
A FAST TRANSFORM FOR ACOUSTIC IMAGING WITH SEPARABLE ARRAYS

Flávio P. Ribeiro, Vítor H. Nascimento

Electronic Systems Engineering Dept., Universidade de São Paulo
{fr,vitor}@lps.usp.br

ABSTRACT

Acoustic imaging is a computationally intensive and ill-conditioned
inverse problem, which involves estimating high resolution source
distributions with large microphone arrays. In this paper we show
how to significantly decrease its computational cost with a fast trans-
form designed for separable array geometries. This transform pro-
vides a natural and elegant way of accelerating beamforming, decon-
volution methods and regularized least-squares solvers. We acceler-
ate image deconvolution by 10x with respect to FFT-based methods,
and accelerate other important imaging algorithms (based on explicit
matrix multiplication) by even larger factors. Because of these gains
in computational speed, one can reconstruct images with higher res-
olutions than previously possible, and also enable more accurate re-
construction techniques, opening new and exciting possibilities for
acoustic imaging.

Index Terms— array processing, fast transform, acoustic imag-
ing, array imaging, regularized least-squares, deconvolution.

1. INTRODUCTION

Acoustic imaging with microphone arrays has become a standard
tool for studying aeroacoustic sources. It is routinely used to mea-
sure the noise generated by engines, turbines, vehicles and aircraft
[1] for aerodynamic design and noise reduction purposes. Acoustic
imaging has also been used to visualize the reverberant structure of
concert halls [2].

The fastest method for aeroacoustic imaging uses beamforming,
which produces the source distribution of interest convolved with the
array point spread function (PSF). Since a typical microphone array
has at most a few hundred elements, its PSF can be quite large, such
that beamforming produces a very smeared image.

To partially undo this effect, several iterative deconvolution tech-
niques have been proposed [3, 4]. More recently, regularized covari-
ance fitting [5] has been shown to deliver more accurate results, but
with very high computational costs.

For large imaging problems, even beamforming can be compu-
tationally intensive if implemented for a large generic array. Further-
more, in the absence of a fast transform, any iterative method which
requires transforming back and forth between image iterates and the
measured data can easily become computationally intractable. Itera-
tive deconvolution methods for acoustic imaging such as DAMAS2
[4] only have acceptable performance because they operate over the
beamformed image and the array PSF, without ever transforming
back to the measured data.

This paper presents a fast transform developed for acoustic imag-
ing, which can be used to accelerate beamforming, deconvolution
and covariance fitting methods given the assumption of a separable
planar array geometry. By allowing algorithms to transform back to
the measured data, this transform enables the practical use of state-
of-the-art general purpose regularized least-squares solvers, obviat-
ing sub-optimal methods which are only preferred for computational

reasons.
Our proposal is an exact transform, which can be efficiently

implemented using only matrix products and simple permutations.
As we will show, PSF convolutions implemented with this trans-
form outperform FFT-accelerated convolutions by a factor of 10.
This transform outperforms explicit matrix multiplication by an even
greater margin, which allows it to accelerate a wide range of algo-
rithms for acoustic imaging.

This paper is organized as follows: Section 2 provides defini-
tions and further motivates the need for fast transforms. Section 3
introduces the fast direct transform, its adjoint and the fast composi-
tion of the direct and adjoint. Section 4 has applications, and Section
5 has our conclusions.

2. PRELIMINARIES

In the following, we use the superscripts ·T to denote matrix or vec-
tor transpose, ·H to denote Hermitian transpose, and ·∗ to denote
complex conjugate. The remainder of a/b, for a, b ∈ Z+ is written
as mod (a, b). Round-off of x ∈ R towards −∞ is denoted by �x�.

Consider a planar array of N microphones with coordinates p0,
...,pN−1 ∈ R

3. Suppose the wave field of interest can be modeled
as generated by the superposition of M point sources with coordi-
nates q0, ...,qM−1 ∈ R

3, where M may be large to obtain an accu-
rate model. The N × 1 array output for a frequency ω is modeled
as

x (ω) = V (ω) f (ω) + η (ω) , (1)

where V (ω) =
ˆ
v (q0, ω) v (q1, ω) · · · v (qM−1, ω)

˜
is the ar-

ray manifold matrix, f (ω) =
ˆ
f0 (ω) f1 (ω) · · · fM−1 (ω)

˜T
is

the frequency domain signal waveform and η (ω) is uncorrelated
noise.

Define um = qm/ ‖qm‖, the look direction for source m. The
far-field array manifold vector for source m is given by

v (um, ω) =
h

ej ω
c
uT

mp0 · · · ej ω
c
uT

mpN−1

iT

. (2)

If θ and φ are the azimuth and elevation angles, one can parameterize
the unit half-sphere by defining

ux (θ, φ) = sin φ cos θ uy (θ, φ) = sin φ sin θ,

such that
u =

ˆ
ux uy

p
1 − u2

x − u2
y

˜T
(3)

for u2
x + u2

y ≤ 1. Recall that under a far-field approximation, uni-

form sampling in U-space (where U = [−1, 1]2) makes point-spread
functions shift-invariant. Since the array is planar, it follows from (2)
that we can ignore the z coordinate of um if the array is placed hor-
izontally, so the z coordinates of p0, ..., pN−1 are zero. Thus, we
will abuse notation and use um,pn ∈ R

2.
Let Sx (ω) = E

˘
x (ω)xH (ω)

¯
be the array cross spectral ma-

trix. If x0 (ω), ..., xL−1 (ω) correspond to L frequency domain

2680978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

snapshots, the spectral matrix can be estimated with

Sx (ω) =
1

L

L−1X
l=0

xl (ω)xH
l (ω) . (4)

Processing Sx (ω) instead of each xl (ω) is typically more conve-
nient, because Sx (ω) carries only the relative phase shifts between
microphones and is the result of averaging, such that it has less
noise content. Indeed, each xl (ω) has a phase shift which is equal
for every element but unknown, which disappears when computing
Sx (ω). We will assume narrow-band processing and omit the argu-
ment ω. To simplify the notation, Sx (ω) will be written as S.

Assuming that the noise is spatially white and uncorrelated with
the sources of interest, we have

S = V E
n
f fH

o
VH + σ2I, (5)

where σ2 = E {ηiη
∗
i }, 0 ≤ i < N .

One can map the M point sources to coordinates {ui}M−1
i=0 lo-

cated in a sufficiently fine grid in U-space. This representation pro-
duces a two-dimensional image, where pixel coordinates correspond
to source locations, and pixel values correspond to source powers.
Note that in (5), assuming that the sources are uncorrelated (a nearly
universal assumption for acoustic imaging) implies that E

˘
f fH

¯
is

diagonal. Furthermore, the diagonal of E
˘
f fH

¯
has the power ra-

diated from each direction, i.e., is a vectorized version of the image.
Given a Mx × My acoustic image, define M = MxMy and let

{um}M−1
m=0 be an enumeration of all pixel coordinates in U-space.

Let v (um) be the array manifold vector when steered towards um.

For sources at {um}M−1
m=0 radiating with powers

˘|Y (um)|2¯M−1

m=0
and in the absence of noise,

S =

M−1X
m=0

|Y (um)|2 v (um)vH (um) . (6)

Many reconstruction algorithms iteratively compute an estimated

image
˘˛̨

Ŷ (um)
˛̨2¯M−1

m=0
and compare the corresponding Ŝ obtained

through (6) with the measured values obtained from (4). Unless the
image is very sparse, (6) becomes computationally intractable. For
instance, for a 256 element array and a 256 × 256 acoustic image,
(6) requires 232 complex multiply-accumulate instructions to com-
pute. This cost is excessive for a transform intended to be used in an
iterative method. In the following section we describe how to obtain
an efficient transform to compute (6).

3. FAST IMAGING TRANSFORMS

3.1. Fast direct transform

Define y =
ˆ |Y (u0)|2 · · · |Y (uM−1)|2

˜T
. Let us write (6) as

a linear transform A such that s = Ay, with s = vec {S}. To
save space, we will write v (um) as vum , and will denote its ith

element by vi
um

(elements of array manifold vectors will be indexed
using superscripts). Let N be the number of microphones in the
array. Note that vec

˘
vumvH

um

¯
= v∗

um
⊗ vum , where ⊗ is the

Kronecker product. Therefore, A ∈ C
N2×M and

s = Ay (7)

=
ˆ
v∗

u0 ⊗ vu0 v∗
u1 ⊗ vu1 · · · v∗

uM−1 ⊗ vuM−1

˜
y. (8)

Given a two-dimensional array, its array manifold vector v (u) =
v (ux, uy) is said to be separable if there exist a (ux) and b (uy)

such that v (ux, uy) = a (ux) ⊗ b (uy) for all valid ux, uy . Note
that a (ux) and b (uy) need not be submanifold vectors.

Let us specify the enumeration of look directions we will use.
Suppose that Y is an Mx × My acoustic image (note that Y has
Mx columns and My rows). The rows of Y correspond to hori-
zontal scan lines of sampled pixels, and the columns of Y corre-

spond to vertical scan lines of sampled pixels. Let {uxm}Mx−1
m=0

and {uyn}My−1
n=0 be points which sample U-space along the x and

y axes, ordered from left to right and from top to bottom. We define
u0, ...,uM−1 such that y = vec {Y} and

y =
ˆ |Y (u0)|2 |Y (u1)|2 · · · |Y (uM−1)|2

˜T
. (9)

Breaking u into components, this implies that

um =
h

ux�m/My� uymod(m,My)

iT

. (10)

Suppose the array is separable. Let N = NxNy be the number
of array elements. Thus, we can write v (u) = v (ux, uy) =
vx (ux)⊗vy (uy), where vx and vy are Nx×1 and Ny×1 manifold
vectors.

To save space, we will use the shorthand notation

vx (uxm) = vxm =
h

v0
xm

v1
xm

· · · vNx−1
xm

iT

vy (uyn) = vyn =
h

v0
yn

v1
yn

· · · v
Ny−1
yn

iT

.
(11)

Using the separability of the array in (8), we obtain

A =
h
(v∗

x0 ⊗ v∗
y0) ⊗ (vx0 ⊗ vy0) · · ·

· · · (v∗
xM−1 ⊗ v∗

yM−1) ⊗ (vxM−1 ⊗ vyM−1)
i

(12)

For 0 ≤ m, n < NxNy , the separability of the array also allows row
m · NxNy + n of A to be written as

h
vi∗

x0v
j
x0 · · · vi∗

xMx−1v
j
xMx−1

i
⊗

h
vk∗

y0vl
y0 · · · vk∗

yMy−1v
l
yMy−1

i
,

(13)

where i =
j

m
Ny

k
, j =

j
n

Ny

k
, k = mod (m, Ny), l = mod (n, Ny).

For 0 ≤ i, j < Nx and 0 ≤ k, l < Ny , define

cm (i, j) = vi∗
xm

vj
xm

dn (k, l) = vk∗
yn

vl
yn

. (14)

For 0 ≤ m, n < NxNy , an arbitrary element Sn,m of S can be
written as the inner product of line m·NxNy +n of A and vec {Y}.
Define

c (i, j) =
h

c0 (i, j) · · · cMx−1 (i, j)
iT

d (k, l) =
h

d0 (k, l) · · · dMy−1 (k, l)
iT

.

Using (13), we have

Sn,m =
h
cT (i, j) ⊗ dT (k, l)

i
vec {Y} (15)

= dT (k, l)Yc (i, j) , (16)

where i =
j

m
Ny

k
, j =

j
n

Ny

k
, k = mod (m, Ny), l = mod (n, Ny).

Also, (15) and (16) are equivalent because
`
AT ⊗ B

´
vec {C} =

vec {BCA} whenever BCA is defined [6].

2681

For 0 ≤ i, j < Nx and 0 ≤ k, l < Ny , define

(i, j) 	 (k, l) = dT (k, l)Yc (i, j) (17)

and

Tj,i =

2
6664

(i, j) 	 (0, 0) · · · (i, j) 	 (Ny − 1, 0)
(i, j) 	 (0, 1) · · · (i, j) 	 (Ny − 1, 1)

...
...

(i, j) 	 (0, Ny − 1) · · · (i, j) 	 (Ny − 1, Ny − 1)

3
7775
(18)

From the results above, it can be shown that

S =

2
6664

T0,0 T0,1 · · · T0,Nx−1

T1,0 T1,1 · · · T1,Nx−1

...
...

...
TNx−1,0 TNx−1,1 · · · TNx−1,Nx−1

3
7775 . (19)

Let

ti,j = vec {Ti,j} (20)

Z =
ˆ
t0,0 t1,0 . . . tNx−1,Nx−1

˜
. (21)

Given Z, it is very easy to obtain S, since every block Ti,j of S can
be obtained by unstacking ti,j .

Define

Vx =
ˆ
c (0, 0) c (0, 1) · · · c (Nx − 1, Nx − 1)

˜T
(22)

Vy =
ˆ
d (0, 0) d (0, 1) · · · d (Ny − 1, Ny − 1)

˜T
(23)

By comparison with (17), one can verify that

Z = VyYVT
x , (24)

which is the fast implementation of A.

We now write A in terms of the above, which will show why (24)
is a fast transform, and allow us to immediately obtain a fast version
of AH . It follows from (24) that vec {Z} = (Vx ⊗ Vy) vec {Y}.
Define Ξ such that vec {S} = Ξvec {Z} (note that Ξ is a permuta-
tion). Thus, vec {S} = Ξ (Vx ⊗ Vy) vec {Y} and

A = Ξ (Vx ⊗ Vy) . (25)

Under the simplifying assumption that Nx = Ny and Mx = My ,
one can show that multiplication by (25) has cost O

`
MN2

´
, while

(24) has cost O
“
NM + N2M1/2

”
. Since N and M1/2 are large,

these savings correspond to many orders of magnitude. Also, (24)
is easily parallelizable. Finally, in many applications Ξ (which has
negigible cost) does not even have to be implemented as part of the
transform, as long as one preprocesses the measured S by Ξ−1.

Recall that we introduced Y as having scan lines which realize
an arbitrary separable sampling of U-space. If {uxm} and {uyi}
uniformly sample U-space, then Vx and Vy can be interpreted as
DFT matrices for non-uniform frequency sampling (this fact can be
verified by explicitly writing Vx and Vy in terms of complex expo-
nentials). Therefore, for sufficiently large values of Nx and Ny , an
additional optimization for (24) consists of replacing the products by
Vx and Vy with fast non-equispaced Fourier transforms (NFFTs)
[7]. A rule of thumb obtained from numerical experiments is to use
the NFFT for Nx > 8 or Ny > 8 and Mx > 28 or My > 28.

3.2. Fast adjoint transform

Regularized least-squares methods typically require implementations
of A and AH . A computationally efficient reconstruction algorithm
should use fast implementations of both, otherwise the slow trans-
form becomes a bottleneck for the solver. We show below how to
obtain a fast version of AH .

Let Ȳ ∈ R
My×Mx such that vec

˘
Ȳ

¯
= AHvec {S}. Since

Ξ is a permutation, Ξ−1 = ΞT and vec {Z} = ΞT vec {S}. Using
(25), vec

˘
Ȳ

¯
=

`
VH

x ⊗ VH
y

´
vec {Z} and

Ȳ = VH
y ZV∗

x, (26)

which is the fast implementation of AH (note that it has the same
computational cost as the direct transform).

For separable arrays which are uniformly sampled in U-space,
multiplication by Vx and Vy can again be replaced by NFFTs, un-
der the same considerations presented for the direct transform.

3.3. Fast direct-adjoint transform

Given the direct transform A and its adjoint AH , consider the trans-
form given by AHA. This composition is of practical interest, as
we will use it in Section 4.2 to accelerate the state-of-the-art decon-
volution algorithm DAMAS2 [4] by an order of magnitude.

One obtains a fast version of vec
˘
Ȳ

¯
= AHAvec {Y} by

evaluating (24) followed by (26). These can be combined as

Ȳ = VH
y VyYVT

x V∗
x. (27)

When Nx and Ny are sufficiently large with respect to Mx and My ,
the fastest approach is to precompute VH

y Vy and VT
x V∗

x (which
are real-valued), saving the cost of computing a relatively large Z as
an intermediate result.

4. APPLICATIONS

Due to limited space, we only present two applications. This trans-
form can also be used to enable fast imaging with state-of-the-art
regularized least-squares solvers [8, 9], producing aeroacoustic im-
ages with unprecedented accuracy. For more details, we refer the
reader to [10].

The following applications are strongly bottlenecked by the trans-
form. Thus, accelerating the transform by a given factor accelerates
image reconstruction by nearly the same factor. The relative run-
times for different implementations of A and AHA are shown in
Fig. 1. We also compared this fast transform to our more general
(but slower) fast transforms based on the NFFT (fast non-equispaced
Fourier transform) and NNFFT (fast non-equispaced in time and fre-
quency Fourier transform), presented in [10]. These allow arbitrary
planar array geometries and (for the NNFFT-based transform) arbi-
trary U-space samplings.

Runtimes were obtained on an Intel Core 2 Duo T9400 proces-
sor in 64-bit mode, using only one core. All transforms were im-
plemented in MATLAB R2008b, and the NFFT library (written in C
and based on FFTW) was compiled with default optimizations.

4.1. Delay-and-sum imaging

Note that imaging with delay-and-sum (DS) beamforming uses the
following (somewhat crude) approximation:

|Y (uxm , uyn)|2 ≈ vH (uxm , uyn)Sv (uxm , uyn) (28)

= (vH
xm

⊗ vH
yn

)S(vxm ⊗ vyn)

2682

4 8 12 16 20 24 28 32
10

−3

10
−2

10
−1

10
0

M
x
 = M

y
 = 256, A transform

N
x
 = N

y

R
un

tim
e

(s
)

4 8 12 16 20 24 28 32
10

−3

10
−2

10
−1

10
0

M
x
 = M

y
 = 256, AHA transform

N
x
 = N

y

R
un

tim
e

(s
)

Fig. 1. Runtimes for A and AHA. ×: explicit matrix representation

given by (25), �: proposed transform, implemented with (24) us-

ing matrix products, +: proposed transform, implemented with (24)

replacing matrix products with NFFTs, ∗: fast NFFT-based trans-

form for arbitrary geometries [10], �: fast NNFFT-based transform

for arbitrary geometries and U-space samplings [10], �: 2D FFT-

accelerated convolution. Due to limited space, we only present re-

sults for Mx = My = 256, but note that the proposed transform

scales well for different (and larger) problem sizes.

=
ˆ
(vxm ⊗ vyn) ⊗ (v∗

xm
⊗ v∗

yn
)
˜
vec {S} . (29)

By definition |Y (uxm , uyn)|2 = Yn,m, and comparing (29) with
(12) it follows that

vec {Y} ≈ AHvec {S} . (30)

Thus, DS imaging can be implemented with AH .

4.2. DAMAS2

Let Y̆ be the image obtained with DS beamforming, P the array

PSF for DS imaging, Y the clean image and Ŷ(k) the reconstructed

image at iteration k. By definition, Y̆ = P ∗ Y, where ∗ represents
2D convolution.

DAMAS2 [4] solves for Y by iterating

Ŷ(k+1) = max

j
Ŷ(k) +

1

a

h
Y̆ −

“
P ∗ Ŷ(k)

”i
,0

ff
, (31)

where max {·, ·} returns the pointwise maximum, a =
P

i,j |Pi,j |,
Ŷ(0) = 0 and convolution is implemented with a 2D FFT.

It follows from Section 4.1 that AHA obtains the DS image
from a clean image. Since the DS image is the clean image con-
volved with the beamformer PSF, AHA can also be implemented
with an FFT-accelerated convolution. As shown in Fig. 1, (27) can
always be used to implement AHA more efficiently than an equiv-
alent FFT-accelerated convolution. Implementing AHA with the
proposed transform has the added benefit of only requiring a sep-
arable (not necessarily uniform) U-space sampling (as opposed to
implementing AHA with the 2D FFT, which requires rectangular
uniform U-space sampling).

Thus, by using the fast transform it is possible to obtain a faster
version of the FFT-accelerated DAMAS2 with

ŷ(k+1) = max

j
ŷ(k) +

1

a

h
y̆ − AHAŷ(k)

i
,0

ff
. (32)

Since convolutions are the bottleneck of DAMAS2, the speedup of
(32) with respect to (31) is given by the runtime of AHA when

compared to that of an FFT accelerated convolution. By referring to
Fig. 1, one can see that our proposal outperforms the FFT convolu-
tions by approximately a factor of 10.

5. CONCLUSION

This work presents a fast transform designed to enable computation-
ally efficient and accurate array imaging. To obtain fast implemen-
tations, we assumed a separable array geometry, source parameteri-
zation in U-space and far-field sources.

We have shown how to apply it to accelerate the DAMAS2 de-
convolution approach by a factor of 10, and beamforming by at least
two orders of magnitude. It can also be used to enable array imaging
with regularized least-squares methods (which would be intractable
with explicit matrix multiplications), producing reconstructions in
less time than deconvolution approaches, and with greater accuracy.
For more details, we refer the reader to [10].

In contrast with FFT- and NFFT-based transforms, the proposed
transform allows arbitrary separable samplings of the source distri-
butions, which let one oversample regions with sources and under-
sample silent areas without performance degradation. The proposed
transform makes no numerical approximations, and can be easily
implemented and parallelized, since it only requires relatively small
matrix products and simple permutations.

Even though this transform was motivated with the far-field as-
sumption, it does not impose any structure onto the array manifold
vector other than its separability. The specific representation used in
(22) and (23) (which is exact for the far-field case) was used only
for convenience, since one can use any other separable representa-
tion which is more suitable for the near-field case. This makes the
proposed transform more versatile than FFT-based alternatives, as it
can be designed to model the effects of near-field propagation. Ef-
ficiently combining this idea with calibration matrices is the subject
of an upcoming publication.

6. REFERENCES

[1] W.C. Home, K.D. James, T.K. Arledge, P.T. Sodermant, N. Burnside,
and S.M. Jaeger, “Measurements of 26%-scale 777 Airframe Noise in
the NASA Ames 40- by 80-Foot Wind Tunnel,” in Proc. of the 11th
AIAA/CEAS Aeroacoustics Conference, 2005.

[2] A. O’Donovan, R. Duraiswami, and D. Zotkin, “Imaging concert hall
acoustics using visual and audio cameras,” in Proc. of ICASSP, 2008,
pp. 5284–5287.

[3] Y. Wang, J. Li, P. Stoica, M. Sheplak, and T. Nishida, “Wideband
RELAX and wideband CLEAN for aeroacoustic imaging,” The Journal
of the Acoustical Society of America, vol. 115, pp. 757, 2004.

[4] R.P. Dougherty, “Extensions of DAMAS and Benefits and Limitations
of Deconvolution in Beamforming,” in Proc. of the 11th AIAA/CEAS
Aeroacoustics Conference, 2005.

[5] T. Yardibi, J. Li, P. Stoica, and L.N. Cattafesta III, “Sparsity constrained
deconvolution approaches for acoustic source mapping,” The Journal
of the Acoustical Society of America, vol. 123, pp. 2631, 2008.

[6] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University
Press, 1990.

[7] J. Keiner, S. Kunis, and D. Potts, “Using NFFT 3—A Software Library
for Various Nonequispaced Fast Fourier Transforms,” ACM Transac-
tions on Mathematical Software (TOMS), vol. 36, no. 4, pp. 19, 2009.

[8] E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for
basis pursuit solutions,” SIAM Journal on Scientific Computing, vol.
31, no. 2, pp. 890–912, 2008.

[9] C. Li, “An efficient algorithm for total variation regularization with
applications to the single pixel camera and compressive sensing,” M.S.
thesis, Rice University, 2009.

[10] F.P. Ribeiro and V.H. Nascimento, “Computationally efficient regular-
ized acoustic imaging,” in Proc. of ICASSP, 2011.

2683

