A) :(5.1)These conditions rule out the case of a square invertible matrixA and therefore requireN > n. However, if these conditions do not hold, then the solution is only slightlymore complex. The geometric arguments given below can still be extended but, forthe sake of clarity and in order to emphasize the main ideas, we shall assume thatconditions (5.1) hold. We shall pursue the geometry of the degenerate case elsewhere{ see though [47] for a statement of the solution in the degenerate case.5.1. The Uncertainty Set. In the BDU formulation (4.3), the perturbation �Ais restricted to the ball k�Ak � �. It turns out that the solution of the problem willdepend on a crucial property of this ball, viz., whether there exists a �A such that theperturbed matrix (A+ �A) becomes orthogonal to b. The following result establisheswhen this is possible. Later we shall see why this property is crucial to the solutionof (4.3).Lemma 5.1 (A bound on �). The uncertainty set fk�Ak � �g contains a pertur-bation �A such that (A+ �A)T b = 0 if, and only if,� � kAT bkkbk(5.2) 15



Proof: Assume there exists a �A, say �A, such that (A+ �A)T b = 0. Then (�A)T b =�AT b and kAT bk = k�AT bk � k�AT k � kbkThis implies that k�Ak � kAT bk=kbk and, hence, condition (5.2) must hold.Conversely, assume (5.2) holds and choose�A = � 1kbk2 bbTA :Then k�Ak � 1kbk2 kbk kbTAk = kAT bkkbk � � :This shows that �A is a valid perturbation. Now note thatA+ �A = A� 1kbk2 bbTA = �I � bbTkbk2 �A ;where the matrix (I � bbT=kbk2) is the projector onto the orthogonal complementspace of b. This implies that (A+ �A)T b = 0, as desired. }Fig. 5.1 is a pictorial representation of the case � < kAT bk=kbk. The uncertaintyset is indicated by the dashed area and it is seen not to include a perturbed matrixthat is orthogonal to b.
.
��������������������������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

b
AA+ �A

Fig. 5.1. A depiction of the case � < kAT bkkbk .In the sequel we shall establish that when the uncertainty set is large enough toinclude a perturbed matrix (A+ �A) that is orthogonal to b, then the unique solutionof (4.3) is x̂ = 0. Otherwise, the solution is nonzero and has an interesting regularizedform. 16



5.2. Unique Zero Solution. To verify the above claim, we start by consideringthe case � � kAT bk=kbk. We shall show that the solution of (4.3) will be unique andequal to zero, x̂ = 0. The result makes sense since intuitively it means that in thepresence of relatively large uncertainty in the data, the true matrix (A+�A) could beorthogonal to the measured vector b, in which case there is no information to extractabout x and the best estimate for x would be x̂ = 0.To establish the result, we �rst note that if we set x equal to zero in the BDUcost function (4.3), we obtain that the residual norm is always equal to kbk regardlessof �A. We now show that when (5.2) holds, for any nonzero x, we can always �nda perturbation �A satisfying k�Ak � � such that the residual norm k(A+ �A)x � bkis strictly larger than kbk. This would mean that for any nonzero x, the maximumresidual k(A+ �A)x � bk over fk�Ak � �g has to be larger than b, so that x̂ = 0 hasto be the unique minimum solution since it leads to the smallest residual norm. Infact, we have a stronger statement.Lemma 5.2 (Zero solution vector). The BDU estimation problem (4.3) has aunique solution at x̂ = 0 if, and only if, (5.2) holds.Proof: Assume �rst that (5.2) holds and let us show that x̂ = 0 is the unique solution.Choose �A = � 1kbk2 bbTA :We already know from the proof of Lemma 5.1 that �A is a valid perturbation sincek�Ak � �, and that (A + �A)T b = 0. We now further show that (A + �A) has fullcolumn rank. Assume otherwise, then there should exist a nonzero vector p such that�I � bbTkbk2 �Ap = 0 :If we denote Ap by q (q is also nonzero since A is full column rank), this means thatwe must have �I � bbTkbk2� q = 0 ;which is only possible if q is parallel to the vector b, say q = �b for some � 6= 0, sincethe matrix (I � bbT=kbk2) is the projector onto the orthogonal complement space ofb. Hence, we must have Ap = �b. This contradicts our assumption that b does notlie in the column span of A. Therefore, the matrix (A+ �A) has full column rank.Now since b is orthogonal to (A+ �A), it follows thatk(A+ �A)x � bk > kbk ;for any nonzero vector x. Hence, the smallest residual over x is kbk and it is attainedat x = 0. All other nonzero choices for x would lead to a larger residual. We can nowwrite, for any nonzero x,maxk�Ak�� k(A+ �A)x� bk � k(A+ �A)x� bk > kbk :This shows that x̂ = 0 is the unique solution of (4.3).17



Conversely, assume x̂ = 0 is the unique solution of (4.3) and let us establish that(5.2) must hold. Indeed, if x̂ = 0 is the unique solution then for every x,maxk�Ak�� k(A+ �A)x� bk2 � kbk2 :That is, for every x,maxk�Ak�� �xT (A+ �A)T (A+ �A)x � 2bT (A+ �A)x� � 0 :Choose x as a scaled multiple of AT b, say x = AT b. Then the above inequalityimplies that for any ,maxk�Ak�� �2bTA(A+ �A)T (A+ �A)AT b� 2bT (A+ �A)AT b� � 0 :We now claim that for the above inequality to hold, it must be true thatmaxk�Ak�� ��2bT (A+ �A)AT b� � 0 :(5.3)Indeed, assume not, saymaxk�Ak�� ��2bT (A+ �A)AT b� = �� < 0 ;for some � > 0. Then 2bT (A+ �A)AT b � � > 0 ;for all �A. Choose  such that < �kbk2kAk2(kAk+ �)2 :Then it is easy to verify thatmaxk�Ak�� �2bTA(A+ �A)T (A+ �A)AT b� 2bT (A+ �A)AT b� < 0 ;which is a contradiction. Therefore, (5.3) must hold, i.e.,maxk�Ak�� ��2bTAAT b� 2bT �AAT b� � 0 :(5.4)The maximum the expression between parenthesis can be is�2bTAAT b+ 2�kbk � kAT bk :This maximum is in fact achievable. Indeed, choose�A = �� bbTAkbk kbTAk :Then �A is a valid perturbation since k�Ak = � and it achieves the above value.Therefore, we must have �2kAT bk2 + 2�kbk kAT bk � 0 ;which leads to the desired conclusion (5.2). }18



5.3. Worst-Case Perturbations. We have therefore identi�ed completely thecondition under which x̂ = 0 is the unique solution, viz., when (5.2) holds. We nowassume to the contrary that � < kAT bkkbk :(5.5)Hence, if the problem has a solution x̂ then it has to be nonzero. In fact, we shallshow that a unique nonzero solution exists. For this reason, we shall focus in thesequel on nonzero vectors x, x 6= 0 ;and determine conditions for a nonzero x to be a solution.Returning to (4.3), we shall �rst identify the perturbations �A that maximize theresidual norm. To begin with, note that in view of the triangle inequality of norms,it holds that for any �A,k (A+ �A) x� b)k � kAx� bk+ k�Axk ;with equality if, and only if, the perturbation �A is such that the vector �Ax iscollinear with the vector (Ax� b), i.e.,�Ax = �(Ax � b) ;(5.6)for some scalar � � 0. Moreover, k�Axk � �kxk with equality if, and only if, theperturbation �A is also such that k�Axk = �kxk :(5.7)Combining (5.7) with (5.6), we see that (5.7) will hold only if� = � kxkkAx� bk :This expression for � is well-de�ned since kAx� bk 6= 0 in view of our earlier assump-tion that b does not lie in the column span of A.The above discussion shows that if for a nonzero x there exists a perturbation �Ain the valid domain k�Ak � � that satis�es�Ax = � kxkkAx� bk (Ax� b) ;(5.8)then maxk�Ak�� k(A+ �A)x � bk = kAx� bk+ �kxk :(5.9)It also follows from (5.6) that any �A that attains the maximum residual in (5.9)leads to a residual vector (A + �A)x � b that is necessarily collinear with (Ax � b),since (A+ �A)x � b = (1 + �)(Ax � b) :(5.10) 19
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Fig. 5.2. The residual vectors [(A+ �A)x� b] and Ax� b are collinear for any �A that attainsthe maximum residual norm.Therefore, for any nonzero x, the vectors connecting b to Ax, in the column span ofA, and to (A+ �A)x, in the column span of (A+ �A)x, are collinear and point in thesame direction. This is depicted in Fig. 5.2 and summarized below.Lemma 5.3 (Direction of residual vectors). For any nonzero x, if �A is a per-turbation that achieves the maximum residual norm in (5.9), viz., kAx � bk+ �kxk,then the residual vectors (A+ �A)x � b and Ax� b are collinear. They also point inthe same direction (i.e., one is a positive multiple of the other).It is easy to verify that the following choice for �A satis�es (5.8) and has normequal to �, �Ao(x) �= � (Ax � b)kAx � bk xTkxk :Note that �Ao is a function of x. [Often, we shall drop the argument x and writesimply �Ao for compactness of notation.] Therefore, the maximum residual in (5.9)is attainable. It is enough for our purposes to identify one of the perturbations �Athat achieve the maximum residual, e.g., the �Ao above.We remark, however, that in general there can exist many other �A0s that satisfy(5.8) for any given x. The following statement parametrizes all such perturbations.The result holds for any �, regardless of (5.2) or (5.5). Although we shall not use thenext two results in the sequel, we include them here for completeness.Lemma 5.4 (Worst-case perturbation). For any given nonzero x, and for any�, the perturbations that satisfy (5.8), and therefore attain the maximum residual in(5.9), occur on the boundary k�Ak = � and they are fully parametrized by the followingexpression �A = �Ao + Y �I � xxTkxk2� ;(5.11) 20



for any matrix Y 2 IRN�n that satis�es�I � xxTkxk2�Y T (Ax� b) = 0 and Y �I � xxTkxk2� � � ;(5.12)and where �Ao �= � (Ax� b)kAx� bk xTkxk :Proof: Before we begin the proof let us �rst note that�I � xxTkxk2�2 = �I � xxTkxk2� ;since it is the projection matrix onto the orthogonal complement space of x.Now any perturbation �A that satis�es (5.8) must be such that (5.7) holds. Thisimplies that k�Ak � �, which in view of the restriction k�Ak � � means that any such�A has to lie on the boundary k�Ak = �. This establishes part of the Lemma.To establish the parametrization of all valid �A0s, we note that for any givennonzero x, �A has to be the solution of the under-determined linear system of equa-tions (5.8). It is well-known that all solutions are given by�A = �kxkkAx� bk (Ax � b) xy + Y �I � xxy� ;(5.13)for an arbitrary matrix Y and where xy denotes the pseudo-inverse of x,xy = xTkxk2 ;and where the two terms�kxkkAx� bk (Ax � b) xy and Y �I � xxy�are orthogonal, i.e.,� �kxkkAx� bk (Ax � b) xy�T �Y �I � xxy�� = 0 :The expression for xy leads to�A = � (Ax� b)kAx� bk xTkxk + Y �I � xxTkxk2� ;= �Ao + Y �I � xxTkxk2� ;and in view of the above orthogonality,�A�AT = �Ao(�Ao)T + Y �I � xxTkxk2�Y T= �2kAx� bk2 (Ax� b)(Ax� b)T + Y �I � xxTkxk2�Y T :(5.14) 21



But recall that �A has to satisfy k�Ak = �. This imposes restrictions on Y . We shallnow verify that the requirement k�Ak = � is satis�ed if, and only if, Y is chosenaccording to (5.12).Indeed, assume �rst that (5.12) holds. Using (I � xxT =kxk2)Y T (Ax� b) = 0, weeasily conclude from the above that�A�AT (Ax � b) = �2(Ax� b) :This shows that the vector (Ax � b) is an eigenvector for �A�AT with eigenvalue�2. Let us verify that all other eigenvalues of �A�AT have to be smaller or equalto �2 so that we conclude that k�Ak = �. Note �rst that �A�AT is a symmetricnonnegative de�nite matrix and, hence, all its eigenvalues are non-negative. It alsohas orthogonal eigenvectors. Let w denote any of the unit-norm eigenvectors of �A�ATthat is orthogonal to the eigenvector (Ax�b). Let �2 be the corresponding eigenvalue.Then from (5.14),wT �A�ATw = �2wTw = �2 = wTY �I � xxTkxk2�Y Tw :Using the second condition on Y in (5.12) we see that we must have�2 � Y �I � xxTkxk2�2 � �2 ;and therefore � � �, as desired. We thus showed that if conditions (5.12) hold, thenany �A in (5.13) satis�es k�Ak = �.Conversely, let us show that if Y is not chosen according to (5.12) then k�Ak > �.So assume that one of the conditions fails, say (I � xxT =kxk2)Y T (Ax � b) 6= 0. Itthen follows from (5.14) that(Ax� b)T �A�AT (Ax � b) = �2kAx� bk2 + (Ax� b)TY �I � xxTkxk2�Y T (Ax� b)> �2kAx� bk2 :Therefore, k�Ak > �. Assume, on the other hand, that the second condition in (5.12)fails. Hence, there exists a nonzero vector q such thatqTY �I � xxTkxk2�Y T q > �2kqk2 :Then using (5.14) again we obtainqT �A�AT q = �2kAx� bk2 qT (Ax� b)(Ax� b)T q + qTY �I � xxTkxk2�Y T q > �2kqk2 ;which again implies that k�Ak > �. }Remark 1. Had we originally stated the BDU problem (4.3) with the constraintk�AkF � �, in terms of the Frobenius norm of �A rather than its 2�induced norm,then all the arguments in this section will still apply except that the �A that achievesthe maximum residual in (5.9) would be unique and equal to �Ao! This is because it22



is known, and can be easily veri�ed, that the solution �A of (5.13) that correspondsto the choice Y = 0 has the smallest Frobenius norm. Hence, k�AokF = � and allother �A0s solving (5.13) would have k�AkF > �. }Remark 2. Note also that the parametrization in Lemma 5.4 is not unique. Twodistinct matrices Y can result in the same �A. For example, given a Y , we can addto it any matrix that is orthogonal to (I � xxT =kxk2) and obtain the same �A. Thisnonuniqueness is not relevant to our future discussions. }Lemma 5.4 parametrizes all possible �A's that attain the maximum residual interms of �Ao. The following result now follows immediately.Corollary 5.5. For any given nonzero x, and for any �, if �A1 and �A2 are twoperturbations that satisfy (5.8), and therefore attain the maximum residual in (5.9),then there exists a Y 2 IRN�n satisfying�I � xxTkxk2�Y T (Ax � b) = 0 ;(5.15)and such that �A1 = �A2 + Y �I � xxTkxk2� :Proof: For �A1 we can write�A1 = �Ao + Y1�I � xxTkxk2� ;for some Y1 that satis�es (5.12). Likewise, for �A2 we can write�A2 = �Ao + Y2�I � xxTkxk2� ;for some Y2 that satis�es (5.12). Subtracting we obtain�A2 = �A1 + (Y2 � Y1)�I � xxTkxk2� ;where it is easy to see that the di�erence (Y2 � Y1) satis�es (5.15). }It also turns out that for any nonzero x, the worst-case perturbation �Ao has avery useful property. Recall that A is full column rank by assumption. Now we havethe following.Lemma 5.6 (Full rank property). For any nonzero x, the worst-case perturbation�Ao is such that A+ �Ao is still full column rank :23



Proof: Assume A + �Ao is rank de�cient. This means that there exists a nonzerovector p such that �A+ � (Ax� b)kAx� bk xTkxk� p = 0 :The vector p is necessarily not orthogonal to x since otherwise we would obtainAp = 0,which contradicts our earlier assumption that A itself has full column rank. De�nethe scalar nonzero quantity � = �(xT p)kAx� bk kxkIt then follows from the above equality thatA �x+ 1� p� = b :This means that b should lie in the column span of A, which again contradicts ourearlier assumption about b. }5.4. The Orthogonality Condition. Once the maximum residual norm over�A, or equivalently the worst-case perturbations, have been identi�ed, we are reducedto studying the equivalent problemminx (kAx� bk+ �kxk) :(5.16)[Note that the expression for the maximum residual over the set fk�Ak � �g alsoholds for x = 0.]The formulation (5.16) is deceptively similar, but signi�cantly distinct, fromthe regularized least-squares formulation (3.1), where the squared Euclidean normsfkxk2; kAx� bk2g are used rather than the norms themselves!Lemma 5.7 (Existence of nonzero solutions). Assume condition (5.5) holds.Then a nonzero solution x̂ of (4.3) should exist.Proof: The equivalence between both problems (4.3) and (5.16) holds for all x. Nowthe cost function in (5.16) is convex in x, which means that at least one global min-imum is guaranteed to exist. When � < kAT bk=kbk, we already know that x̂ = 0can not be a global minimum. Therefore, at least one nonzero global minimum mustexist. }To make the connection with least-squares theory more explicit, we shall rewritethe BDU estimation problem alternatively asminx6=0 k [A+ �Ao]x� b k ;(5.17)where, using the result of Lemma 5.4, we know that the perturbed matrix (A+ �Ao)attains the maximum residual norm. [We shall explain later { see Remark 3 further24



ahead { that we could have used any of the perturbations that result in the maximumnorm residual for x, and not just �Ao. The conclusions would be the same.]For compactness of notation we shall denote the worst-case perturbed matrix usedin (5.17) by A(x), A(x) = A+ �Ao = A+ � (Ax� b)kAx� bk xTkxk ;then we can write (5.17) more compactly asminx6=0 kA(x)x � bk :(5.18)This statement looks similar to the least-squares problem (2.2) with two importantdistinctions. First, the coe�cient matrix A is replaced by a perturbed version of it,A+ �A(x) and, secondly, the new coe�cient matrix is dependent on the unknown xas well. Hence, what we have is a nonlinear least-squares problem with a special formfor the coe�cient matrix A(x). If A(x) were a constant matrix, and therefore notdependent on x, say �A, then we know from the geometry of least-squares estimationthat the solution x̂ is obtained by imposing the orthogonality condition (or normalequations { recall (2.4)) �AT ( �Ax̂� b) = 0 :In the BDU case, the coe�cient matrix is a nonlinear function of x. Interestinglyenough, however, it turns out that the solution x̂ can still be completely characterizedby the same orthogonality condition, with �A replaced by A(x̂) (see Fig. 5.3),AT (x̂) [A(x̂)x̂� b] = 0 :(5.19)Since, from (5.6), the residual vector A(x̂)x̂ � b is collinear with Ax̂ � b, we obtainthe equivalent condition AT (x̂) [Ax̂� b] = 0 :or, equivalently, �A+ � (Ax̂� b)kAx̂� bk x̂Tkx̂k�T [Ax̂� b] = 0 ;(5.20)or even more compactly, [A+ �Ao(x̂)]T (Ax̂ � b) = 0 :Compared with least-squares theory, we may interpret the result (5.20) as anoblique projection onto A rather than an orthogonal projection. The orthogonalityconditions (5.19){(5.20) do not hold for all nonlinear least-squares problems, i.e., formore general nonlinear functions A(x). They hold for the particular A(x) that arisesin the BDU context. We now establish the above claims.Theorem 5.8 (Orthogonality of residual vector). Assume (5.5) holds. Thena nonzero vector x̂ is a solution of (5.16) or equivalently (5.18) if, and only if, the25



.

bAx̂
A+ �Ao(x̂)[A+ �Ao(x̂)]x̂

Fig. 5.3. Orthogonality condition for BDU estimation.residual vector Ax̂� b is orthogonal to the following rank-one modi�cation of the datamatrix A, A(x̂) = A+ � (Ax̂� b)kAx̂� bk x̂Tkx̂k :(5.21)That is, if and only if either (5.19) or (5.20) hold.Proof: Let x̂ be a nonzero vector that satis�es the orthogonality conditionAT (x̂)[Ax̂� b] = 0 :Let us show that it has to be a minimizer of the cost function in (5.16). Indeed, pickany other vector x. Then we necessarily havekA(x)x � bk � kA(x̂)x � bk :This is because we know from Lemma 5.4 that for a given x, A(x) is a matrix thatmaximizes k(A+ �A)x� bk. We now verify thatkA(x̂)x̂� bk � kA(x̂)x � bk ;in order to conclude that kA(x̂)x̂� bk � kA(x)x � bk ;so that x̂ is a minimizer. To establish this fact, we perform the following calculations:kA(x̂)x� bk2 = kA(x̂)(x+ x̂� x̂)� bk2= k[A(x̂)x̂� b] + A(x̂)(x � x̂)k2= kA(x̂)x̂� bk2 + kA(x̂)(x� x̂)k2� kA(x̂)x̂� bk2 ;where in the third step we used the fact that AT (x̂)[A(x̂)x̂ � b] = 0. We thus es-tablished that if x̂ satis�es the orthogonality condition (5.21) then kA(x̂)x̂ � bk �kA(x)x � bk for any nonzero x and, therefore, x̂ is a minimizer.26



Conversely, suppose that x̂ is a nonzero minimizer of the cost function in (5.16).The gradient of the cost function with respect to x has to evaluate to zero at x = x̂.This leads directly to the condition AT (x̂)[Ax̂� b] = 0. }Remark 3. In view of the parameterization (5.11), and of the �rst condition on Yin (5.12), it is easy to verify that the orthogonality condition holds for any �A thatachieves the maximum residual at x̂, i.e.,�A+ � Ax̂ � bkAx̂� bk x̂Tkx̂k + Y �I � xxTkxk2��T [Ax̂ � b] = 0 :We can now establish uniqueness of the solution.Lemma 5.9 (Uniqueness of solution). Assume (5.5) holds, then there exists aunique nonzero solution x̂ of (4.3) or, equivalently, a unique nonzero vector x̂ thatsolves the nonlinear equation�A+ � (Ax̂� b)kAx̂� bk x̂Tkx̂k�T [Ax̂� b] = 0 :(5.22)Proof: We already know from Lemma 5.7 that a nonzero solution x̂ exists. Nowassume x̂1 and x̂2 are two distinct nonzero solutions. ThenkA(x̂1)x̂1 � bk � kA(x̂2)x̂1 � bk ;This is because we know from Lemma 5.4 that A(x̂1) is a matrix that maximizesk(A+ �A)x̂1� bk. We claim that since both x̂1 and x̂2 are assumed to be minimizers,the above inequality has to be an equality. To see this, assume to the contrary thatwe can have strict inequality,kA(x̂1)x̂1 � bk > kA(x̂2)x̂1 � bk :(5.23)Then note thatkA(x̂2)x̂1 � bk2 = kA(x̂2)(x̂1 + x̂2 � x̂2)� bk2= k[A(x̂2)x̂2 � b] + A(x̂2)(x̂2 � x̂2)k2= kA(x̂2)x̂2 � bk2 + kA(x̂2)(x̂1 � x̂2)k2� kA(x̂2)x̂2 � bk2 ;where in the third step we used the fact that x̂2 is a solution and therefore satis�esthe orthogonality condition AT (x̂2)[A(x̂2)x̂2 � b] = 0.Combining the above inequality with (5.23) we �nd that we must havekA(x̂1)x̂1 � bk > kA(x̂2)x̂2 � bk ;which contradicts the fact that both x̂1 and x̂2 are solutions and must therefore haveequal maximum residual norms. Hence, equality must hold,kA(x̂1)x̂1 � bk = kA(x̂2)x̂1 � bk :(5.24) 27



This means that for x̂1, A(x̂1) and A(x̂2) are two perturbed matrices that achieve themaximum residual. It follows that A(x̂2)x̂1 � b should be orthogonal to A(x̂2) justlike A(x̂2)x̂2 � b is (by the assumed optimality of x̂2). To verify this, assume not.Then the norm of the residual A(x̂2)x̂1 � b has to be strictly larger than the norm ofthe residual A(x̂2)x̂2 � b,kA(x̂2)x̂2 � bk < kA(x̂2)x̂1 � bk :By (5.24), we obtain kA(x̂2)x̂2 � bk < kA(x̂1)x̂1 � bk. This is a contradiction sinceboth x̂1 and x̂2 are minima and must therefore have equal maximum residual norms.We thus conclude that AT (x̂2)[A(x̂2)x̂1 � b] = 0 :(5.25)Using this condition and the orthogonality condition of x̂2, viz.,AT (x̂2)[A(x̂2)x̂2 � b] = 0 ;in addition to the full rank property of A(x̂2) we obtain thatx̂1 = [AT (x̂2)A(x̂2)]�1AT (x̂2)b = x̂2 : }Remark 4. The last part of the above proof could have also been established byresorting to the parametrization of perturbations that lead to maximum residualnorms. Indeed, equality (5.24) means that for x̂1, A(x̂1) and A(x̂2) are two perturbedmatrices that achieve the maximum residual. Using Corollary 5.5, they must berelated via A(x̂2) = A(x̂1) + Y �I � x̂1x̂T1kx̂1k2� ;(5.26)for some Y that satis�es �I � x̂1x̂T1kx̂1k2�Y T (Ax̂1 � b) = 0 :It further follows from (5.10) that the residual vector A(x̂2)x̂1 � b is collinear withAx̂1 � b. Using this fact and the orthogonality condition of x̂1, viz.,AT (x̂1)[Ax̂1 � b] = 0 ;if we multiply (5.26) by [A(x̂2)x̂1�b]T from the left we obtain (5.25), and the argumentcan now be continued as above. }We therefore established that the solution of (4.3) is unique and nonzero when(5.5) holds. Using the orthogonality condition of the solution, it is now immediate tocon�rm that when (5.5) holds, the nonzero solution indeed has a smaller cost thanthe one associated with the zero vector. To see this, recall from Lemma 5.1 that when(5.5) holds, none of the matrices in the set fA+ �Ag will be orthogonal to b. Hence,28



the distance from b to any of these matrices will always be strictly smaller than b. Inparticular, the optimal nonzero solution x̂ will satisfykA(x̂)x̂� bk < kbk ;since the left-hand side measures the distance from b to the vector A(x̂)x̂ in the col-umn space of A(x̂) . Recalling that the optimal cost associated with x = 0 is kbk, andsince kA(x̂)x̂� bk is the maximum residual associated with x̂, we see that the nonzerosolution x̂ does have a smaller cost.Remark 5. The cost function in (5.16) can be shown to be strictly convex when theassumptions (5.1) hold. Therefore, a unique global minimum x̂ should exist. Thisminimum can occur either at the points where the cost function kAx�bk+�kxk is notdi�erentiable (viz., x̂ = 0) or at the points where the gradient with respect to x is zero.Since x̂ = 0 is not a solution when � < kAT bk=kbk, we conclude that a unique nonzerosolution x̂ exists and it is equal to the vector where the gradient of the cost functionis zero. Di�erentiating the cost function with respect to x, and setting the gradientequal to zero at x = x̂, we obtain the orthogonality condition (5.20). While thisoptimization-based argument provides a short route to the solution, it neverthelessobscures the geometry of the problem. For this reason, in our presentation in thispaper we have opted for emphasizing the geometric and linear algebraic aspects ofthe BDU formulation and its solution. }5.5. Statement of Solution. Returning to the orthogonality condition (5.22),we introduce the auxiliary positive number�̂ �= �kAx̂� bkkx̂k :(5.27)Then we can rewrite (5.22) in the form�ATA+ �̂I� x̂ = AT b ;(5.28)where �̂ is clearly a function of x̂ as well.Expressions (5.27)-(5.28) de�ne a system of equations with two unknowns fx̂; �̂g.We already know that this system of equations has a unique solution fx̂; �̂g.We summarize here the conclusions of the earlier sections.Theorem 5.10 (Solution of BDU estimation). Consider a full rank matrix A 2IRN�n with N > n and a nonzero vector b that does not belong to the column span ofA. The solution of the BDU estimation problemminx maxk�Ak�� k(A+ �A)x � bk ;is always unique. Two scenarios arise depending on the size of �.1. The solution is zero (x̂ = 0) if, and only if, � � kAT bk=kbk.2. The solution is nonzero if, and only if, � < kAT bk=kbk. In this case, it isgiven by the solution of the nonlinear system of equations�A+ � (Ax̂� b)kAx̂� bk x̂Tkx̂k�T [Ax̂� b] = 0 :29



Alternatively, the unique x̂ can be found by solving the nonlinear system ofequations (5.27)-(5.28) in x̂ and �̂, viz.,�ATA+ �̂I� x̂ = AT b ;�̂� � kAx̂� bkkx̂k = 0 : }If we replace (5.28) into (5.27) we obtain a nonlinear equation in �̂,�̂ = � k[A(ATA+ �̂I)�1AT b� I ]bkk(ATA+ �̂I)�1AT bk :(5.29)The mapping between the variables x̂ and �̂ is bijective. Given x̂ we can evaluate�̂ uniquely via (5.27) and given �̂ we can evaluate x̂ uniquely via (5.28). Hence,since the solution x̂ is nonzero and unique when � < kAT bk=kbk, the above nonlinearequation in �̂ has a unique positive solution �̂. In [47], a method is presented for�nding this root by introducing the SVD of the matrix A in order to further simplifythe nonlinear equation (5.29). The scalar �̂ can be determined, for example, byemploying a bisection-type algorithm to solve the nonlinear equation, thus requiringO �n log �̂� � operations, where � is the desired precision.5.6. Connection to Regularized Least-Squares. We remarked earlier thatthe cost function (5.16) looks deceptively similar, but signi�cantly distinct, fromthe regularized least-squares formulation (3.1), where the squared Euclidean normsfkxj2; kAx� bk2g are used rather than the norms themselves. Indeed, the argumentsin the earlier sections highlighted several of the subtleties involved in solving the BDUestimation problem, compared to the solution of regularized least-squares.Interesting enough however, the solution of the BDU problem turns out to havea regularized form since x̂ = (ATA+ �̂I)�1AT b :This can be regarded as the exact solution of a regularized least-squares problem ofthe form: minx̂ ��̂kxk2 + kAx� bk2�(5.30)with squared Euclidean distances, and where the regularization parameter �̂ is de-termined by the algorithm itself rather than speci�ed by the designer. In this sense,the solution of the BDU problem (5.16) (with norms only rather than squared norms)can be seen to perform automatic regularization; it �rst determines a regularizationparameter �̂ and then uses it to solve a regularized least-squares problem of the aboveform.This observation allows us to also establish the following robustness property forthe classical regularized least-squares solution.Theorem 5.11 (Robustness of regularized least-squares). Consider a regularizedleast-squares problem of the formminx �kxk2 + kAx� bk2� ;30



where  is a given positive number. Let x̂rls denote its unique solution. AssumeA 2 IRN�n is full rank with N > n and that b does not belong to the column spanof A. Assume also that AT b 6= 0 so that x̂rls is nonzero. The solution of every suchproblem is also the solution of a BDU problem of the formminx maxk�Ak�� k(A+ �A)x � bk ;(5.31)for the following �: � = kx̂rlskkAx̂rls � bk :(5.32)Proof: To prove the result we need to verify that�2 = 2kx̂rlsk2kAx̂rls � bk2 < kAT bk2kbk2 ;(5.33)so that the unique solution of the BDU problem (5.31){(5.32) is x̂rls. For this purpose,we introduce the SVD of A, say A = U � �0 �V T ;where U is N �N unitary, � is n � n diagonal, and V is n � n unitary. We denotethe entries of � by f�1; : : : ; �ng. Let �b = UT b with entries f�bi; 1 � i � Ng. Thenkx̂rlsk2 = nXi=1 �b2i�2i �  + �2i �2 ;kAx̂rls � bk2 = nXi=1 �b2i �  + �2i �2 + NXi=n+1�b2i ;kAT bk2 = nXi=1 �b2i�2i ;kbk2 = NXi=1 �b2i :The fact that b does not belong to R(A) guarantees that PNi=n+1 �b2i 6= 0. The result(5.33) now follows by verifying thatPni=1 �b2i�2i � +�2i �2Pni=1 �b2i � +�2i �2 + PNi=n+1 �b2i < Pni=1 �b2i�2iPNi=1 �b2i ;using =( + �2i ) < 1. }31



5.7. Back to the Image Processing Example. In order to demonstrate theperformance of the BDU method, we reconsider the image processing example inFig. 5.4. Fig. 5.4(a) shows the original image. Fig. 5.4(b) shows the blurred imagewith approximately 8:5% perturbation in A (i.e., k�Ak=kAk is approximately 8:5%).Fig. 5.4(c) shows the failed least-squares restoration, while Fig. 5.4(d) shows a rea-sonably good restoration by the BDU solution. Figs. 5.4(e) and 5.4(f) show that boththe LS and the BDU solutions perform well on the original blurred image when thereare no perturbations in A.
(a) original image (b) worst−case blurred matrix

(c) restored by LS (d) restored by BDU

(e) restored by LS (no uncertainty) (f) restored by BDU (no uncertainty)

Fig. 5.4. Image processing example revisited.6. BDU CONTROL. For the one-dimensional state-space regulation problemof Sec. 2.4, we consider the cost function (4.7), viz.,minx � maxk�Ak��; k�bk�� k (A+ �A)x� (b+ �b)k2 + �kxk2� ;where we allow for uncertainties in both A and b, in addition to a further weightingon x. While we shall treat this cost function and (4.8) in more detail elsewhere [50],here we only summarize its solution.Let A 2 IRN�n be full rank with N > n and assume b does not belong to thecolumn span of A. If � � kAT bk=kbk then the unique solution is again x̂ = 0.Otherwise, the unique solution is given byx̂ = �ATA+ �̂I��1AT b(6.1) 32



where �̂ is the unique positive root of the nonlinear equation:�̂ = �kAx̂� bkkx̂k + �kAx̂� bkkAx̂� bk+ �kx̂k+ � :(6.2)[In our problem below, however, b lies in the range space of A. The solution willgenerally have the same form (6.1){(6.2) except in two cases where we choose either�̂ = 0 or �̂ =1 { details are given in [50].]For the quadratic regulator problem of Sec. 2.4 with parametric uncertainty, wecan reformulate each step of the LQR design as follows:minuN max� j�fN j � �fj�gN j � �g ��px2N+1 + qu2N + rx2N � :Here, �fN and �gN denote the uncertainties in f and g at step N . They are bothbounded by �f and �g, respectively. If we now replace xN+1 byxN+1 = (f + �fN)xN + (g + �gN )uN ;the above cost reduces, after grouping terms, to one of the formminuN � maxj�aj��; j�bj�� j (a+ �a)uN � (b+ �b)j2 + qjuN j2� ;where a = p1=2g; b = �p1=2fxN ; � = p1=2�g ; � = p1=2�f jxN j :Using the solution of the BDU control cost we obtain the following state-feedbacklaw (when the expression for �N below evaluates to a positive number):8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ûN = �kNxNkN = fgpN+1�N+g2pN+1pN = f2pN+1 ��N+ �gjgj g2pN+1�N+g2pN+1 + �fjf j�2 + f2g2qp2N+1(�N+g2pN+1)2 + r�N = 11+ �fjfj � q1� �gjgj � pN+1g2 � �gjgj + �fjf j��The di�erence between the above solution and the LQR solution is that the gainconstant kN has a term �N in the denominator rather than q. The �N is propagatedby the algorithm and enters into the recursion for pN . [When the expression for �Nevaluates to a negative value, it can be shown that �N should be set to zero, �N = 0[50]. Also, when �g=jgj > 1, we must set �N =1.]The BDU control law has some interesting and meaningful features. When �f =�g = 0, it collapses to the Riccati recursion of the LQR case. In other words, the BDUsolution collapses to the expected one in the absence of uncertainties. Moreover, when�N = 0 (which occurs for large uncertainties), the gain constant becomes kN = f=g,33



which is the optimal H1 solution in this case for the largest possible diagonal uncer-tainty �(z) (as we saw earlier at the end of Sec. 3.3). Finally, when �g=jgj > 1 theuncertainty in g is so large that the sign of g itself is unknown (it can be positive aswell as negative). In this case, the BDU solution cancels the control and sets it equalto zero.
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Fig. 6.1. Comparison of the LQR, H1, and BDU designs.Once the problem has been solved at step N , we can proceed to the next stepand solve minuN�1 max� j�fN�1j � �fj�gN�1j � �g ��pNx2N + qu2N�1 + rx2N�1� :Fig. 6.1 shows the results obtained with this design procedure. The solid line showsthe divergence of the LQR design. The dashed line shows the convergence of the H1state to zero, while the dash-dotted line shows the convergence of the BDU state tozero at a total cost of 56:65. Also, the closed-loop pole is now located at 0:8449. Thisis in contrast to the H1 cost of 71:53 and to the location of the H1 closed-loop poleat 0:6595.Fig. 6.2 compares the performance (cost) of the LQR, H1, and BDU designs interms of the resulting control and state energies over 300 random runs. The �guredemonstrates a consistent performance of the BDU method (dark line). The almosthorizontal line refers to the H1 design. The curve with occasional spikes refers tothe LQR design. Still, despite these results, there are several important issues tobe addressed, such as stability results, comparison with parametric approaches in theliterature, and extensions to MIMO systems. We shall pursue these studies elsewhere.34
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Fig. 6.2. 300 random runs with �f = 0:2 and �g = 0:27.7. BDU ESTIMATIONWITHMULTIPLE UNCERTAINTIES. We nowdemonstrate briey an application of the BDU cost function (4.5) that deals with thecase of multiple sources of uncertainties in the data [49], viz.,minx � maxk�Ajk��j � A1 + �A1 : : : AK + �AK �x� b� ;(7.1)where the fAjg denote column-wise partitions of A.Again, it can be veri�ed that the nontrivial solution x̂ is of the formx̂ = �ATA+ diagf�̂1; �̂2; : : : ; �̂KgI��1AT b ;with K regularization parameters that are now used in diagonal form. If we partitionx̂ accordingly with the Aj , say x̂ = colfx̂1; x̂2; : : : ; x̂Kg, then the �̂0js are found bysolving the K coupled nonlinear equations,�̂j = �j kAx̂� bkkx̂jk ; 1 � j � K :An application arises in the context of co-channel interference cancellation, as depictedin a simpli�ed form in Fig. 7.1 for the case of two sources.Assume there are 2 emitters sending at time i the signals fxi; �ig from di�erentangles to an antenna array. The antenna array has 4 elements that are equally spaced.The signal received by the elements of the antenna array can be presented in vectorform as bi = Axxi +A��i + vi ;(7.2) 35
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 Fig. 7.1. Spatial-processing with multiple users.where vi denotes a measurement noise vector. Moreover, Ax and A� are columnvectors. The j�th entry of Ax is the gain from source x to the j�th antenna. Likewise,the j�th entry in A� is the gain from source � to the j�th antenna. In practice, thesegains are estimated by a variety of methods (e.g., MUSIC, ESPRIT, and many others{ see [51, 52] and the many references therein) and are therefore subject to errors.They can also be subject to di�erent levels of errors. The BDU formulation allows usto handle such situations with multiple sources of uncertainties, sayk�Axk � �x ; k�A�k � �� :We can recover the fxi; �ig by solvingminxi;�i maxk�Axk��x;k�A�k��� � Ax + �Ax A� + �A� � � xi�i � � bi ;which is a special case of (4.5). Fig. 7.2 compares the performance (in terms of mean-square error) of the BDU solution with alternative methods such as least-squares,total least-squares, and cross-validation [36] for 4PAM modulation with 7% and 22%relative uncertainties in the path gains. The top curve corresponds to total-least-squares while the bottom curve corresponds to BDU. The second curve from top isleast-squares and the third curve is generalized cross-validation.Figure 7.3 repeats the same experiment in a di�erent context, where the signalsfxi; �ig now represent the pixels of two 128� 128 images that are being transmittedover di�erent paths. Hence, the purpose is to identify and separate the superimposedimages. In this particular simulation, we took �x = �� = 7%. We see that the resultfrom the BDU solution is the clearest. In Fig. 7.4 we further perform median �lteringon the outputs of Fig. 7.3. Again, the BDU solution comes out most enhanced.36
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