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ABSTRACT
Sparse recovery techniques have been shown to produce very ac-

curate acoustic images, significantly outperforming traditional de-

convolution approaches. However, so far these proposals have been

computationally intractable for all but very small images, because

they had no means of efficiently transforming back and forth be-

tween a hypothetical image under reconstruction and the measured

data. In this paper we obtain a fast transform for planar array ge-

ometries using the fast non-equispaced Fourier transform (NFFT).

We then apply it to accelerate general-purpose solvers by several

orders of magnitude, enabling computationally-efficient regularized

acoustic imaging. The proposed approach is not only tractable, but

faster than competing deconvolution techniques, while delivering re-

constructions with unprecedented accuracy.

Index Terms— array processing, microphone arrays, acoustic

imaging, sparse reconstruction, regularized least-squares, fast trans-

form, NFFT, deconvolution, covariance fitting.

1. INTRODUCTION

Acoustic imaging is a standard technique for mapping the location

and intensity of sound sources with microphone arrays. It can pro-

vide insight into noise generating mechanisms, so it is routinely used

to design quieter vehicles, machinery and aircraft [1]. It has also

been used to analyze the acoustic properties of large rooms, by al-

lowing one to visualize their late reverberation [2].

Due to its relatively low computational cost, beamforming re-

mains the most popular method for acoustic imaging. Unfortunately,

it produces the source distribution of interest convolved with the ar-

ray point spread function (PSF). Since microphone arrays have at

most a few hundred microphones, array PSFs are inevitably large,

such that beamforming produces smeared images.

Deconvolution algorithms [3, 4] have been proposed to enhance

images obtained with beamforming. More recently, regularized co-

variance fitting techniques [5] have been shown to deliver even bet-

ter results. However, these methods have high computational costs,

mainly because they have no way to efficiently transform back and

forth between the image under reconstruction and the measured data.

In the absence of fast transforms, covariance fitting is only tractable

for low resolution images.

In this paper we show how to efficiently apply state-of-the-art

iterative methods for convex optimization and sparse recovery to ob-

tain high resolution acoustic images. In particular, we are interested

in solving regularized least-squares problems of the form

ŷ = arg min
y

‖Ψy‖ + μ ‖Ay − s‖2
2 , (1)

where s is the measured signal, ŷ is the reconstructed signal, Ψ is a

sparsifying transform, and A is a transform which models the mea-

surement process. For an acoustic image, y would be a vectorized

version of the image describing the true source distribution, and s
would be a vectorized version of the sample covariance matrix.

Since (1) is solved iteratively, one must be able to quickly and re-

peatedly evaluate Ψ, ΨH , A and AH for arbitrary vectors. Indeed,

the application of these transforms dominates the computational cost

of solving (1). While one can usually choose a convenient fast spar-

sifying transform Ψ, the measurement process determines A. In

practice, algorithms for solving (1) are strongly bottlenecked by the

cost of evaluating A, such that accelerating A by a given factor ac-

celerates imaging by nearly the same factor.

While sparsity-enforcing approaches have been proposed for di-

rection of arrival estimation [6] and acoustic imaging [5], to our

knowledge these proposals have never been combined with a fast

implementation of A. Thus, previous formulations were only com-

putationally tractable if y had a small number of dimensions, limit-

ing their practical applications.

This paper offers two contributions: (i) we show how to use the

non-equispaced fast Fourier transform (NFFT) [7] to obtain a fast

transform for aeroacoustic imaging which outperforms explicit ma-

trix multiplication by more than 100x, and (ii) propose a new ap-

proach for acoustic imaging by combining this transform with regu-

larized least-squares solvers, making covariance fitting practical for

large scale problems. Since all the domain-specific characteristics of

array imaging are abstracted away in A, this approach has the benefit

of replacing ad-hoc techniques with state-of-the-art general purpose

solvers. Furthermore, better regularization allow us to reconstruct

more accurate representations than with previous methods.

The proposed transform has the advantage of modeling arbitrary

planar array geometries. Thus, it allows one to perform imaging

with random geometries, which provide better spatial diversity, res-

olution, operating bandwidth and reconstruction guarantees than ge-

ometries containing regularities.

This paper is organized as follows: Section 2 provides defini-

tions and further motivates the need for fast transforms. Section 3

shows how to obtain a fast transform using the NFFT. Section 4 has

applications, and Section 5 has our conclusions.

2. PRELIMINARIES

We use the following notation. Transposes and Hermitian transposes

of vectors and matrices are denoted by ·T and ·H , respectively. For

a, b ∈ Z+, mod (a, b) denotes the remainder of a/b. �x� represents

rounding of x ∈ R towards −∞.

Consider a planar array of N microphones lying on the horizon-

tal plane at coordinates p0, ...,pN−1, such that pi =
ˆ
pxi pyi 0

˜T
.

Assume we are interested in the sound power coming from a set of

M look directions {ui}M−1
i=0 , where in general M is a large number.

The N × 1 array output for a frequency ω is modeled as

x (ω) = V (ω) f (ω) + η (ω) , (2)

2688978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



where V (ω) =
ˆ
v (u0, ω) v (u1, ω) · · · v (uM−1, ω)

˜
is the

array manifold matrix, f (ω) =
ˆ
f0 (ω) f1 (ω) · · · fM−1 (ω)

˜T

is the frequency domain signal waveform and η (ω) is uncorrelated

noise. The far-field array manifold vector for source m is given by

v (um, ω) =
h

ej ω
c
uT

mp0 · · · ej ω
c
uT

mpN−1

iT

. (3)

If θ and φ are the azimuth and elevation angles, one can parameterize

the look directions as

ux (θ, φ) = sin φ cos θ, uy (θ, φ) = sin φ sin θ,

such that

u =
ˆ
ux uy

p
1 − u2

x − u2
y

˜T
(4)

for u2
x + u2

y ≤ 1. It is well-known that under a far-field approxi-

mation, uniform sampling in U-space (where U = [−1, 1]2) makes

point-spread functions shift-invariant. Since in (3) the z coordinate

of um is multiplied by 0, we can simplify notation by redefining

um,pn as belonging to R
2, using only the first two coordinates of

each vector.

Let Sx (ω) = E
˘
x (ω)xH (ω)

¯
be the array cross spectral ma-

trix. If x0 (ω), ..., xL−1 (ω) correspond to L frequency domain

snapshots, the spectral matrix can be estimated with

Sx (ωk) =
1

L

L−1X
l=0

xl (ωk)xH
l (ωk) , (5)

which retains only the relative phase shifts between microphones.

Each frequency is processed separately, so to simplify notation we

omit the argument ω and write Sx (ω) simply as S.

Assuming that the noise is spatially white and uncorrelated with

the sources of interest, we have

S = V E
n
f fH

o
VH + σ2I, (6)

where σ2 = E {ηiη
∗
i }, 0 ≤ i < N .

The sound power emanating from look directions {ui}M−1
i=0 dis-

tributed along a grid in U-space defines a two-dimensional image,

where pixel coordinates correspond to source locations, and pixel

values correspond to source powers. A usual assumption in acous-

tic imaging is that the pixels are uncorrelated, i.e., that E
˘
f fH

¯
is

diagonal (note that the diagonal of E
˘
f fH

¯
has the power radiated

from each direction, i.e., a vectorized version of the image).

Given a Mx × My acoustic image, define M = MxMy and let

{um}M−1
m=0 be an enumeration of all pixel coordinates in U-space.

Let v (um) be the array manifold vector when steered towards um.

If the sound powers radiating from directions {um}M−1
m=0 are given

by
˘|Y (um)|2¯M−1

m=0
, in the absence of noise we have

S =

M−1X
m=0

|Y (um)|2 v (um)vH (um) . (7)

Covariance fitting algorithms iteratively compute a reconstructed im-

age
˘˛̨

Ŷ (um)
˛̨2¯M−1

m=0
and compare the corresponding Ŝ obtained

through (7) with the measured values obtained from (5). Unless the

image is very sparse, (7) becomes computationally intractable. For

instance, for a 256 element array and a 256 × 256 acoustic image,

(7) requires 232 complex multiply-accumulate instructions to com-

pute. This cost is excessive for a transform intended to be used in an

iterative method. In the following section we describe how to obtain

an efficient transform to compute (7) using the NFFT.

3. FAST TRANSFORMS WITH THE NFFT

Define y =
ˆ |Y (u0)|2 · · · |Y (uM−1)|2

˜T
. Note that we can

rewrite (7) as s = Ay, where A is a linear transform and s =
vec {S}. Indeed, vec

˘
vumvH

um

¯
= v∗

um
⊗ vum , where ⊗ is the

Kronecker product, and

s =
ˆ
v∗

u0 ⊗ vu0 · · · v∗
uM−1 ⊗ vuM−1

˜| {z }
A

y. (8)

In this section we describe how to use the NFFT to implement A.

Let Y ∈ C
My×Mx be an image obtained by a uniform rect-

angular sampling of U-space, for even Mx, My and with sampling

coordinates drawn from

Ũ =

j
2i

Mx

ffMx/2−1

i=−Mx/2

×
j

2j

My

ffMy/2−1

j=−My/2

. (9)

We enumerate u0, ...,uM−1 ∈ Ũ such that y = vec {Y}.

One can show that for uniform rectangular arrays with horizon-

tal and vertical inter-element spacings dx = dy = λ/2 (where λ
is the wavelength of the signal of interest), A can be implemented

with a 2D FFT. This implementation is not convenient for aeroa-

coustic imaging, since: (i) the constraint dx = dy = λ/2 can only

be satisfied for one frequency, and we are interested in wideband

operation; (ii) the 2D FFT is inefficient, since it ignores that image

pixels significantly outnumber array sensors, and determines covari-

ances for sensors that do not exist; (iii) the 2D FFT requires uniform

rectangular geometries, severely limiting the spatial resolution of the

reconstructed images.

A d-dimensional NDFT is defined by a set of arbitrary spatial

nodes X and a frequency bandwidth vector M ∈ N
d. Each node xj

belongs to the sampling set X =
n

xi ∈
ˆ− 1

2
, 1

2

´d
: 0 ≤ i < N

o
.

The index set IN = Z
d ∩ Qd−1

t=0

ˆ−Mt
2

, Mt
2

´
defines a rectangular

grid over which a function of interest is sampled.

Given as input a set of samples hk ∈ C for k ∈ IN, the NDFT

is defined as

ĥi =
X
k∈IN

hke−j2πkT xi , (10)

for 0 ≤ i < N . The NFFT is a fast approximate implementation

of the NDFT which interpolates an oversampled FFT, and obtains a

very good compromise between accuracy and computational com-

plexity.

To obtain A using the NFFT, rectangular U-space sampling and

an arbitrary geometry of N microphones we use

M =
ˆ
Mx My

˜T
(11)

IN = Z
2 ∩

»
−Mx

2
,
Mx

2

«
×

»
−My

2
,
My

2

«
(12)

X =

j
xi =

2

λ

`
p�i/N� − pmod(i,N)

´ 

»

M−1
x

M−1
y

–
: i ∈ ˆ

0, N2´ff
(13)

where 
 represents the pointwise (Hadamard) product and the base-

lines pr − ps are represented only by their x and y coordinates.
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We now show that this parameterization of the NFFT produces

A. Due to the linearity of the NFFT, it suffices to show that this

parameterization produces A for an image containing a unit impulse

at arbitrary coordinates ū ∈ Ũ. For arbitrary −Mx
2

≤ m0 < Mx
2

and −My

2
≤ n0 <

My

2
, let ū =

h
2m0
Mx

2n0
My

iT

and

Yn,m =

(
1 if

`
m, n

´
=

`
m0 + Mx

2
, n0 +

My

2

´
0 otherwise.

Let vec {S} = Avec {Y}. It follows from (7) that

Sr,s =
h
v (ū)vH (ū)

i
r,s

= ej ω
c
uT
0 (pr−ps) = ej2π

uT
0
2

2
λ

(pr−ps)

= e
j2π

„
uT
0 �

»
Mx
2

My

2

–«„
2
λ

(pr−ps)�
h
M−1

x M−1
y

iT
«
.

(14)

Comparing (14) with (10), the first term in parentheses clearly be-

longs to IN. Since for 0 ≤ i < N2,
`
p�i/N� − pmod(i,N)

´
spans all

possible baselines, the second term in parentheses belongs to X . The

enumeration given by (�i/N� , mod (i, N)) indexes the elements of

S row by row. Given the Hermitian symmetry of S, this is equiva-

lent to conjugating (14) and indexing the elements of S column by

column (in the order of vec {·}), making (14) equivalent to (10).

Thus, with (11)-(13) one can implement A using the NFFT. The

fast implementation of AH is provided automatically by the NFFT

implementation, allowing us to proceed with applications.

4. APPLICATIONS

Due to limited space, we only illustrate two approaches for regular-

ized imaging, which do not exhaust the range of possible applica-

tions. For other applications, we refer the reader to [8].

4.1. �1-regularized least-squares imaging

If only a small number of U-space points have radiating sources,

then one should enforce sparsity in the canonical basis, as proposed

in [5] using an objective function similar to LASSO [9]. Here we

use a basis pursuit with denoising (BPDN) formulation, given by

min
Ŷ

‚‚‚Ŷ
‚‚‚

1
subject to

‚‚‚vec
˘
S

¯ − Avec
˘
Ŷ

¯‚‚‚
2
≤ σ, (15)

which has been studied in detail in the compressive sensing litera-

ture. Minimizing
‚‚Ŷ

‚‚
1

yields a sparse approximation to a solution

of the underdetermined system given by vec
˘
S

¯
= Avec

˘
Ŷ

¯
.

Furthermore, (15) is a convex optimization problem which can be

solved iteratively with good convergence properties.

In the examples, we solve (15) with SPGL1 [9], which is a state-

of-the-art solver designed for large scale �1-regularized least-squares

problems. The fast transform not only makes this solution tractable,

but faster than deconvolution methods such as the FFT-accelerated

DAMAS2 [4].

4.2. Total variation regularized least-squares imaging

To address cases where the source distribution cannot be assumed to

be sparse in its canonical representation, we propose reconstructing

acoustic images with total variation (TV) regularization.

Given Y ∈ C
My×Mx , define its isotropic total variation as

‖Y‖BV =
P

i,j

q
[∇xY]2i,j + [∇yY]2i,j , where ∇x and ∇y are

the first difference operators along the x and y dimensions with peri-

odic boundaries, for 0 ≤ i < My and 0 ≤ j < Mx. ‖·‖BV is called

the bounded variation (BV) semi-norm.

We propose solving

min
Ŷ

‚‚‚Ŷ
‚‚‚

BV
+ μ

‚‚‚vec
˘
S

¯ − Avec
˘
Ŷ

¯‚‚‚2

2
, (16)

subject to Ŷi,j ≥ 0. The first term measures how much an image

oscillates, and privileges solutions with small amounts of noise. The

second term ensures a good fit between the reconstructed image and

the measured data.

To solve (16) we use TVAL3 [10], which is a state-of-the-art

solver for TV-regularized least-squares problems. TVAL3 compares

very favorably to other solvers in terms of convergence rate and re-

construction quality. With the fast transform it becomes significantly

faster than DAMAS2, while providing more accurate and stable re-

constructions with guaranteed convergence.

4.3. Examples

In this section we present results comparing delay-and-sum beam-

forming, DAMAS2 implemented with the FFT2, �1-regularized re-

construction with SPGL1 [9] solving (15), and TV-regularized re-

construction with TVAL3 [10] solving (16).

To sample a wave field with maximum diversity, we use a 64-

element random array with a 50 × 50 cm aperture. This geome-

try was obtained by positioning array elements uniformly at random

inside a unit square, which was then rescaled to put the outermost

elements on the edge of a 50 × 50 cm square.

All algorithms were implemented in MATLAB R2008b, and the

NFFT was compiled with default optimizations. All images were re-

constructed with Mx = My = 256. DAMAS2, SPGL1 and TVAL3

used 1000, 200 and 100 iterations, respectively, which provide a

good compromise between computational cost and image quality.

Reconstruction times for DAMAS2, SGPL1 and TVAL3 were

approximately 40s, 15s and 8s per image, respectively, on an In-

tel Core 2 Duo T9400 processor using only one core. In contrast,

SPGL1 and TVAL3 without a fast transform would be more than

100 times slower, requiring approximately 2350s and 1250s per im-

age, respectively.

We used σ = 0.01 ‖S‖F in (15) for SPGL1 and μ = 103 in (16)

for TVAL3. The signal model is given by (6), with σ2 set to obtain

a 20 dB SNR. Since the intent of these simulations is not to analyze

the noise sensitivity of each method, only one SNR is used. Due to

limited space, we only present results for 2, 5 and 8 kHz.

Fig. 1 presents reconstruction results for images with unit im-

pulses at U-space coordinates (±n/6,±n/6) for 0 ≤ n ≤ 4. As

expected, delay-and-sum has the lowest spatial resolution and shows

significant sidelobes. DAMAS2 shows good results and a few small

artifacts, but due to the absence of regularization, it spreads the point

sources. �1-regularized reconstruction presents significantly more

accurate results. This is not a surprise, since the source distribution

is indeed very sparse.

Fig. 2 show reconstruction results for a non-sparse test pattern

designed for this experiment. Once again, delay-and-sum produces

very obvious smearing, as evidenced by the grey background that

spreads outside the visible region. DAMAS2 produces much better

results, but the plateaus are noisy due to the lack of regularization.
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Fig. 1. Reconstructions of an impulsive pattern, for Mx = My =
256. Line 1: ideal; line 2: delay-and-sum; line 3: DAMAS2;

line 4: �1-regularized least-squares. The outer circle represents the

array’s visible region.

Finally, TV-regularized reconstruction produces the most accurate

representations, with accurate shapes and low noise.

5. CONCLUSIONS

This paper describes a method for computationally efficient and ac-

curate acoustic imaging. We combine covariance fitting and sparse

recovery by recasting acoustic imaging as �1- or TV-regularized least-

squares problems. While these formulations would be ordinarily in-

tractable for all but small problems (and thus of little practical in-

terest), we implement them with a fast transform, which is the key

to this approach. Indeed, this transform accelerates solvers by two

orders of magnitude (in our examples, by more than 100x).

Given the good convergence properties and numerical stability

of the regularized least-squares methods, our proposal is not only

tractable, but significantly faster than competing deconvolution meth-

ods. Furthermore, by using regularization, we can incorporate a pri-

ori information about the source distribution. Thus, the proposed

methods also deliver more accurate reconstructions than deconvolu-

tion algorithms.

We note that fast transforms can also naturally implement and

accelerate other aeroacoustic imaging methods, including beamform-

ing and DAMAS2. Furthermore, other fast transforms can be de-

signed to better fit certain applications (for example, by obtaining

optimizations for constrained geometries). Thus, the A transform

offers a useful language for describing array processing methods re-

quired to deliver many source estimates at once. By recasting algo-

rithms in terms of A and AH , one can naturally eliminate redun-

dancies and obtain optimizations. For more details and other appli-

cations, we refer the reader to [8].
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Fig. 2. Reconstructions of a non-sparse test pattern, for Mx =
My = 256. Line 1: ideal; line 2: delay-and-sum; line 3: DAMAS2;

line 4: TV-regularized least-squares. The outer circle represents the

array’s visible region.
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