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Abstract— Blind equalization algorithms with good conver-
gence and tracking properties and numerical robustness are de-
sired to ensure the good performance of communications systems.
In this paper, we present transient and steady-state analyses for
the dual-mode constant modulus algorithm (DM-CMA), a version
of CMA that avoids its well-known divergence problem. We show
that DM-CMA is able to avoid divergence without degradation of
mean-square performance. Good agreement between analytical
and simulation results is observed.

I. INTRODUCTION

Modern digital communications systems employ blind
equalizers in order to remove the intersymbol interference
introduced by dispersive channels. These equalizers avoid the
repeated transmission of training signals, optimizing the use of
the channel capacity [1]. A simplified communications system
with a blind equalizer is depicted in Fig. 1. The signal a(n),
assumed independent, identically distributed, and non Gaus-
sian, is transmitted through an unknown channel, whose model
is constituted by a finite impulse response filter H(z) and
additive white Gaussian noise η(n). From the received signal
u(n) and the known statistical properties of the transmitted
signal, the blind equalizer must mitigate the channel effects
and recover the signal a(n) for some delay τd. The output
of the equalizer is given by y(n) = uT (n)w(n − 1), where
u(n) is the input regressor vector, w(n − 1) is the equalizer
weight vector (both column vectors with M coefficients), and
the superscript T denotes the transpose of a vector. It is also
usual to assume that the channel is time-invariant and the
sequences {a(n)}, {u(n)}, and {η(n)} are stationary and have
zero mean.
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Fig. 1. Schematic representation of a communications system.

The constant modulus algorithm (CMA) [2], [3] is the most
used algorithm for the adaptation of the blind equalizers. Its
largest advantage is its small computational cost, however,
it presents convergence problems since an inadequate choice
of the step-size in conjunction with an initialization distant
from the zero-forcing solution can lead it to diverge (i.e., the
norm of the weight vector goes to infinity) or to converge
to undesirable local minima [1]. Therefore, the convergence
and stability of constant-modulus-based algorithms have been
the subject of research for many years (see, e.g., [1], [4]–[6]

and their references). In this context, analytical expressions
for the excess mean square error (EMSE) of these algorithms
have been computed in the literature (see, e.g., [4], [7]–
[11]). Recently, a model for the estimation error of constant-
modulus-based algorithms was proposed in [10] and extended
in [6] to obtain stability conditions for CMA. For a range
of step-sizes, [6] observed that CMA may diverge or not in
a given run, with a probability of divergence that depends
on how close the initial condition is to a local minimum,
the step-size, and the noise level. Although these results are
important to understand the CMA behavior, they do not solve
the divergence problem in practical situations, since the local
minima of the constant-modulus cost-function are unknown.

In order to avoid divergence, [12] proposed a modified
version of CMA with two distinct operation modes. In the first
mode, the algorithm works as a normalized CMA (NCMA),
i.e., the coefficients are adapted as

w(n) = w(n − 1) +
μ

δ + ‖u(n)‖2
[d(n) − y(n)]u(n), (1)

where 0 < μ < 2 is a step-size, δ is a regularization factor,
‖ · ‖ represents the Euclidean norm,

d(n) = x(n)y(n) =
3σ2

a − y2(n)
3σ2

a − r
y(n), (2)

r = E{a4(n)}/E{a2(n)}, σ2
a = E{a2(n)}, and E{·} denotes

the expectation operation. The update equation was written
conveniently as (1) in order to include the nonlinearity of
the “error” signal of CMA in the factor x(n). Thus, (1)
has the same structure as the normalized least mean-square
(NLMS) algorithm. The difference is that d(n) and y(n) are
both estimates of the transmitted signal. When the algorithm
operates in this mode, it works in what is called region of
interest (ROI) and can reach a stationary point of the cost
function.

The consistency between the estimates d(n) and y(n) will
be ensured if they have the same sign, which is equivalent
to requiring the correction factor x(n) to be always positive.
Since the denominator of x(n) is positive for practical con-
stellations used in communications systems [12], x(n) ≥ 0
occurs when y2(n) ≤ 3σ2

a. On the other hand, if y2(n)>3σ2
a,

the algorithm leaves the ROI and enters the second operation
mode. In this mode, the estimate d(n) is simply rejected, i.e.,
we force d(n) = 0 and (1) reduces to

w(n) = w(n − 1) − μ

δ + ‖u(n)‖2
y(n)u(n). (3)
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The algorithm with these two operation modes is called dual-
mode CMA (DM-CMA). In [12], it was shown for scalar
filters that (3) makes the algorithm return to the ROI. In
the vector case, the good performance of the algorithm was
confirmed through numerical simulations. Recently, the same
idea was used in [13] to avoid divergence in the Shalvi-
Weinstein algorithm.

In this work, we present a statistical analysis for DM-CMA.
We first revisit the model for the estimation error of CMA
of [10]. Then a transient analysis assuming that DM-CMA
is inside the ROI is presented. We also present three steady-
state analyses: two of them considering the operation inside
the ROI and one worst case analysis assuming that DM-CMA
operates only outside the ROI. The proposed model predicts
situations in which the probability of divergence of NCMA is
high. In order to simplify the arguments, we assume that all the
quantities are real. We also employ T/2-fractionally-spaced
equalizers (FSE), which ensure perfect equalization in a noise-
free environment, under certain well-known conditions [14].

II. A STATISTICAL MODEL FOR THE ESTIMATION ERROR

One measure of the equalizer performance is given by
the excess mean-square error, defined as ζ(n) � E{e2

a(n)},
where ea(n) = uT (n)w̃(n − 1) is the a priori error,
w̃(n) = wo(n) − w(n) is the weight-error vector, and wo is
the optimal zero-forcing solution. We assume that in a non-
stationary environment, the variation in wo follows a random-
walk model (see, e.g., [15, p. 359]), that is, wo(n) = wo(n−
1)+q(n). In this model, q(n) is an i.i.d. vector with positive-
definite autocorrelation matrix Q = E{q(n)qT (n)} and is as-
sumed independent of the initial conditions {wo(−1),w(−1)}
and of {u(l)} for all l.

A statistical analysis of constant-modulus-based algorithms
requires simplifying assumptions. Among them, it is common
to assume that

A1. the constellation used to generate a(n) has circular sym-
metry, so that E{ak(n)} = 0 for all odd integers k > 0,
which is true for practical constellations;

A2. the channel noise power is small enough for the zero-
forcing solution wo to be one of the global minimizers
of the constant-modulus cost function. In other words,
the optimal solution achieves perfect equalization, i.e.,
a(n − τd) ≈ uT (n)wo(n − 1) [4], [6], [8], [10]. Hence,
the filter output can be approximated by

y(n) ≈ a(n − τd) − ea(n). (4)

Defining the estimation error as e(n) � d(n)−y(n), replacing
y(n) by (4), and assuming that terms depending on ek

a(n),
k ≥ 2 are sufficiently small to be disregarded for all n ≥ 0,
after some algebra, we obtain

e(n) ≈γ(n)
γ̄

ea(n) +
β(n)

γ̄
, (5)

where γ(n) = 3a2(n−τd)−r and β(n) = r a(n−τd)−a3(n−
τd). We should notice that γ(n) and β(n) are i.i.d. random

variables, satisfying γ̄ � E{γ(n)} = 3σ2
a − r, E{β(n)} = 0,

ξ � E{γ2(n)} = 3 r σ2
a + r2, and (6)

σ2
β � E{β2(n)} = E{a6(n) − r2 a2(n)}. (7)

Assuming γ(n) ≡ 1 and interpreting β(n) as a measurement
noise, (5) reduces to the regression linear model used in
supervised adaptive filtering [15, p. 284]. It is relevant to
notice that β(n) is identically zero for constant-modulus
constellations, so the variability in the modulus of a(n) (as
measured by β(n)) plays the role of measurement noise for
constant-modulus based algorithms [6], [10]. In addition, β(n)
is uncorrelated with u(n) as shown in [6, Lemma 1].

III. TRANSIENT ANALYSIS

It is common in the literature to approximate the EMSE
as ζ(n) ≈ Tr(RS(n − 1)), where S(n) � E{w̃(n)w̃T (n)}
is the covariance matrix of the weight-error vector, R �
E{u(n)uT (n)} is the autocorrelation matrix of the input
signal, and Tr(A) stands for the trace of matrix A. This
approach is based on the independence assumption between
the regressor vector u(n) and weight-error vector w̃(n − 1),
and is justified for small step-sizes due to the different time-
scales for variations in u(n) and w̃(n − 1) [16].

Assuming that DM-CMA operates inside the ROI, the
recurrent equation for the weight-error vector can be obtained
by subtracting both sides of (1) from wo(n) and recalling that
wo(n) = wo(n − 1) + q(n), i.e.,

w̃(n) − q(n) = w̃(n − 1) − μ

δ + ‖u(n)‖2
e(n)u(n). (8)

Replacing e(n) by (5) and assuming that δ is small compared
to ‖u(n)‖2, (8) can be rewritten as

w̃(n) ≈

p1︷ ︸︸ ︷[
I − μγ(n)

γ̄‖u(n)‖2
u(n)uT (n)

]
w̃(n−1)

− μβ(n)
γ̄‖u(n)‖2

u(n)︸ ︷︷ ︸
p2

+q(n)︸︷︷︸
p3

. (9)

To proceed, we also assume that

A3. β(n) and γ(n) are independent of w̃(n − 1) [4], [10];
A4. the impulse response of the channel is long enough so

that [6], [10], [16], [17]:
E{γ(n)u2(n)} ≈ γ̄ E{u2(n)}, (10)

E{β2(n)u2(n)} ≈ σ2
β E{u2(n)}, (11)

E {u(n)uT (n)S(n − 1)u(n)uT (n)}
≈ 2RS(n − 1)R + RTr(RS(n − 1)), (12)

E
{
u(n)uT (n)/‖u(n)‖2

}
≈ α2R, and (13)

E
{
u(n)uT (n)/‖u(n)‖4

}
≈ α4R, (14)

where α2 �
[
σ2

u(M−2)
]−1

, α4 �
[
σ4

u(M−2)(M−4)
]−1

,
and σ2

u is the variance of the input signal. The approximations
(10) and (11) were used in the CMA analyses of [10] and [6].
Assuming that the regressor u(n) is Gaussian, (12), (13), and
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(14) hold. The approximations (13) and (14) were obtained in
the NLMS analysis of [17] and are valid for a large number
of coefficients (e.g., M ≥ 20).

Multiplying both sides of (9) from the right by their
respective transposes and taking the expectation we obtain a
recurrent expression for S(n). Using A1-A4 and the fact that
q(n) is independent of the initial conditions and of u(n), we
can observe that E{pipT

j } = 0 for i, j = 1, 2, 3 and i �= j,
where the pi were defined in (9). Hence, we arrive at

S(n) ≈ S(n−1)+
μ2ξα4

γ̄2
[2RS(n−1)R+RTr (RS(n−1))]

−μα2 [S(n−1)R+RS(n−1)]+
μ2σ2

β α4

γ̄2
R+Q. (15)

IV. STEADY-STATE ANALYSES

In the following, we present three tracking analyses for DM-
CMA. In the first two analyses, we assume that the algorithm
operates inside the ROI and in the third one, we assume that
it operates outside the ROI.

A. Traditional method - inside the ROI

An analytical expression for the steady-state EMSE can be
obtained by calculating the trace of both sides of (15) when
n → ∞. To arrive at an easy-to-compute expression, we
assume that the term 2Tr(RS(∞)R) can be disregarded in
relation to Tr(R)Tr(RS(∞)) [16]. Thus, after some algebra,
we get

ζ(∞) ≈
μγ̄−1σ2

β α4Tr(R) + μ−1γ̄Tr(Q)
2γ̄α2 − μγ̄−1ξα4Tr(R)

. (16)

B. Energy conservation - inside the ROI

Using the energy conservation arguments of [15, Ch. 7], an
analytical expression for the steady-state EMSE inside the ROI
can be obtained by equating the squared norms on both sides
of (8) and taking the expectation as n → ∞. Since (8) has the
same structure as the NLMS algorithm, DM-CMA satisfies the
same variance relation of [15, Th. 7.4.1]. Thus, for δ ≈ 0, we
obtain

μE
{

e2(n)
‖u(n)‖2

}
+ μ−1Tr(Q) = 2E

{
ea(n)e(n)
‖u(n)‖2

}
. (17)

Assuming that at steady-state

E
{

e2
a(n)

‖u(n)‖2

}
≈ ζ(∞)

Tr(R)
(18)

and using Model (5), the EMSE can be approximated by

ζ(∞) =
Tr(R)

[
μγ̄−1σ2

β α2 + μ−1γ̄Tr(Q)
]

2γ̄ − μγ̄−1ξ
(19)

with E
{
1/‖u(n)‖2

}
≈ α2 �

[
σ2

u(M−2)
]−1

. For γ(n) ≡ 1,
(19) reduces to the analytical expression of the tracking EMSE
of NLMS [15, Eq. (7.6.7)].

C. Energy conservation - outside the ROI

We now use (3) to analyze the case in which DM-CMA op-
erates outside the ROI. Since (3) makes the algorithm return to
the ROI, DM-CMA operates in this mode only for a finite-time
interval. Therefore, the analytical expression obtained here is
the result of a worst case analysis. Using energy conservation
arguments, the steady-state variance relation outside the ROI
can be obtained replacing e(n) by −y(n) in (17), i.e.,

μE
{

y2(n)
‖u(n)‖2

}
+ μ−1Tr(Q) = −2E

{
ea(n)y(n)
‖u(n)‖2

}
. (20)

Using the approximations (4) and (18) in (20), the steady-state
EMSE outside the ROI can be approximated by

ζ(∞) =
Tr(R)[μσ2

aα2 + μ−1Tr(Q)]
2 − μ

. (21)

V. SIMULATION RESULTS

To verify the validity of the analyses, we consider in all
the simulations the transmission of a 4-PAM (pulse amplitude
modulation) signal with statistics r = 8.2, σ2

β = 28.8, and
γ̄ = 6.8 over the channel h = [0.25 0.64 0.80 −0.55]T in the
absence of noise, and an equalizer with M = 20 coefficients
implemented as a T/2-FSE, initialized with only one nonzero
and unitary element in the tenth position.

Fig. 2-(a) shows the theoretical EMSE along the iterations
using (15) and its experimental value estimated from the
ensemble-average of 500 independent runs of a DM-CMA
equalizer in a stationary environment with μ = 0.05. To facili-
tate the visualization, the experimental curves were filtered by
a moving-average filter with 16 coefficients. The steady-state
EMSE values predicted by (16) and (19) are also shown in
the figure. In this situation, both steady-state analyses inside
the ROI present a similar result and there is a good agreement
between the transient analysis and the simulation. Considering
a larger step-size (μ = 0.2), the transient analysis is not as
accurate as in the previous situation, as shown in Fig. 2-(b).
Since (16) was derived from the transient analysis, it is also not
accurate to predict the steady-state EMSE. On the other hand,
the analytical expression for the steady-state EMSE obtained
via the energy conservation method (Eq. (19)) provides a good
agreement with the experimental result.

To verify the accuracy of the DM-CMA steady-state anal-
yses, we assume a non-stationary environment with Q =
10−6R. Fig. 3-(a) shows the theoretical curves of the EMSE
predicted by (16) and (19) inside the ROI and (21) outside the
ROI, and also the experimental values estimated through an
ensemble-average of 50 independent runs. Fig. 3-(b) shows the
probability of divergence (Pd) of NCMA, which is obtained
from L = 50 repetitions of each experiment, starting from
the same initial condition w(0). As in [13], we label a given
run of NCMA as “diverging” if y(n) overflows (we check
for NaNs in Matlab). Then, we compute the probability of
divergence as Pd = (Number of curves diverging)/L. In the interval
of μ where the probability of divergence is almost null, DM-
CMA works inside the ROI and for lower step-sizes, the
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theoretical results from (16) and (19) are similar. However, as
the step-size becomes larger, the theoretical result from (19)
is more accurate than that of (16). It is relevant to notice that
(16) allows to determine a more accurate interval of μ for
which the probability of divergence of NCMA is almost null.
Note that the maximum of the curve, which occurs when the
denominator of (16) is null, coincides with the transition of the
curve of Pd shown in Fig. 3-(b). The values of EMSE predicted
by (16) and (19) are negative for μ > 0.39 and μ > 0.49,
respectively, and therefore, are not shown in the figure. In the
interval of μ where the probability of divergence is higher,
DM-CMA works outside the ROI during a larger number of
iterations. In this case, the experimental EMSE is bounded by
the theoretical curve predicted by (21), assuming the operation
outside the ROI.
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Fig. 2. Theoretical and experimental EMSE along the iterations for DM-
CMA, assuming a) μ = 0.05 and b) μ = 0.2; δ = 10−5 Q = 0, 4-PAM,
M =20; ensemble-average of 500 independent runs.
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Fig. 3. (a) Theoretical and experimental steady-state EMSE for DM-CMA;
(b) Probability of divergence of NCMA as a function of μ; 4-PAM, M =20,
δ = 10−5; Q = 10−6R; ensemble average of 50 independent runs.

VI. CONCLUSION

In this paper, we presented a statistical analysis for DM-
CMA. Assuming that the algorithm operates inside the ROI,

we provided a transient analysis, which showed a good agree-
ment with simulations, mainly for small step-sizes. The steady-
state EMSE inside the ROI was then obtained as the limiting
case of the transient analysis. The proposed model provides
a reasonable estimate for the range of step-sizes in which the
probability of divergence of NCMA is approximately zero.
Using the energy conservation method, we obtained another
expression for the steady-state EMSE, which is more accurate
for larger step-sizes. In order to obtain an expression for the
tracking EMSE in a worst case scenario, we assumed that DM-
CMA operated only outside the ROI. The resulting expression
in conjunction with those obtained when DM-CMA operates
inside the ROI give a range of values for the steady-state
EMSE of DM-CMA in all possible situations.
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