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Abstract—Widely linear filters play an important role in signal
processing applications where the circularity properties on the
complex data do not hold. They are able to achieve smaller
mean-square error (MSE) than linear complex filters, but at
a significantly higher computational cost. In this paper, we
propose a modified version of widely linear filters with a reduced
computational complexity. In the proposed version, the data
vector is real, being constituted by the real and imaginary parts
of the complex data separately. We prove that the new scheme
achieves the same minimum MSE of standard widely linear
estimators. We exemplify this idea for the least-mean squares
(LMS) algorithm and also for the recursive least-squares (RLS)
algorithm.

Index Terms—Complex-valued signal processing, widely linear,
adaptive filtering, LMS algorithm, RLS algorithm.

I. INTRODUCTION

Widely Linear (WL) algorithms are employed to take into
account the full second-order information from a complex
signal, when circularity assumptions do not hold [1]–[5].
In this context, different WL adaptive algorithms have been
proposed, as the algorithms based on the least-mean squares
(LMS) algorithm [5]–[7], on the recursive least squares (RLS)
algorithm [8], [9], and on the affine projection algorithm [10].
These WL algorithms are able to achieve a smaller mean-
square error (MSE) in the steady-state than that of the strictly
linear (SL) algorithms. Therefore, they have been successfully
used in several applications, as, e.g., complex data prediction
for wind forecast [6], suppression of interference in direct
sequence code division multiple access (DS-CDMA) systems
[9] and adaptive beamforming systems [5], [8].

The WL approach has a drawback when compared to
traditional SL algorithms: the complex WL regressor vector
is twice as long as the traditional SL vector, since the WL
regressor consists of a concatenation of the SL regressor and
its conjugate. This results in an increase of the computational
complexity, an increase in the excess mean-square error, and
possibly also (for LMS algorithms) a reduction in convergence
speed. All these problems may overshadow the possible esti-
mation gains for some applications.
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303.361/2004-2, and by FAPESP under Grants 2009/03609-9, 2008/00773-1,
and 2008/04828-5.

In this paper, we propose a reduced complexity version
of the widely linear LMS and RLS algorithms. For this
purpose, we introduce a real regressor vector composed of
the concatenation of the real and the imaginary parts of the
complex data. With this simple modification, the computa-
tional complexity of WL filters is reduced back to almost
the complexity of strictly linear filters. We prove that the
modified filters are equivalent to standard WL filters, only
with a reduced complexity, and give a few examples for the
modified WL-LMS and WL-RLS algorithms.

The paper is organized as follows. In Section II we make a
brief introduction to the WL approach. Section III presents the
proposed algorithms and Section IV provides a few examples.
Conclusions are presented in Section V.

II. STANDARD WL ESTIMATION

Given a desired sequence 𝑑(𝑛) and a data vector s(𝑛),
the mean square estimation problem is to obtain the best (in
terms of minimum variance of the error) linear estimate of
𝑑(𝑛) given s(𝑛). The strictly linear approach to solve this
problem in the case of complex variables is to minimize the
cost-function

𝐽(wSL) = E{∣𝑒(𝑛)∣2} = E{∣𝑑(𝑛)− 𝑦(𝑛)∣2},
where

𝑦(𝑛) = w𝐻

SLs(𝑛) (1)

is the estimate, s(𝑛) is the regressor vector, E{⋅} represents
the expectation operator and (⋅)𝐻 stands for the conjugate
transpose of a vector or a matrix. For a given, fixed weight
vector wSL, 𝐽(wSL) is the corresponding mean-square error
(MSE). The optimum wSL that minimizes the MSE, as is well-
known, is given by the Wiener solution

wSL,opt = C−1
s̄s̄ 𝝆SL,

which is a M × 1 vector. The solution depends on the input
autocorrelation matrix Css = E{s(𝑛)s𝐻(𝑛)} and the cross-
correlation vector 𝝆SL = E{𝑑(𝑛)̄s(𝑛)}. An adaptive algorithm
that iteratively computes an estimate for wSL,opt is the least-
mean squares algorithm, whose recursion is given by

wSL(𝑛+ 1) = wSL(𝑛) + 𝜇SL𝑒
∗(𝑛)s(𝑛),
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with 𝑒(𝑛) = 𝑑(𝑛)−w𝐻
SL(𝑛)s(𝑛), and where 𝜇SL is a step-size

(a real constant). Note that this recursion requires 4M real
multiplications and 4M real sums to evaluate 𝑒(𝑛), two real
multiplications (to evaluate 𝜇SL𝑒

∗(𝑛)), 4M real multiplications
and 2M sums (to evaluate

(
𝜇SL𝑒

∗(𝑛)
)
s(𝑛)), 2M sums to

update the weight vector, a total of 8M+2 real multiplications
and 8M sums.

Picinbono and Chevalier [1] seem to have been the first
to notice that one could do better. In fact, full second-order
information about s(𝑛) = sR(𝑛) + 𝑗sI(𝑛) requires knowledge
of three matrices, namely RRR = E{sR(𝑛)s

𝑇
R(𝑛)}, RII =

E{sI(𝑛)s
𝑇
I (𝑛)} and the cross-term RRI = E{sR(𝑛)s

𝑇
I (𝑛)}

(note that RIR = R𝑇
RI.) However, this information cannot be

retrieved from Css alone, since

Css = E{s(𝑛)s𝐻(𝑛)} = (RRR +RII) + 𝑗(RRI −RIR). (2)

That is, from Css we have only the sum of RRR and RII, and
the sum of RRI with its transpose, from which the individual
matrices cannot in general be recovered. They proposed that
instead of using the strictly linear approach outlined above, one
use an augmented vector s̄(𝑛) composed by the SL regressor
vector s(𝑛) and its conjugate, i.e.,

s̄(𝑛) =

[
s(𝑛)
s∗(𝑛)

]
.

In this case, two matrices are used to describe the second-
order statistics of s(𝑛): the covariance matrix Css, defined
as in the SL case, and its complementary covariance matrix
𝜞 ss = E{s(𝑛)s𝑇 (𝑛)} [3]. 𝜞 ss can also be described in terms
of the relations between the real and imaginary parts of s(𝑛),
as

𝜞 ss = (RRR −RII) + 𝑗(RRI +RIR). (3)

From both (2) and (3), we now have full second-order infor-
mation about s(𝑛), since we can recover RRR, RII and RRI

from Css and 𝜞 ss. Algorithms based on s̄(𝑛) instead of s(𝑛)
are called widely linear.

Using Css and 𝜞 ss, the covariance matrix for WL estimation
can be written as

Cs̄s̄ = E{s̄(𝑛)̄s𝐻(𝑛)} =
[

Css 𝜞 ss

𝜞𝐻

ss C𝐻
ss

]
,

and using an augmented cross-correlation expectation vector
as defined in [7]

𝝆WL = E{𝑑(𝑛)̄s(𝑛)} =
[

E{𝑑(𝑛)s(𝑛)}
E{𝑑(𝑛)s∗(𝑛)}

]
=

[
p
q

]
,

the optimum WL solution is given by

wWL,opt = C−1
s̄s̄ 𝝆WL,

where Cs̄s̄ is a 2M× 2M matrix, while 𝝆WL is a 2M column
vector. Intuitively, we expect that WL-based estimators will
achieve better MSE than the SL estimators, since they use
full information. In fact, [1] and [3] show that WL estimation
achieves at least the same MSE as its SL counterpart. SL
estimators are optimum only for jointly circular processes (that
is, 𝜞 ss = 0 and q = 0).

WL adaptive algorithms are direct extensions of their SL
counterparts, only with twice as large regressors and weight
vectors. Tables I and II present the WL version of the LMS
and the RLS algorithms. In Table II, PWL(𝑛) is the estimate
of the inverse covariance matrix, while kWL(𝑛) is the Kalman
gain and 𝛾(𝑛) is the conversion factor. 𝜆 is the forgetting factor
and 𝛿 is a small constant for initializing PWL(𝑛). Note that
the number of computations for WL filters is twice as large
for LMS filters, and approximately four times larger for RLS
filters (see Tables III and IV.)

TABLE I

Initialization
wWL(0) = 02M×1

for n = 0, 1, 2, 3...
𝑦(𝑛) = w𝐻

WL(𝑛)̄s(𝑛)

𝑒(𝑛) = 𝑑(𝑛)− 𝑦(𝑛)

wWL(𝑛+ 1) = wWL(𝑛) + 𝜇WL𝑒∗(𝑛)̄s(𝑛)
end

TABLE II

Initialization
wWL(0) = 02M×1

PWL(0) = 𝛿I2M×2M

for n = 0, 1, 2, 3...
𝛾(𝑛) = (𝜆+ s̄𝐻(𝑛)PWL(𝑛)̄s(𝑛))−1

kWL(𝑛) = PWL(𝑛)̄s(𝑛)𝛾(𝑛)

𝑒(𝑛) = 𝑑(𝑛)−w𝐻
WL(𝑛)̄s(𝑛)

wWL(𝑛+ 1) = wWL(𝑛) + kWL(𝑛)𝑒∗(𝑛)

PWL(𝑛+ 1) =
1

𝜆
(PWL(𝑛)− kWL(𝑛)k𝐻

WL(𝑛)𝛾(𝑛))

end

III. REDUCED-COMPLEXITY WL ESTIMATION

The same information contained in the 2M-complex regres-
sor vector can be obtained if we use a 2M-real regressor,
reducing the WL complexity, as we explain below.

Considering (2) and (3), we can observe that the information
contained in the matrices RRR, RII and RRI is repeated in Css

and in 𝜞 𝑠𝑠 and, consequently, in Cs̄s̄. This argument intuitively
leads to the idea of obtaining an equivalent real matrix for Cs̄s̄,
avoiding redundance. It is possible to redefine the regressor
vector in terms of its real and imaginary parts, i. e.,

s̄RC(𝑛) =

[
sR(𝑛)
sI(𝑛)

]
. (4)

In this case, the RC covariance matrix is given by

CRC =

[
RRR RRI

RIR RII

]
.

WL-LMS
 
ALGORITHM

 

WL-RLS ALGORITHM 
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Since s̄RC(𝑛) and CRC contain the same information as
s̄(𝑛), one would expect that algorithms based on s̄RC(𝑛)
should achieve the same MSE as WL filters. However, the
computational cost will be significantly lower: since the re-
gressor is now real, an LMS algorithm based on s̄RC(𝑛) will
replace several multiplications of two complex numbers by
multiplications of a complex and a real, which require each 2
multiplications and 2 sums less. As we show in Sections III-A
and III-B, the total number of operations for the modified WL-
LMS algorithm is the same as for the SL-LMS algorithm. For
the modified WL-RLS algorithm, the number of operations is
only slightly larger than that of the SL-RLS (see tables III and
IV.)

We now prove that the algorithms obtained with the modi-
fied regressor achieves the same performance as the standard
WL algorithms. The modified regressor s̄RC(𝑛) can be ob-
tained from s̄(𝑛) applying a transformation

U =

[
IM×M 𝑗IM×M

IM×M −𝑗IM×M

]

to the vector s̄(𝑛), i.e.,

sRC(𝑛) = U𝐻 s̄(𝑛) (5)

so that

CRC = U𝐻Cs̄s̄U, (6)

where IM×M is the identity. It should be noticed that UU𝐻 =
2I. [3] defined U (but normalized by a factor 1/

√
2 to become

unitary), but used it to analyze the standard WL estimation,
not to reduce its computational complexity, as we do here.

Now, applying U to (1), we obtain

𝑦(𝑛) =
1

2
w𝐻

WLUU𝐻 s̄(𝑛).

Defining

wRC =
1

2
UHwWL, (7)

we note that the estimates computed using the transformed
regressor and weight vector are equivalent to those obtained
with the original vectors, since

𝑦(𝑛) = w𝐻
RCs̄RC(𝑛).

Similarly, the RC-WL Wiener solution is given by

wRC,opt = C−1
RC𝝆RC =

(
U𝐻Cs̄s̄U

)−1
U𝐻𝝆WL =

1

2
U𝐻wWL,opt,

where 𝝆RC = E{𝑑(𝑛)̄sRC(𝑛)} is the RC cross-correlation
vector.

From this it is easy to see that the optimum MSE achieved
using the modified vector is the same as that achieved by
the optimum WL solution. Next, we will show transformed
versions of the widely linear LMS and RLS algorithms,
obtained with the matrix U in order to use real regressor
vectors.

A. Reduced-complexity widely linear LMS (RC-WL-LMS)

Applying the transformation U to the WL-LMS equations
(Table I) and using the real regressor vector s̄RC(𝑛), we obtain

𝑦(𝑛) = w𝐻

RC(𝑛)̄sRC(𝑛),

𝑒(𝑛) = 𝑑(𝑛)− 𝑦(𝑛)

and
wRC(𝑛+ 1) = wRC(𝑛) + 𝜇RC𝑒

∗(𝑛)̄sRC(𝑛),

with the initial condition

wRC(0) = 02M×1.

Note that the relation between the step-sizes 𝜇RC = 2𝜇WL

comes from the transformation U.
Indeed, 𝑦(𝑛) and 𝑒(𝑛) are exactly the same as in the

standard WL version, since the transformation U does not
affect them. Furthermore, the analysis applied to the WL-LMS
algorithm in [7] can be extended to the reduced complexity
version, giving information about the convergence, the step-
size and the MSE, for example.

B. Reduced-complexity widely linear RLS (RC-WL-RLS)

Using (6), the inverse of the covariance matrix CRC can be
written as

C−1
RC = U−1C−1

s̄s̄ (U𝐻)
−1

. (8)

Using properties of the similarity transformation, i.e., U−1 =
U𝐻/2 and (U𝐻)

−1
= U/2, (8) can be rewritten as

C−1
RC =

U𝐻

2
C−1

s̄s̄

U

2
. (9)

Denoting PRC(𝑛) the estimate of C−1
RC , the following relation

holds

PRC(𝑛) =
U𝐻

2
PWL(𝑛)

U

2
. (10)

Therefore, since matrix PWL(𝑛) is initialized as PWL(0) = 𝛿I
in the WL-RLS algorithm, to ensure the equivalence to the
reduced-complexity version proposed here, the matrix PRC(𝑛)
must be initialized as PRC(0) = (𝛿/2)I.

Analogously, applying the transformation U to the conver-
sion factor and the Kalman gain, we arrive at

𝛾(𝑛) =

[
𝜆+ s̄𝐻(𝑛)

UU𝐻

2
PWL(𝑛)

UU𝐻

2
s̄(𝑛)

]−1

(11)

and

kRC(𝑛) =
U𝐻

2
kWL(𝑛). (12)

Now, using s̄RC(𝑛) and wRC(𝑛) as defined in (4) and (7),
we obtain the RC-WL-RLC, i.e.,

𝛾(𝑛) = (𝜆+ s̄𝐻

RC(𝑛)PRC(𝑛)̄sRC(𝑛))
−1,

kRC(𝑛) = PRC(𝑛)̄sRC(𝑛)𝛾(𝑛),

𝑒(𝑛) = 𝑑(𝑛)−w𝐻
RC(𝑛)̄sRC(𝑛),

wRC(𝑛+ 1) = wRC(𝑛) + kRC(𝑛)𝑒
∗(𝑛),
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and

PRC(𝑛+ 1) =
1

𝜆
(PRC(𝑛)− kRC(𝑛)k

𝐻

RC(𝑛)𝛾(𝑛)).

Again, the transformation reduces the presence of complex
numbers in the calculations, which results in an algorithm with
smaller cost.

Tables III and IV show the computational cost of the SL,
standard WL and RC-WL algorithms based on LMS and
RLS approaches, in terms of the number of real sums (+),
multiplications (×) and divisions (÷). We assume that the SL
regressor vector has length M.

TABLE III

Algorithm + × ÷
SL-LMS 8M 8M+ 2 -
WL-LMS 16M 16M+ 2 -
RC-WL-LMS 8M 8M+ 2 -

TABLE IV

Algorithm + × ÷
SL-RLS 6M2 + 14M− 1 7M2 + 21M+ 1 1
WL-RLS 24M2 + 28M− 1 28M2 + 42M+ 1 1
RC-WL-RLS 6M2 + 11M 8M2 + 14M+ 1 1

From Table III, we notice that the RC-WL-LMS and SL-
LMS algorithms have the same complexity, which is almost
two times smaller than that of the WL-LMS algorithm. Fig-
ure 1 shows the number of real sums and multiplications of
the algorithms.

Similarly, Table IV presents the complexity results for RLS.
For this comparison, we have taken advantage of the symmetry
of PRC(𝑛) to calculate only the elements in the main diagonal
and above it. We have used the approach of [11], p.201.
Surprisingly, the number of sums needed by the RC-WL-RLS
algorithm is smaller than that of the other two algorithms.
The number of real multiplications that is only a little higher
than that of SL-RLS. Figure 2 compares these algorithms for
different values of the regressor length.

IV. EXAMPLES

In order to compare the SL, WL and RC-WL algorithms,
we show some simulations considering the identification
system model used in [7]. We defined a random process
s(𝑛) =

√
1− 𝛼2sR(𝑛)+𝑗𝛼sI(𝑛), where sR(𝑛) e sI(𝑛) are two

uncorrelated real-valued Gaussian processes with zero mean.
The factor 𝛼 is chosen between 0 and 1 and when it is chosen
as 1/

√
2, the process becomes circular. The system coefficients

were defined as 𝑤opt,k = 𝛽(1 + 𝑐𝑜𝑠(2𝜋(𝑘 − 3)/5) − 𝑗(1 +
𝑐𝑜𝑠(2𝜋(𝑘− 3)/10))), with 𝑘 = 1, 2, ..., 5 and 𝛽 = 0.432. The
desired signal included a Gaussian noise with 20dB signal
to noise ratio (SNR). The WL-LMS algorithm used a step-
size 𝜇WL = 0.04. The RLS forgetting factor was chosen as
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Fig. 2. Evolution of the number of real sums (top) and multiplications
(down) with the increase of the regressor length for SL-RLS, WL-RLS and
RC-WL-RLS

𝜆 = 0.999 and the initial condition PWL(0) = 0.01I. The
regressor was generated using both 𝛼 = 0.1 and 𝛼 = 1/

√
2.

Note that we define 𝑑(𝑛) = ℛe{w𝐻
opts(𝑛)}, so the widely

linear solution achieves an MSE that is better than that of
the SL solution, even when the regressor is circular (since the
regressor and desired sequences will not be jointly circular).

To ensure the same convergence characteristics, the step-
size of the RC-WL-LMS was chosen as 𝜇𝑟𝑐 = 2𝜇𝑤𝑙 = 0.08
and the RC-WL-RLS initial condition used for PRC(0) was
0.005I. In figures 3 and 4, we observe different versions of
the LMS and RLS algorithms, considering the SL, WL and
RC-WL estimation. These figures show that the WL and RC-
WL estimators are clearly better than the SL approach when
in this situation. It is also important to notice that the WL and
RC-WL algorithms also achieve exactly the same MSE results,

COMPUTATIONAL COMPLEXITY FOR SL-LMS, WL-LMS AND RC-WL-LMS 
IN TERMS OF REAL OPERATIONS PER ITERATION 

COMPUTATIONAL COMPLEXITY FOR SL-RLS, WL-RLS AND RC-WL-RLS IN 
TERMS OF REAL OPERATIONS PER ITERATION 
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reaffirming the equivalence between those approaches.
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Fig. 3. MSE for WL and RC-WL algorithms with real noncircular
input (𝛼 = 1/
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(PRC(0) = PWL(0)/2 = 0.005I)
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Fig. 4. MSE for WL and RC-WL algorithms with real circular input
(𝛼 = 0.1). On the top: SL-LMS, WL-LMS and RC-WL-LMS (𝜇RC =
2𝜇WL = 0.08). On the bottom: SL-RLS, WL-RLS and RC-WL-RLS
(PRC(0) = PWL(0)/2 = 0.005I)

V. CONCLUSION

We showed in this paper that using a real regressor vector
constituted by the real and the imaginary parts of the complex
data it is possible to reduce the number of operations in WL
algorithms. The RC-WL-LMS achieved the same complexity
as the SL-LMS algorithm, which is almost a 50% reduction
compared to the standand WL-LMS. The RC-WL-RLS did
not achieve the same number of operations as the SL-RLS, but
the complexity reduction was also substantial. The simulations
demonstrated the equivalence between the reduced-complexity

algorithms and the WL ones when the input is circular or
noncircular.
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