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Abstract— We propose a new method to model the effect
of finite-precision arithmetic in infinite impulse response(IIR)
digital filters. As an application, we use the proposed modelto
compute the probability of saturation or overflow in IIR filte rs
implemented in fixed-point arithmetic. The transition from the
current filter output to the next output is modeled as a first-
order Markov chain. The Markov chain transition probabilit y
matrix is then used to evaluate the probabilities of saturation
or overflow for first and second-order IIR filters.
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I. I NTRODUCTION

Modeling the behavior of algorithms when implemented
in finite-precision arithmetic is important for practical de-
signs. Such models are however difficult to develop due
to the highly nonlinear characteristic of the quantization
operation. Infinite impulse response (IIR) filters may be
considerably sensitive to finite-precision effects, giventheir
feedback structure. This is specially true when the number of
bits is small. In this case, the usual modeling of quantization
noise as a uniformly-distributed random variable is not
appropriate. Nevertheless, designs using short wordlengths
are required in applications where low power consumption
is paramount, such as cellular phones and other portable
devices. In these cases, a more precise model for the
quantization effect is desirable.

During its operation, the output of a filter can also exceed
its allowed range, severely degrading the filter performance.
In finite-precision arithmetic, such an exception may be dealt
with simply by disregarding the most significant bits of the
output (which we will call “overflow”) or by saturating the
output to its most positive or most negative value. In both
cases, a large error results, which should be avoided for
proper system operation. One way to avoid saturation is
to scale the filter coefficients to avoid, or at least reduce,
the probability of exceeding the output range [1], [2].
The approach is to determine the transfer function from
the input of the filter to the input of each multiplier and
then use the inverse of thep-norm of this function as a
scaling factor, wherep is chosen according to the signal
in the input of the filter. However, this is a worst-case
approach, which may lead to conservative designs (i.e., a
scale factor that is smaller than necessary, leading to a lower

signal-to-noise ratio). A model that incorporates the highly
nonlinear overflow and saturation effects during the filter
operation can be of great help for the designer. To the best
of our knowledge, no precise models for predicting their
probability of occurrence are available.

In this paper we propose to model the behavior of first
and second-order IIR filters using a first-order Markov
chain. This approach is an extension of [3] and [4], which
investigated the impact of finite precision in the performance
of the least mean squares (LMS) algorithm. We consider a
fixed-point implementation and use no linearization in the
description of the signal quantizations. We apply a Markov
chain to model the transition probabilities from the current
output to the possible future outputs of the filter. We take
advantage of the fact that the output may assume only a
finite number of values in finite-precision. These values are
interpreted as states of a Markov chain. We introduce extra
states in the transition matrix to calculate the probability of
saturation or overflow.

This paper is organized as follows: Section II presents
the nonlinear IIR filters models used here, while Section
III makes a brief introduction to the Markovian concepts
needed. Section IV introduces the approach to calculate
the probability of saturation, while Section V shows some
examples of the proposed method. Section VI concludes the
paper.

II. N ONLINEAR EFFECTS INIIR FILTERS

Digital IIR filters are, in general, implemented as a
cascade of first and second-order filters, which are described
by the difference equations (1) and (2), respectively,

y1(n) = b0u(n)+b1u(n−1)−a(1)y1(n−1) (1)

and
y2(n) = b0u(n)+b1u(n−1)+b2u(n−2))

−a1y2(n−1)−a2y2(n−2),
(2)

where the filter coefficients are given byak, for k= 1,2, and
bk, for k= 0,1,2. Equations (1) and (2) consider coefficients
and signals represented in finite precision [5]. In this paper,
we consider fixed-point representation.

A fixed-point implementation uses a fixed number of
bits to represent the integer and the fractional parts of
a number. A filter has thus a finite number of codes to
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describe quantities, which is given byN = 2B, where B
is the word length in bits. If the range of representable
number is from−1 to +1−∆, the quantization step will be
∆ = 2−B+1, and the result of all operations must be rounded
or truncated to fit to the numerical representation. If a sum
or a multiplication result exceeds the representation, another
nonlinear operation is used to find a representation within
the established bounds. For instance, saturation limits the
exceeding quantities to the bounds of the representation,
while overflow disregards the most significant bits outside
the allowed range, resulting in large errors. Figure 1 shows
saturation and overflow for a two’s complement 2-bit signal
representing the set{−1,−0.5 0 0.5}.

−2 −1 0 1
−1

−0.5

0

0.5

Input

O
ut

pu
t

−2 −1 0 1
−1

−0.5

0

0.5

Input

O
ut

pu
t

Fig. 1. Saturation (left) and overflow (right) for a 2-bit signal

Equations (3) and (4) describe the application of the
nonlinear operations to the filter equations, i.e.,

y1(n) = R[R[Q{b0u(n)}+Q{b1u(n−1)}]+Q{−a1y1(n−1)}]
(3)

and
y2(n) = R[R[Q{b0u(n)}+R[Q{b1u(n−1)}+Q{b2u(n−2)}]]

+R[Q{−a1y2(n−1)}+Q{−a2y2(n−2)}]],
(4)

whereR[·] can be the saturation or the overflow operator after
a sum andQ{·} represents quantization after a multiplica-
tion. Here we consider the most economical implementation,
where accumulators are not available to perform multiply-
accumulation operations. Figures 2 and 3 show the quantized
filters in a direct form I implementation. Note that theR[·]
operator may be applied only once in (3) and (4) if the
processor has a register with guard bits for intermediate
computation, such as is found in most DSP. The method
presented here may be easily modified to consider all details
of a specific implementation.
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Fig. 2. Quantized first-order IIR filter implemented in direct-form I

The possible outputs of IIR filters implemented in fixed-
point are contained in a finite set, and the current output
clearly depends on the last outputs and on the current and
last inputs, as we can observe in (3) and (4). We can take
advantage of these two characteristics and use a first-order
discrete Markov chain [6] to find a probabilistic description
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Fig. 3. Quantized second-order IIR filter implemented in direct-form I

of the filter output as a function of the past output and the
input. In this case, we can define each possible output of
the filter as a state of a Markov chain. In the next section,
we introduce some concepts of Markov chains used in this
paper. To clarify the calculation of the transition matrix,we
also present an example with a first-order filter.

III. D ISCRETE-TIME MARKOV CHAINS

A discrete-first-order Markov chain [6] is a discrete
stochastic process where the probability of the next state,
given the current and the past states, only depends on the
current state. That means that given astochastic process
{Xn}

∞
n=0,

P(Xn = in|Xn−1 = in−1, · · · ,X0 = i0) = P(Xn = in|Xn−1 = in−1),

where P(a|b) is the conditional probability ofa given b
and in represents the possible states forXn. The subscriptn
represents time instants (n = 1,2, . . .) and we consider that
the statesin belong to the finite set{1,2, . . . ,N}. In general,
the notation used in (5) is abbreviated asP(Xn = i|Xn−1 =
j) = pi j , where pi j is defined as the probability to reach
statei when the current state isj. This notation is used to
define anN×N matrix P with elementspi j . P is called the
transition matrixand its main characteristic, by construction,
is that all the columns add to 1, since

N

∑
i=1

pi j =
N

∑
i=1

P(Xn = i|Xn−1 = j) = 1. (5)

Indeed, each column represents a conditional probability
distribution for each state, in a specific instant. Therefore, if
we consider that the transition probabilities are independent
of n, we can find the transition probabilities aftern instants,
which corresponds to

p(n)
i j = P(Xn = i|X0 = j), (6)

where p(n)
i j is the probability to begin in the statej and

reach the statei after n steps. We can use the Chapman-
Kolmogorov equation [7] to calculatep(n)

i j as

p(n)
i j =

N

∑
k=0

p(n−1)
k j pik. (7)

Equation (7) shows an iterative method to calculatep(n)
i j

given the past probabilities. Writing in matrix form [6],

P
(n) = P

(n−1) ·P(1) = P
(1) ·P(n−1) = P

n, n = 1,2, ... (8)
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whereP(0) = IN×N. We conclude thatP(n) is equivalent to
P

n. Thus, given a initial probability distribution vectorπ0
for X0, we obtain

πn = P
nπ0, (9)

and we notice that the knowledge ofP andπ0 allows us to
know the distribution aftern steps.

If we look to P
n when n → ∞, we obtain the process

steady-state (SS) matrix. This matrix differs from the initial
matrix P because of the absence of transient states, which
are the states that stop receiving visits after a finite number
of steps. The SS matrix contains the information about the
long term process, and therefore about the saturation of the
output in steady-state.

ComputingP for IIR filters is simple, as we show in the
next example.

Example 1: Suppose a 2-bit filter, described by the
coefficientsa1 = 0.5, b0 = 0.5 and b1 = 0. We want to
calculate the 4×4 matrixP when there is an inputu(n) with
uniform distribution and zero mean, (i.e., the probability
of u(n) = −0.5, 0 and 0.5 are 1/3 and the probability of
u(n) = −1 is zero, and the input is white). We consider
here thatR[·] is the saturation operator and that we round
up, i.e., Q{0.25} = 0.5 and Q{−0.25} = 0. Let us, for
example, find the elementp34 = P(y(n) = 0|y(n−1) = 0.5).
For this element, equation (3) is modified as

y(n) = R[Q{0.5u(n)}+Q{−0.5·0.5}],

sinceb1 = 0 andy(n−1) = 0.5. Varying u(n) for all the
possible values, if we calculatey(n), we notice that

y(n) = R[Q{0.5(−1)}+Q{−0.5(0.5)}] = −0.5

y(n) = R[Q{0.5(−0.5)}+Q{−0.5(0.5)}] = 0

y(n) = R[Q{0.5(0)}+Q{−0.5(0.5)}] = 0

y(n) = R[Q{0.5(0.5)}+Q{−0.5(0.5)}] = 0.5

,

where the last result comes from the saturation of 1 to
0.5. Therefore, there are two possibilities to reachy(n) = 0
(when u(n) = −0.5 andu(n) = 0), and we should use the
distribution of the input to calculatep34, as

p13 = P(u(n) = −0.5)+P(u(n) = 0) =
1
3

+
1
3

= 0.667.

Using the same procedure to determine the other elements
of P yields

P =

−1.0 −0.5 0 0.5













0 0 0 0

0 0 0 0
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


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where the numbers above and to the right ofP show the
values ofy(n) andy(n−1) corresponding to each row and
column.

Assume now that the current output has a distribution
πn = [0 0.5 0 0.5], and we want to know the probability of
y(n+1) = 0.5. Using (9), we obtain

πn+1 = Pπn = [0 0 0.333 0.667]T ,

which is the distribution vector at instantn+1. Thus, we
conclude thatP(y(n+ 1) = 0.5) = 0.333. We can also find
the distribution for the instantn+2, calculating

πn+2 = Pπn+1 = P
2πn = [0 0 0.667 0.333]T .

Therefore, we can calculate any probability for any time
instant if we haveP and an initial distribution vector for
y(0). In the next section, we include extra states to describe
overflow or saturation. For convenience, we refer to these
extra states as “saturation states”.

IV. M ODELLING SATURATION

In section III, P was described with states related to the
output of the filter, considering that the output is limited
to a range (e.g., the range of the past example is the set
{−1, −0.5, 0, 0.5}), and using a nonlinear saturation to
guarantee this limitation. This means that when the output
exceeds the range, this value is limited to the bounds of the
range (e.g., for the past example if the filter calculates an
output of 1, the saturation limits the output to 0.5). In this
case, althoughP takes saturation into account, we cannot
distinguish saturated from nonsaturated outputs. However,
we can introduce more states to model the saturation and
obtain the exact probability of saturation in a filter. For
this purpose, we add two states in the transition matrix,
corresponding to the saturation to the positive and neg-
ative limits of the output. The matrix obtained will be
(N + 2)× (N + 2) if we are using a first-order filter and
(N+2)2× (N+2)2 when a second-order filter is analyzed.
(Although the matrices are large, we can apply sparse matrix
computation to reduce the calculations, since the matrices
have a large number of zero elements1.)

Consider again, the first example. To observe the satura-
tion, we define two extra states:−1s and 0.5s. The state−1s
corresponds to an output−1, but that is reached through
saturation. In the same way, the state 0.5s corresponds to
an output 0.5 obtained by saturation. Let us findP(y(n) =
e|y(n−1) = −1), whene∈{−1s −1 −0.5 0 0.5 0.5s}, we
notice that

y(n) = Q{0.5(−1)}+Q{−0.5(−1)} = 0

y(n) = Q{0.5(−0.5)}+Q{−0.5(−1)} = 0.5

y(n) = Q{0.5(0)}+Q{−0.5(−1)} = 0.5

y(n) = Q{0.5(0.5)}+Q{−0.5(−1)} = 1 = 0.5s.

Therefore, we conclude that the element of the transition
matrix

p42 = P(x(n) = −0.5)+P(x(n) = 0)+P(x(n) = 0.5) = 1

includes one part related to the output saturation (when
x(n) = 0.5). To include the two saturation states, we use
an expanded matrixP, where the columnP(y(n)|y(n−1) =
−1), for y(n) ∈ {−1s −1 −0.5 0 0.5 0.5s}, corresponds to

P(y(n)|y(n−1) = −1) = [0 0 0 0 0.667 0.333]T .

1In fact, the use of sparse matrices is more efficient when we calculate
the transition matrix for a second-order filter, since the matrix dimension
is larger and zero elements appear more frequently.
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If we calculate the full expanded matrixP, we obtain

P =

−1.0s −1.0 −0.5 0 0.5 0.5s





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.667 0.667 0.667

0.667 0.667 0.667 0.333 0.333 0.333

0.333 0.333 0.333 0 0 0





















States

−1.0s

−1.0

−0.5

0

0.5

0.5s

The rows corresponding to−1s and 0.5s show the conditional
probabilities of saturation. We notice from the transition
matrix that the columns related to−1s and −1 have the
same distribution. This happens because when we have state
−1s or −1, the output is−1. Therefore,P(y(n)|y(n−1) =
−1s) = P(y(n)|y(n− 1) = −1), and the columns must be
equal. The same argument is valid for the states 0.5s and
0.5. (It is important to note that the columns corresponding
to −0.5 and 0, in general, do not need to be equal to the
columns of the states−1 and 0.5, as we observe in this
example.)

V. EXAMPLES

In order to calculate the probability of saturation with
the proposed method, we wrote two programs inMatlab.
The programs calculate the transition matrix based on the
probability distribution of the inputs, and they describe
first and second order IIR filters, as presented in equations
(3) and (4). For simplicity, we present only one example,
assuming a 2-bit first order filter We use saturation after
sums. The program inputs are the filter coefficients, the input
word lengthB and the distribution ofu(n). We use sparse
matrix calculation to reduce the number of operations.

A. Probability of saturation
Consider the filtera1 = 0.75, b0 = 1 andb1 = 0, where

the coefficients have a 3-bit description, while we still
have a 2-bit input and output (this choice is made only
to keep the example simple). Using the input distribution
[0 1/3 1/3 1/3], the transition matrix is given by

P =

−1.0s −1.0 −0.5 0 0.5 0.5s





















0 0 0 0 0 0

0 0 0 0 0.333 0.333

0 0 0 0.333 0.333 0.333
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
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,

and the SS matrix is

P
∞ =

−1.0s −1.0 −0.5 0 0.5 0.5s
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






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
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.

We conclude from the SS matrix that there are outputs
which exceed the superior limit of the representation, witha
probability of 0.111, no matter what is the initial condition.
We can scale the coefficientb0 to avoid saturation — in this
simple example, this means guaranteeing that|y(n)| ≤ 0.5.
If we use the traditional approach of thep-norm (which we
indicate by‖·‖p), as presented in [1], [2], we must calculate
the transfer function from the input to the output of the filter,
i.e.,

H(z) =
1

1+0.75z−1 ,

to calculate the scaling factor as

λ ≤
0.5

‖h(n)‖p‖u(n)‖q
, for

1
p

+
1
q

= 1, (10)

whereh(n) is the filter’s impulse response. This approach
is based on Hölder’s inequality [8],

|y(n)|=
∞

∑
k=0

|h(k)u(n−k)| ≤ ‖h(n)‖p‖u(n)‖q, for
1
p

+
1
q

= 1.

In this example, asu(n) has unlimited energy, we should
useq = ∞ and p = 1. If we calculate the 1-norm forh(n)
and the infinity norm forx(n), we obtain

‖h(n)‖1 = 1+
∞

∑
n=1

|0.75n| = 4

and
‖x(n)‖∞ = max|x(n)| = 0.5.

Using these in (10), we find thatλ ≤ 0.25. However, if
we iteratively apply our method, we findλopt = 0.375 (for
coefficients with 3 bits). The new transition matrix is given
by

P =

−1.0s −1.0 −0.5 0 0.5 0.5s





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1.000 1.000

0 0 0 1.000 0 0

1.000 1.000 1.000 0 0 0

0 0 0 0 0 0





















States

−1.0s

−1.0

−0.5

0

0.5

0.5s

.

while the SS matrix is

P
∞ =

−1.0s −1.0 −0.5 0 0.5 0.5s





















0 0 0 0 0 0

0 0 0 0 0 0

1.000 1.000 1.000 0 0 0

0 0 0 1.000 0 0

0 0 0 0 1.000 1.000

0 0 0 0 0 0





















States

−1.0s

−1.0

−0.5

0

0.5

0.5s

.

We conclude that,using the transition matrix, one may
iteratively search for the largest scaling factor that avoids
saturation or overflow, avoiding conservative designs based
on worst-case considerations.
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B. Quantization noise

We now use the model proposed here to compute the
mean and variance of the filter output, and compare with
predictions based on the linearized approach, in which
quantization errors are modelled as noise with uniform
distribution. In the example presented, there is one error
related to quantization, after the multiplication bya1 (since
b0 = 1, there is no quantization error). We can model this
signal e(n) with a uniform distribution, zero mean and
variance equal to [2]

σ2
e =

∆2

12
.

Assume that the initial condition isy(n− 1) = 0 with
probability 1 and that the input is an independent sequence,
with distribution as before.

E{y(n)2} = a2
1 E{y(n−1)2}+b2

0 E{u(n)2}+

2a1b0 E{y(n−1)x(n)}+E{e(n)2}.
(11)

From the independence of the input sequence, it follows
that e(n) is independent ofy(n− 1), so 2a1b0E{y(n−
1)u(n)} = 0. We calculated the mean and the variance of
the output for the filter in the last example. Sinceu(n) and
e(n) have zero mean, the output mean is also zero. The
variance was calculated with (11) and is presented in figure
4.

We calculated the exact meanµ(n) of the output with our
approach, for the same initial condition, using the extended
transition matrix, i.e.,

π(1) = P[0 0 0 1 0 0 0]T

µ(1) = πT(1) [−1 −1 −0.5 0 0.5 0.5]T

π(2) = P
2[0 0 0 1 0 0 0]T

µ(2) = πT(2) [−1 −1 −0.5 0 0.5 0.5]T

...

π(n) = P
n[0 0 0 1 0 0 0]T

µ(n) = πT(n) [−1 −1 −0.5 0 0.5 0.5]T

, (12)

whereµ(k) is the mean for iterationk. Similarly, for the
variance, we calculated

σ2
y (n) = πT(n)























(−1−µ(n))2

(−1−µ(n))2

(−0.5−µ(n))2

(0−µ(n))2

(0.5−µ(n))2

(0.5−µ(n))2























(13)

for k from 0 to 25. Figure 5 shows the results.
We note from figures 4 and 5 that for this example, the

linearized approach to analyze the quantization effects in
digital filters produces significantly different results than
the more precise approach proposed in this paper. This
difference is expected to be large for filters with short
wordlengths, and to diminish as the wordlength increases.
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Fig. 4. Output variance for the linearized approach
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Fig. 5. Mean and variance of the output

VI. CONCLUSIONS

In this paper, we used Markov chains to describe the
behavior of first and second-order IIR filters. The model
allows a more precise prediction of the effect of quantization
errors in digital filters implemented with short wordlengths.
We calculated the transition matrix for the Markov chain
with the addition of two states to represent saturation of
the output. The saturation states allow one to find the best
scaling factor to avoid saturation. The use of the new model
was exemplified with a simple first-order filter.
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