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Abstract—In this work we propose schemes for joint model-
order and step-size adaptation of reduced-rank adaptive filters.
The proposed schemes employ reduced-rank adaptive filters
in parallel operating with different orders and step sizes,
which are exploited by convex combination strategies. The
reduced-rank adaptive filters used in the proposed schemes are
based on a joint and iterative decimation and interpolation
(JIDF) method recently proposed. The unique feature of the
JIDF method is that it can substantially reduce the number
of coefficients for adaptation, thereby making feasible the use
of multiple reduced-rank filters in parallel. We investigate
the performance of the proposed schemes in an interference
suppression application for CDMA systems. Simulation results
show that the proposed schemes can significantly improve the
performance of the existing reduced-rank adaptive filters based
on the JIDF method.

I. INTRODUCTION
In the literature of adaptive filtering algorithms [1], numer-

ous algorithms with different trade-offs between performance
and complexity have been reported in the last decades. A
designer can choose from the simple and low-complexity
least-mean squares (LMS) algorithms to the fast converging
though complex recursive least squares (RLS) techniques [1].
A great deal of research has been devoted to developing cost-
effective adaptive filters with an attractive trade-off between
performance and complexity and automatic tuning of key
parameters [1]. Combination schemes [2]-[4] are recent and
effective design approaches, where several filters are mixed in
order to obtain an overall quality improvement. The individual
filters are set up so as to optimize different desirable proper-
ties: fast tracking or low error in steady-state, for example.
The combined filter is able to keep the advantages of all
the individual filters, achieving superior performance despite a
higher computational cost than the single filter approach. The
computational complexity required by combination schemes is
due to the use of two or more adaptive filters in parallel and
can become unacceptably high with large filters [2]-[4].
Reduced-rank adaptive filters [5]-[11] are cost-effective

techniques when dealing with problems involving large filters
and reduced training. A number of reduced-rank adaptive
filtering methods have been proposed in the last several

years [5]-[11]. Among them are eigen-decomposition-based
techniques [5], the multistage Wiener filter (MSWF) [6], the
auxiliary vector filtering (AVF) algorithm [7], the interpolated
reduced-rank filters [8], the reduced-rank filters based on
joint and iterative optimization (JIO) [10] and joint iterative
interpolation, decimation, and filtering (JIDF) [11], [12]. Key
problems with previously reported reduced-rank adaptive fil-
ters are the tuning of the step sizes and/or the forgetting
factors, and the model-order selection [5]-[12].

In this paper, we propose schemes for joint model-order
and step-size adaptation of reduced-rank adaptive filters based
on the JIDF technique [11] which address these drawbacks
of the JIDF scheme. The proposed schemes employ reduced-
rank adaptive filters in parallel operating with different orders
and step sizes, which are exploited by convex combination
strategies. The main reason for choosing the JIDF technique
[11] is that it allows a substantial reduction in the number
of coefficients for adaptation and yields the best performance
among the techniques reported so far (Note that, although the
number of coefficients that are actually adapted is smaller,
leading to better convergence rates and mean-square error,
the complexity of JIDF is comparable to that of the full-rank
LMS. Other reduced-rank schemes have in general a higher
complexity.) We derive LMS reduced-rank filters based on the
JIDF method and propose strategies to automatically adjust
the model-order and step sizes used. Without an interpolator,
the JIDF approach may also address the main drawback of
combination schemes, i.e., the increase in the number of
elements for computation, but this possibility will be pursued
elsewhere.

This paper is organized as follows. Section II presents
the proposed convex combination schemes of reduced-rank
adaptive filters. Section III is devoted to the derivation of
the convex combiners and Section IV to the derivation of
LMS algorithms with the JIDF approach. Section V presents
and discusses the simulation results and Section VI draws the
conclusions of this work.
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II. PROPOSED COMBINATION SCHEMES
In this section, we detail the proposed convex combination

schemes of reduced-rank adaptive filters. The basic idea be-
hind these schemes is to employ a number of parallel sets
of transformation matrices and reduced-rank filters that are
jointly optimized and exploit them via the setting of different
model orders and step sizes. The different model orders and
step sizes are determined a priori. Since we are interested in
this work in adapting the model order and the step size, then
in principle we need at most 4 parallel structures for setting
upper and lower values for the model order (or rank) and the
step sizes. To this end, we can build a tree structure where only
two structures are combined at each stage. A block diagram of
the first tree structured scheme, denoted scheme A, is shown
in Fig. 1.
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Fig. 1. Block diagram of scheme A.

Let us now mathematically describe the signal processing
performed by the proposed scheme A. Consider anM×1 input
data vector r[i] that is processed by reduced-rank schemes in
parallel with different parameters, namely the model order and
the step size. The output of scheme A is given by

yc[i] = λc[i]ya[i] + (1− λc[i])yb[i]

= λc[i]
(
λa[i]y1[i] + (1− λa[i])y2[i]

)

+ (1− λc[i])
(
λb[i]y3[i] + (1− λb[i])y4[i]

)

= λc[i]
(
λa[i]w̄

H
1 [i]SH

D1
[i]r[i]

+ (1− λa[i])w̄
H
2 [i]SH

D2
[i]r[i]

)

+ (1− λc[i])
(
λb[i]w̄

H
3 [i]SH

D3
[i]r[i]

+ (1− λb[i])w̄
H
4 [i]SH

D4
[i]r[i]

)

= wA, H
eq [i]r[i],

(1)

where the equivalent filter wA
eq[i] is given by

wA
eq[i] = λc[i]λa[i]SD1

[i]w̄1[i]

+ λc[i](1− λa[i])SD2
[i]w̄2[i]

+ (1− λc[i])λb[i]SD3
[i]w̄3[i]

+ (1− λc[i])(1− λb[i])SD4
[i]w̄4[i]

(2)

The main strategy is to set the constituent reduced-rank filters
with an estimate of the lowest and highest ranks Dmin and
Dmax, respectively, and the smallest and largest step sizes
μmin and μmax, respectively. Therefore, the proposed convex
combination would be able to exploit the differences in rank
and step size of the constituent reduced-rank filters and keep
their advantages.
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Fig. 2. Block diagram of Scheme B.

Now let us consider a second scheme, denoted scheme B,
with the convex combination of only two structures and shown
in Fig. 2. The output of scheme B is given by

yc[i] = λc[i]y1[i] + (1− λc[i])y2[i])

= λc[i]w̄
H
1 [i]SH

D1
[i]r[i] + (1− λc[i])w̄

H
2 [i]SH

D2
[i]r[i]

= wB, H
eq [i]r[i],

(3)

where the equivalent filter wB
eq[i] is given by

wB
eq[i] = λc[i]SD1

[i]w̄1[i] + (1− λc[i])SD2
[i]w̄2[i] (4)

The strategy for the scheme B is to set one of the constituent
reduced-rank filters with an estimate of the lowest rank Dmin

together with the largest step size μmax, whereas the other
uses the highest rank Dmax and the smallest step size μmin, re-
spectively. Therefore, the proposed convex combination would
be able to exploit fast adaptation (Dmin and μmax) with low
misadjustment (Dmax and μmin).

III. THE JIDF REDUCED-RANK FILTER SCHEME

We detail the JIDF scheme [11] used as the constituent of
the proposed schemes. Let us now review the JIDF and its
main parameters for the jth branch, where j = 1, . . . , J and
J = 2, 4. A block diagram of the JIDF scheme is shown in Fig.
3, where an interpolator vj [i] with Ij coefficients, a decimation
unit and a reduced-rank filter wj [i] with Dj coefficients that
are time-varying are employed. The M×1 input vector r[i] is
filtered by the vj [i] and yields the interpolated vector rI,j [i]
with M samples expressed by

rI,j [i] = V H
j [i]r[i], (5)
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where the M ×M Toeplitz convolution matrix V j [i] is given
by

V j [i] =
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Fig. 3. Block diagram of the JIDF scheme.

In order to facilitate the description of the scheme, let us
introduce an alternative way of expressing the vector rI,j [i],
that will be useful in the following through the equivalence:

rI,j [i] = V H
j [i]r[i] = �oj [i]v

∗
j [i], (6)

where the M × Ij matrix �oj [i] with the samples of r[i] has
a Hankel structure described by

�oj [i] =

⎡
⎢⎢⎢⎢⎣

r
[i]
0 r

[i]
1 . . . r

[i]
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r
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1 r
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...
...

. . .
...

r
[i]
M−1 r

[i]
M . . . r

[i]
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⎤
⎥⎥⎥⎥⎦
. (7)

The dimensionality reduction is performed by a decimation
unit withD×M decimation matricesDbj [i] that project rI,j [i]
onto Dj × 1 vectors r̄bj [i] with b = 1, . . . , B, where Dj =
M/Lj is the rank and Lj is the decimation factor. The Dj×1
vector r̄bj [i] for branch b is expressed by

r̄bj [i] = Dbj [i]rI,j [i] = Dbj [i]�oj [i]v
∗
j [i], (8)

where the vector r̄bj [i] for branch bj is used in the instan-
taneous minimization of the squared norm of the error for
branch bj

ebj [i] = d[i]− w̄H
j [i]r̄bj [i].

The decimation pattern Dbj [i] is selected according to:

Dbopt,j
[i] = Dbs,j [i] when bs,j = arg min

1≤bj≤B
|ebj [i]|2, (9)

where B is the number of decimation branches, which is a pa-
rameter to be set by the designer. We denote r̄j [i]← r̄bopt,j [i].
After the decimation unit, which carries out dimensionality
reduction, the JIDF scheme employs a reduced-rank FIR
filter w̄j [i] with Dj elements to yield the output of the
scheme. A key strategy for the joint and iterative optimization
that follows is to express the output of the JIDF structure
yj [i] = w̄H

j [i]r̄j [i] as a function of vj [i], the decimation
matrix Dbj [i] and w̄j [i] as follows:

yj [i] = w̄H
j [i]SH

Dj
[i]r[i] = w̄H

j [i]Dbj [i]�oj [i]v
∗
j [i] =

= vH
j [i]uj [i],

(10)

where uj [i] = �
T
oj
[i]DT

bj
[i]w̄∗j [i] is an Ij × 1 vector. The

expression in (10) indicates that the dimensionality reduction
carried out by the proposed scheme depends on finding appro-
priate vj [i],Dbj [i] for constructing SDj

[i]. In the next section,
we present adaptive algorithms for adjusting the coefficients
of vj [i] and w̄j [i] for determining the best Dbj [i] iteratively.

IV. PROPOSED ADAPTIVE ALGORITHMS
In this section, we develop adaptive LMS algorithms for the

proposed convex combination scheme. The key feature of the
proposed algorithms is the joint and iterative optimization of
the filters, the decimation unit and the convex combiners.
The algorithms can be derived by minimizing the cost

function

C(vj [i], Dbj [i], w̄j [i], λu[i]) = E[|d[i]− yc[i]|2], (11)

where vj [i], Dbj [i] and w̄j [i] represent the interpolators, the
decimators and the reduced-rank filters of all the constituent
filtering schemes, and λu[i] where u = a, b, c are the generic
combiners. The mixing parameters λu[i] in the tree structure of
the schemes depicted in Figs. 1 and 2 are updated via auxiliary
variables u[i] (u[i] = a[i], b[i], c[i]) and a sigmoid function, as
in λu[i] =

1
1+e−u[i] .

We derive next the expressions for scheme A. The ex-
pressions for scheme B can be derived in a similar way.
Substituting the output of scheme A (1) into the cost function,
minimizing the cost function with respect to Dbj [i] and com-
puting the instantaneous gradients of the cost function with
respect to vj [i], w̄j [i], we get the following JIDF recursions
for j = 1, . . . , J

bopt,j = arg min
1≤b≤B

|ebj [i]|2, (12)

where the error signal used in the decimation unit is ebj [i] =
d[i]− w̄H

j [i]Dbj [i]�oj [i]v
∗
j [i]. After the selection of the best

branch, the error signal becomes ej [i] ← ebopt,j
[i]. The

recursions for vj [i] and w̄j [i] are

vj [i+ 1] = vj [i] + ηje
∗
j [i]uj [i], (13)

wj [i+ 1] = wj [i] + μje
∗
j [i]rj [i], (14)

where the Ij × 1 vector uj [i] = �
T
oj
[i]DT

bopt,j
[i]w̄j [i] is the

regressor for the update recursion of the interpolator vj [i], the
Dj × 1 vector rj = Dbopt,j

[i]�oj [i]v
∗
j [i] is the regressor for
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the update equation of w̄j [i], the error signal is ej [i] = d[i]−
w̄H

j [i]Dbopt,j
[i]�oj [i]v

∗
j [i], and ηj and μj are the step sizes

for the recursions that compute vj [i] and wj [i], respectively.
Now, we need to derive the recursions for the convex

combiners λu[i] for u = a, b, c. Computing the gradient of
the cost function in (11) with respect to u[i] for u = a we
obtain the following recursion

a[i+ 1] = a[i]− μa

∂C(vj [i], Dbj [i], w̄j [i], λu[i])

∂a[i]

= a[i]− μa

∂C(vj [i], Dbj [i], w̄j [i], λu[i])

∂λa[i]

∂λa[i]

∂a[i]

= a[i] + μa(y1[i]− y2[i])
∗λa[i](1− λa[i])ea[i],

(15)

where the error signal for this combiner is ea[i] = d[i]− ya[i]
and the combiner is λa[i] =

1
1−e−a[i] . Following this approach,

we can obtain the combiner for u = b:

b[i+ 1] = b[i] + μb(y3[i]− y4[i])
∗λb[i](1− λb[i])eb[i], (16)

where the error signal for this combiner is eb[i] = d[i]− yb[i]
and the combiner is λb[i] =

1
1−e−b[i] . The recursion for the

last combiner in the tree structure is

c[i+ 1] = c[i] + μc(ya[i]− yb[i])
∗λc[i](1− λc[i])ec[i], (17)

where the error signal for this combiner is ec[i] = d[i]− yc[i]
and the combiner is λc[i] =

1
1−e−c[i] .

The complexity of the existing algorithms is 2M additions
and 2M + 1 multiplications for the full-rank LMS algorithm,
and 4M + 5 additions and 4M + 6 multiplications for the
full-rank LMS algorithms with convex combination (full-rank-
CLMS). For the JIDF scheme M(I − 1) + (B + 1)D + 2I
additions and MI + (B + 2)D multiplications are required,
where I and D are the lengths of the interpolator and the
reduced-rank filter. The complexity of the proposed schemes
A and B with the JIDF is

∑J

j=1

[
M(Ij−1)+(B+1)Dj+2Ij

]
additions and

∑J

j=1

[
MIj + (B + 2)Dj

]
multiplications. We

can reduce the complexity of the JIDF by setting small
values for I , D and B. However, the key advantage is a
substantial reduction in the number of coefficients that need
to be estimated, from M to I + D, where I + D � M .
This allows a much faster adaptation rate and smaller excess
mean-square error, compared to the full-rank schemes.

V. SIMULATIONS

We assess the performance of the proposed and existing
schemes for interference suppression in CDMA systems. We
compare the full-rank scheme with the convex combination
scheme of [3], the JIDF [11], the JIDF with the proposed
schemes A and B, and the optimal linear minimum mean-
squared error (MMSE) filter that is computed with the knowl-
edge of the channels, the signature sequences of all users, and
the noise variance at the receiver. All techniques are equipped
with LMS algorithms. Consider the downlink of a synchronous
DS-CDMA system with K users, N chips per symbol and
Lp paths. Assuming that the channel is constant during each

symbol interval, the received signal after filtering by a chip-
pulse matched filter and sampled at the chip rate yields the
M × 1 received vector

r[i] =

K∑
k=1

Akbk[i]Ckhk[i] + ηk[i] + n[i], (18)

where M = N + Lp − 1, n[i] = [n1[i] . . . nM [i]]T is
the complex Gaussian noise vector with E[n[i]nH [i]] = σ2

I,
where (·)T and (·)H denotes transpose and Hermitian trans-
pose, respectively. The operator E[·] stands for ensemble
average, bk[i] ∈ {±1j ± 1}/√2 is the symbol for user k
with j2 = −1, η[i] represents the ISI, the amplitude of user
k is Ak, the channel vector is h[i] = [h0[i] . . . hLp−1[i]]

T

and the M × Lp convolution matrix Ck contains one-chip
shifted versions of the signature sequence for user k given
by sk = [ak(1) . . . ak(N)]T . The linear receiver observes
M = N +Lp−1 samples per symbol and employs one of the
analyzed and proposed schemes, which provides an estimate
of the desired symbol as given by b̂1[i] = sgn

(�[yc[i]
])

+
jsgn

(�[yc[i]
])
, where �(·) and �(·) select the real and

imaginary parts, respectively, sgn(·) is the signum function,
and we consider user 1 as the desired one. In our simulations,
we use Lp = 9 and N = 32 and the channels have 3 paths
with profile 0, −3 and −9 dB with spacing between paths
randomly distributed between 0 and 2 chips. The power of the
interfering users are generated by log-normal random variables
with associated standard deviation equal to 3 dB. During
the training phase the receivers are adjusted with the pilot
symbols. After the training phase, the receivers can switch to
decision-directed mode and employ the previous decisions to
compute the error signals and continue the adaptation.
In the first experiment, we assess the bit error ratio (BER)

performance against the received symbols. Packets of 1500
QPSK symbols are transmitted and the curves are averaged
over 100 runs. The results depicted in Fig. 4 show that the
proposed schemes A and B with the JIDF scheme obtain
significantly better performance than the JIDF without any
combination. The use of the proposed schemes is able to
jointly adjust the best model order and exploit the different
step sizes for adaptation. In terms of computational complex-
ity, the scheme B is more attractive as it has a performance
very close to that of scheme A, but employs only 2 JIDF
constituent structures as opposed to scheme A, which uses a
combination of 4 filters.
In the second experiment, we assess the BER performance

against the signal-to-noise-ratio (SNR) defined as Eb/N0 and
against the number of users (K). Packets of 1500 QPSK
symbols are again transmitted and the curves are averaged
over 100 runs. The results depicted in Fig. 6 show that the
proposed schemes A and B with the JIDF scheme can obtain
significantly better performance than the JIDF without any
combination for different values of SNR. Specifically, the
proposed schemes can accommodate more users in the system
for the same BER. From the results, we conclude that it
might be more attractive to use Scheme B as it achieves a
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Fig. 4. BER performance versus number of received symbols. Parameters
of LMS algorithms: μ = 0.05 (full-rank), μ1 = 0.01, μ2 = 0.25 and
μa = 0.25 (combination of full-rank), B = 8, I = 3, D = 4, η = 0.005

and μ = 0.01 (JIDF), B = 8, D1 = 3, I1 = 3, η1 = 0.01 and μ1 = 0.1,
D2 = 6, I2 = 6, η2 = 0.01 and μ2 = 0.1, D3 = 3, I3 = 3, η3 = 0.0075,
μ3 = 0.01, D4 = 6, I4 = 6, η4 = 0.0075, μ4 = 0.01 (JIDF with Scheme
A), B = 8, D1 = 3, I1 = 3, η1 = 0.01 and μ1 = 0.1, D2 = 6, I2 = 6,
η2 = 0.0075 and μ2 = 0.01 (JIDF with Scheme B).

performance very close to Scheme A with half the complexity.
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Fig. 5. BER performance versus SNR. The parameters are optimized.

VI. CONCLUSIONS

We proposed convex combination schemes for joint model-
order and step-size adaptation of reduced-rank adaptive filters
based on the JIDF method. The proposed schemes employ
reduced-rank adaptive filters in parallel operating with dif-
ferent orders and step sizes, which are exploited by convex
combination strategies. We investigated the performance of the
proposed schemes in an interference suppression application
for CDMA systems. Simulations showed that the proposed
schemes significantly improve the performance of the existing
reduced-rank adaptive filters based on the JIDF method.
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Fig. 6. BER performance versus number of users (K). The parameters are
optimized.
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