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Abstract— We propose a new method to model the effect signal-to-noise ratio). A model that incorporates the high

of finite-precision arithmetic in infinite impulse response(lIR) nonlinear overflow and saturation effects during the filter
digital filters. As an application, we use the proposed modetio operation can be of great help for the designer. To the best
compute the probability of saturation or overflow in IIR filte rs  of our knowledge, no precise models for predicting their
implemented in fixed-point arithmetic. The transition from the  probability of occurrence are available.

current filter output to the next output is modeled as a first- In this paper we propose to model the behavior of first
order Markov chain. The Markov chain transition probabilit y and second-order IIR filters using a first-order Markov
matrix is then used to evaluate the probabilities of saturaion chain. This approach is an extension of [3] and [4], which

or overflow for first and second-order IIR filters. investigated the impact of finite precision in the perforeean
Keywords— Saturation, IIR filters, Markov chains, finite of the least mean squares (LMS) algorithm. We consider a
precision arithmetic. fixed-point implementation and use no linearization in the

description of the signal quantizations. We apply a Markov

| INTRODUCTION chain to model the transition probabilities from the cutren

Modeling the behavior of algorithms when implementedoutput to the possible future outputs of the filter. We take
in finite-precision arithmetic is important for practica¢-d advantage of the fact that the output may assume only a
signs. Such models are however difficult to develop dusinite number of values in finite-precision. These values are
to the highly nonlinear characteristic of the quantizationinterpreted as states of a Markov chain. We introduce extra

operation. Infinite impulse response (IIR) filters may bestates in the transition matrix to calculate the probabdit
considerably sensitive to finite-precision effects, gilegir  saturation or overflow.

feedback structure. This is specially true when the number o This paper is organized as follows: Section Il presents

bits is small. In this case, the usual modeling of quantirati the nonlinear IIR filters models used here, while Section
noise as a uniformly-distributed random variable is notj| makes a brief introduction to the Markovian concepts
appropriate. Nevertheless, designs using short wordlengt needed. Section IV introduces the approach to calculate
are required in applications where low power consumptiorthe probability of saturation, while Section V shows some

is paramount, such as cellular phones and other portablgxamples of the proposed method. Section VI concludes the
devices. In these cases, a more precise model for thgaper.

quantization effect is desirable.
During its operation, the output of a filter can also exceed [I. NONLINEAR EFFECTS INIIR FILTERS

its allowed range, severely degrading the filter perforneanc Digital IIR filters are, in general, implemented as a

In finite-precision arithmetic, such an exception may bdtdea cascade of first and second-order filters, which are destribe
with simply by disregarding the most significant bits of the by the difference equations (1) and (2), respectively,
output (which we will call “overflow”) or by saturating the

output to its most positive or most negative value. In both y1(n) = bou(n) +bru(n—1) —a(l)y1(n—1) @
cases, a large error results, which should be avoided foryng

proper system operation. One way to avoid saturation is yo2(n) = bou(n) +byu(n— 1) +byu(n—2))

to scale the filter coefficients to avoid, or at least reduce, 2

the probability of exceeding the output range [1], [2]. ~aay2(n—1) ~2eyz(n-2),

The approach is to determine the transfer function fromwhere the filter coefficients are given by, fork=1,2, and
the input of the filter to the input of each multiplier and by, for k=0,1,2. Equations (1) and (2) consider coefficients
then use the inverse of the-norm of this function as a and signals represented in finite precision [5]. In this pape
scaling factor, whergp is chosen according to the signal we consider fixed-point representation.

in the input of the filter. However, this is a worst-case A fixed-point implementation uses a fixed number of
approach, which may lead to conservative designs (i.e., bits to represent the integer and the fractional parts of
scale factor that is smaller than necessary, leading to erlow a number. A filter has thus a finite number of codes to
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describe quantities, which is given By = 28, where B by @ rijl ri | Yo
is the word length in bits. If the range of representable
number is from—1 to +1— A, the quantization step will be
A=278%1 and the result of all operations must be rounded
or truncated to fit to the numerical representation. If a sum
or a multiplication result exceeds the representationttaro
nonlinear operation is used to find a representation within
the established bounds. For instance, saturation limis th
exceeding quantities to the bounds of the representation,
while overflow disregards the most significant bits outside
the allowed range, resulting in large errors. Figure 1 showsFig. 3. Quantized second-order IIR filter implemented irecifform |
saturation and overflow for a two’s complement 2-bit signal

representing the s€t-1,—0.5005}.

of the filter output as a function of the past output and the
input. In this case, we can define each possible output of

0.5 0.5
J the filter as a state of a Markov chain. In the next section,
g2 ° 32 ° we introduce some concepts of Markov chains used in this
3 -os 3 -os paper. To clarify the calculation of the transition matsive
( also present an example with a first-order filter.
-1 -1

1 -2 -1 1

Inptcj)t [1l. DISCRETETIME MARKOV CHAINS
A discrete-first-order Markov chain [6] is a discrete
stochastic process where the probability of the next state,

. , L given the current and the past states, only depends on the
Equations (3) and (4) describe the application of thecyrrent state. That means that giverstachastic process

Fig. 1. Saturation (left) and overflow (right) for a 2-bit si

nonlinear operations to the filter equations, i.e., X} o
y1(n) = RRQ{bou(n) } + Q{bru(n—1)}] + Q{—a1y1(n— 1)}}(3) P(Xn = inXn_1 = in_1, - ;X0 = i0) = P(%n = in[Xn_1 = in_1),
and where P(a|b) is the conditional probability o given b
_ _ B andip represents the possible states Xar The subscriph
y2(n) = RIRIQ{bou(n)} + RIQ{byu(n — 1)} + Q{bpu(n—2)}] reprensents time instants £ 1,2,...) and we consider that
FRIQ{—ary2(n— 1)} + Q{ —apya(n—2)}]] the states, belong to the finite sef1,2,...,N}. In general,

4)  the notation used in (5) is abbreviated RS, = i[Xq_1 =
whereR[] can be the saturation or the overflow operator after) = Pij,» Where pij is defined as the probability to reach

N .. statei when the current state ig This notation is used to
a sum andQ{-} represents quantization after a multiplica- define anN x N matrix P with elementsp;;. P is called the

tion. Here we consider the most economical implementationy o nsjtion matrixand its main characteristic, by construction,
where accumulators are not available to perform multiply-is that all the columns add to 1, since

accumulation operations. Figures 2 and 3 show the quantized N N
filters in a direct form | implementation. Note that tRg] pi=S P =iX1=])=1 (5)
operator may be applied only once in (3) and (4) if the i; ) i;

processor has a register with guard bits for mtermedlatelndeed’ each column represents a conditional probability

computation, such as is found in most DSP. The methodyistinution for each state, in a specific instant. Therefir
presented here may be easily modified to consider all detailye consider that the transition probabilities are indepand

of a specific implementation. of n, we can find the transition probabilities afteinstants,
which corresponds to
O b o] et Rt | o v
18] hl ach p = P(X =X = ), ©)

where pi(]-n> is the probability to begin in the statgand
reach the staté after n steps. We can use the Chapman-
Kolmogorov equation [7] to calculatﬁ(jn) as

Fig. 2. Quantized first-order IIR filter implemented in diréorm |

N
The possible outputs of IIR filters implemented in fixed- IOi(,-n) =3 pf:}fl) Pik- (7)
point are contained in a finite set, and the current output k=0

clearly depends on the last outputs and on the current and
last inputs, as we can observe in (3) and (4). We can tak
advantage of these two characteristics and use a first-ord
discrete Markov chain [6] to find a probabilistic descriptio PM =p(-D.p) —pd).p-D —p" n=12 .. (8)

Equation (7) shows an iterative method to calculay
}ven the past probabilities. Writing in matrix form [6],
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whereP(0) = Iy,.n. We conclude thaP(™ is equivalentto  which is the distribution vector at instantt- 1. Thus, we
P". Thus, given a initial probability distribution vectary conclude that(y(n+ 1) = 0.5) = 0.333. We can also find
for Xg, we obtain the distribution for the instam + 2, calculating
Th = ]P)nnO7 (9) 2 T
Thio =P =P?m,=[0 0 0667 Q333".
and we notice that the knowledge Bfand rp allows us to - )
know the distribution aften steps. Therefore, we can calculate any probability for any time
If we look to P" when n — o, we obtain the process instant if we haveP and an initial distribution vector for

steady-state (SS) matrix. This matrix differs from theiait Y(0). In the next section, we include extra states to describe
matrix P because of the absence of transient states, whicAverflow or saturation. For convenience, we refer to these
are the states that stop receiving visits after a finite numbeeXtra states as “saturation states”.

of steps. The SS matrix contains the information about the

long term process, and therefore about the saturation of the IV. MODELLING SATURATION

output in steady-state. In section I[P was described with states related to the
ComputingP for IIR filters is simple, as we show in the output of the filter, considering that the output is limited
next example. to a range (e.g., the range of the past example is the set

{-1, —0.5, 0, 0.5}), and using a nonlinear saturation to

Eggfwgfntslé Su%pgsg a ()ZBbignfdiltgr, doeswge\?var?%/ téhe guarantee this limitation. This means that when the output
1 =05, bp =0. 1= 0.

calculate the & 4 matrix> when there is an input(n) with exceeds the range, this value is Iim_ited to_the bounds of the
uniform distribution and zero mean, (i.e., the probability /@n9€ (€.g., for the past example if the filter calculates an
of u(n) = —0.5, 0 and 05 are ¥3 and the probability of ~ output of 1, the saturation limits the output tcb)) In this
u(n) = —1 is zero, and the input is white). We consider case, althougl’ takes saturation into account, we cannot
here thatRE] is the saturation operator and that we rounddistinguish saturated from nonsaturated outputs. However
up, i.e.,, Q{0.25} = 0.5 and Q{—0.25} = 0. Let us, for we can introduce more states to model the saturation and
example, find the elememk, = P(y(n) =0ly(n—1) =0.5).  optain the exact probability of saturation in a filter. For
For this element, equation (3) is modified as this purpose, we add two states in the transition matrix,
y(n) = RIQ{0.5u(n)} + Q{—0.5-0.5}], corresponding to the saturation to the positive and neg-
ative limits of the output. The matrix obtained will be
(N+2) x (N+2) if we are using a first-order filter and
(N+2)2 x (N +2)? when a second-order filter is analyzed.

sinceb; = 0 andy(n—1) = 0.5. Varying u(n) for all the
possible values, if we calculaign), we notice that

y(n) = RIQ{0.5(-1)} + Q{-0.5(0.5)}] = —0.5 (Although the matrices are large, we can apply sparse matrix

y(n) = RQ{0.5(~0.5)} + Q{~0.5(0.5)}] = 0 computation to reduce the calculations, since the matrices
, have a large number of zero elemehis

y(n) = RIQ{0.5(0)} +Q{~-0.5(0.5)}] =0 Consider again, the first example. To observe the satura-

y(n) = RIQ{0.5(0.5)} + Q{—0.5(0.5)}] = 0.5 tion, we define two extra states:1s and 05s. The state-15

) corresponds to an outputl, but that is reached through
where the last result comes from the saturation of 1 tasaturation. In the same way, the stat&sQcorresponds to
0.5. Therefore, there are two possibilities to reg¢h) =0  an output (6 obtained by saturation. Let us fiR{y(n) =
(whenu(n) = —0.5 andu(n) = 0), and we should use the gy(n—1)= —1), whenec{—1s —1 —0.5005 0.5¢}, we

distribution of the input to calculatps,, as notice that
P = P(U(n) = —0.5) + P(u(n) = 0) = % + % —~ 0,667 y(n) = Q{0.5(~1)} +Q{-05(-1)} =0
. . y(n) = Q{0.5(~0.5)} +Q{-05(~1)} = 0.5
Using the same procedure to determine the other elements
of P yields y(n) =Q{0.5(0)} +Q{-0.5(-1)} =0.5
-10 -05 0 05 States y(n) = Q{0.5(0.5)} + Q{—0.5(—1)} = 1=0.5s.
Therefore, we conclude that the element of the transition
0 0 0 0 -10 matrix
P=1 o 0 0 0 _05
0 0 0667 Q667 B ps2 = P(x(n) = —0.5) + P(x(n) = 0) + P(x(n) =0.5) =1
1000 1000 0333 Q333 05 includes one part related to the output saturation (when

. x(n) = 0.5). To include the two saturation states, we use
where the numbers above and to the rightfoshow the  an expanded matri®, where the columiP(y(n)|y(n— 1) =

va:ues ofy(n) andy(n— 1) corresponding to each row and —1), for y(n) € {—1s —1 —0.50 05 0.5}, corresponds to
column.

Assume now that the current output has a distribution P(y(n)ly(n—1)=-1)=[0 0 0 0 0667 0333".
m, = [00.5005], and we want to know the probability of
y(n+1) =0.5. Using (9), we obtain Lin fact, the use of sparse matrices is more efficient when elede

the transition matrix for a second-order filter, since thdrimalimension
M1 =Pm=1[0 0 0333 066ﬂT7 is larger and zero elements appear more frequently.
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If we calculate the full expanded matrix we obtain We conclude from the SS matrix that there are outputs
_10. -10 -05 0 05 O Stat which exceed the superior limit of the representation, \&ith
° > ates probability of 111, no matter what is the initial condition.
We can scale the coefficiebg to avoid saturation — in this

0 0 0 0 0 0 105 simple example, this means guaranteeing that)| < 0.5.
- 0 0 0 0 0 0 -1.0 If we use the traditional approach of tipenorm (which we
T o 0 0 0 0 0 —05 indicate by]| - || p), as presented in [1], [2], we must calculate
0 0 0 Q667 Q667 Q667 0 the transfer function from the input to the output of the filte
0.667 0667 0667 0333 0333 0333 05 €. 1
0.333 0333 0333 0 0 0 0.5 H(z) = 1+0.752°1°

The rows corresponding tels and 055 show the conditional

probabilities of saturation. We notice from the transition to calculate the scaling factor as

matrix that the columns related tels and —1 have the < 0.5 for 1 +} _1 (10)
same distribution. This happens because when we have state = Ih)|pllumlq” " p a 7

—1s or —1, the output is—1. ThereforeP(y(n)ly(n—1) = _ _ _ _

—15) = P(y(n)ly(n— 1) = —1), and the columns must be whereh(n) is the filter's impulse response. This approach

equal. The same argument is valid for the statd @nd IS based on Holder's inequality [8],

0.5. (It is important to note that the columns corresponding 0 1 1

to —0.5 and 0, in general, do not need to be equal to thay(n)|= Z)|h(k)u(n—k)| <|Ih(n)|[pllu(n)|g, for =+ = =1.
columns of the states-1 and 05, as we observe in this k= P4

example.) In this example, asi(n) has unlimited energy, we should

V. EXAMPLES useq = and p = 1. If we calculate the 1-norm fon(n)

In order to calculate the probability of saturation with and the infinity norm forx(n),mwe obtain
the proposed method, we wrote two programsMatlab. [h(nfly =1+ [0.75"| =4
The programs calculate the transition matrix based on the n=1
probability distribution of the inputs, and they describe and
first and second order IIR filters, as presented in equations [X(n) [l = max{x(n)| = 0.5.
(3) and (4). For simplicity, we present only one example, . ) ) )
assuming a 2-bit first order filter We use saturation after Lésil?egrz;[?veesle E';l” (Iloz)'u\r,v%gt%%(}h?vte%igi&—H(())\:Isv%e(rfolrf
sums. The program inpu_ts are t_he filter coefficients, thetinpucoef“ficients \}//vithpg}é)its). The new transitioprg?na'trix is given
word lengthB and the distribution ofi(n). We use sparse by
matrix calculation to reduce the number of operations.

. . -1.0. -10 -05 0 05 0.5, States
A. Probability of saturation ° °

Consider the filtera; = 0.75, bg = 1 andb; = 0, where

the coefficients have a 3-bit description, while we still 0 0 0 0 0 0 —10s
have a 2-bit input and output (this choice is made only 0 0 0 0 0 0 -1.0
to keep the example simple). Using the input distribution P=l ¢ 0 0 0 1000 1000 | _go5
[01/31/31/3], the transition matrix is given by 0 0 o 1000 O 0 0
-10s -10 -05 O 05 05 States 1.000 1000 1000 0 0 0 05
0 0 0 0 0 0 0.5
0 0 0 0 0 0 ~1.0
p © 0 0 0 0333 0333 | -10 while the SS matrix is
0 0 0 0333 0333 0333 | -05 10, 10 -05 0 05 05 States
0.333 0333 0333 0333 0333 0333 0
0.333 0333 0333 0333 O 0 0.5 0 0 0 0 0 0 10,
0333 0333 0333 O 0 0 0.5 | o 0 0 0 0 0 10
and the SS matrix is | 1000 1000 1000 O 0 0 —-05
-10s -10 -05 0 05 05 States 0 0 0 1000 O 0 0
0 0 0 0 1000 1000 | 05
0 0 0 0 0 0 ~1.0 0 0 0 0 0 0 0.5¢
po_| 0111 0111 0111 0111 0111 0111 | -10
| 0222 Q222 Q222 Q222 Q222 Q222 | -05 We conclude that,using the transition matrix, one may
0.333 0333 0333 0333 0333 0333 0 iteratively search for the largest scaling factor that dsoi
0222 0222 Q222 Q222 Q222 Q222 05 saturation or overflow, avoiding conservative designs thase

0111 0111 0111 0111 0111 0111 | 05 on worst-case considerations.



The  International Telecommunications Symposium (ITS 2010)

B. Quantization noise

We now use the model proposed here to compute the
mean and variance of the filter output, and compare with
predictions based on the linearized approach, in which
quantization errors are modelled as noise with uniform
distribution. In the example presented, there is one error
related to quantization, after the multiplication &y (since
bp = 1, there is no quantization error). We can model this

e
3

e o
S
T T

o

Variance
N

o
-

o

10 15 20 25

o

signal e(n) with a uniform distribution, zero mean and
variance equal to [2]

AZ
1_2.

oZ =

Assume that the initial condition ig(n—1) = 0 with

probability 1 and that the input is an independent sequence,

with distribution as before.

E{y(n)?} = al E{y(n—1)*} + b§ E{u(n)*}+

(11
2a1bo E{y(n—1)x(n) } + E{e(n)?}.

From the independence of the input sequence, it follows

that e(n) is independent ofy(n — 1), so ZaboE{y(n —

1)u(n)} = 0. We calculated the mean and the variance of

the output for the filter in the last example. Sinag) and

e(n) have zero mean, the output mean is also zero. The
variance was calculated with (11) and is presented in figure

4,

We calculated the exact mearin) of the output with our
approach, for the same initial condition, using the extende
transition matrix, i.e.,

(1) = P[000100 ("
p(l)=m"(1)[-1-1-0500505]"

m(2) =P?[000100("
p(2)=m"(2)[-1-1-0500505]" (12)
n(n) = 0001000

p(n)=m (n)[-1-1-0500505]"

where u(k) is the mean for iteratiok. Similarly, for the
variance, we calculated

(1 ()
(1 ()
0.5— 2
o2 (n) = 1" (n) (( gf)';? (13)
(05— ()2
| (05— u(n)?

for k from 0 to 25. Figure 5 shows the results.

Iterations

Fig. 4. Output variance for the linearized approach

Mean

10 15 20

10 15 20
Iterations

25

Fig. 5. Mean and variance of the output

VI. CONCLUSIONS

In this paper, we used Markov chains to describe the
behavior of first and second-order IIR filters. The model
allows a more precise prediction of the effect of quantarati
errors in digital filters implemented with short wordlength
We calculated the transition matrix for the Markov chain
with the addition of two states to represent saturation of
the output. The saturation states allow one to find the best
scaling factor to avoid saturation. The use of the new model
was exemplified with a simple first-order filter.
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