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ABSTRACT

Knowledge-aided space-time adaptive processing (KA-STAP) algo-
rithms, which incorporate a priori knowledge into radar signal pro-
cessing methods, have the potential to substantially enhance detec-
tion performance while combating heterogeneous clutter effects. In
this paper, we develop a KA-STAP algorithm to estimate the inverse
interference covariance matrix rather than the covariance matrix it-
self, by combining the inverse of the covariance known a priori,
R−1

0 , and the inverse sample covariance matrix estimate R̂−1. The
computational load is greatly reduced due to the avoidance of the
matrix inversion operation. We also develop a cost-effective algo-
rithm based on the minimum variance (MV) criterion for computing
the mixing parameter that performs a convex combination of R−1

0

and R̂−1. Simulations show the potential of our proposed algorithm,
which obtain substantial performance improvements over prior art.

Index Terms— Space-time adaptive processing, knowledge-
aided techniques, airborne radar applications.

1. INTRODUCTION

Space-time adaptive processing (STAP) techniques have been well
developed following the landmark publication by Brennan and
Reed [1] since 1973. A significant increase in output signal-to-
interference-plus-noise-ratio (SINR) for airborne radar applications
can potentially be achieved by a joint-domain optimization of the
spatial and temporal degrees-of-freedom (DOFs) [2]. The STAP
must employ secondary data, generally taken from range cells adja-
cent to the cell under test (CUT), to estimate the covariance matrix
R in the optimal detector [3]. Prior work ( [4, 5] and the references
therein) have focused on algorithms with the underlying assumption
that the training samples are independent and identically distributed
(i.i.d) with the same covariance matrix as the primary data (so called
homogeneous training). However, it is widely understood that the
clutter environments are often heterogeneous (or non-i.i.d) [6, 7].
For example, clutter reflectivity varies spatially and target-like sig-
nals frequently reside within the training data. Thus, merely using
the sample covariance matrix estimate R̂ results in significant output
SINR performance degradation.

To mitigate the delerious effects of the heterogeneity in the sec-
ondary data, knowledge-aided (KA) STAP techniques, which make
use of an a priori knowledge of the clutter covariance matrix, have
recently gained significant attention [8–12]. In KA-STAP, two ques-
tions have to be answered: the first is how to derive the prior co-
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variance matrix from the terrain knowledge of the clutter and how
to estimate the real interference covariance matrix with the prior
knowledge [8–10]; the second is how to apply the covariance matrix
estimate in the filtering [11, 12]. A number of techniques have been
shown to result in superior detection performance when the limited
sample support is used in highly nonstationary clutter environments.
However, most of the KA-STAP techniques studied previously in-
evitably require matrix inversion which has complexity of O(M3),
where M is the dimension of the matrix.

In this paper, we propose a KA-STAP algorithm which esti-
mates the inverse interference covariance matrix instead of the co-
variance matrix itself, by combining the inverse prior covariance ma-
trix R−1

0 and the inverse sample covariance matrix estimate R̂−1.
We consider a linear combination of R−1

0 and R̂−1, more precisely,
R−1 = αR−1

0 + βR̂−1. Because the computation of R̂−1 can be
simplified by the matrix inversion lemma and may be obtained re-
cursively, our proposed algorithm has considerably lower complex-
ity compared with the scheme proposed by Stoica et al. in [10].
Futhermore, in Stoica et al.’s scheme, one must replace R with R̂
under the assumption of homogeneous training when estimating the
mixing parameter, while our algorithm is simpler, does not require
such assumption and can be represented by a convex combination
of filters [13]. To this end, we develop a cost-effective algorithm
based on the minimum variance (MV) criterion for computing the
mixing parameter that performs the convex combination. The sim-
ulations show significant performance improvement brought by our
proposed KA-STAP algorithm.

The rest of the paper is organized as follows. In section 2, we
briefly describe the problem statement. Section 3 focuses on the
key principle of the proposed KA-STAP and Section 4 describes the
methods to estimate the mixing parameter. Section 5 presents nu-
merical examples illustrating the performance improvement of the
proposed algorithm. Finally, conclusions are drawn in Section 6.

2. PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar residing on
an airborne platform. The radar antenna is a uniformly spaced linear
array antenna consisting of N elements. Radar returns are collected
in a coherent processing interval (CPI), which is referred to as the 3-
D radar data-cube shown in Fig. 1(a), where L denotes the number
of samples collected to cover the range interval. The data is then
processed at one range of interest, which corresponds to a slice of the
CPI data-cube. This slice is a J×N matrix which consists of N ×1
spatial snapshots for J pulses at the range of interest. It is convenient
to stack the matrix column-wise to form the M×1, M = JN vector
r(i), termed a space-time snapshot [1]. Given a space-time snapshot,
radar detection is a binary hypothesis problem, where hypothesis
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Fig. 1. (a) The Radar CPI datacube. (b) The STAP schematic.

H0 corresponds to target absence and hypothesis H1 corresponds to
target presence. The radar space-time snapshot is then expressed for
each of the two hypotheses in the following form,

H0 : r = ν

H1 : r = αst + ν,
(1)

where α is a complex gain and st is the target space-time steering
vector, which is the M × 1 normalized space-time steering vector in
the space-time look-direction. Vector ν encompasses any undesired
interference or noise component of the data including clutter c, jam-
ming j and thermal noise n. These three components are assumed
to be mutually uncorrelated. Thus, the M × M covariance matrix
Rν of the undesired clutter-plus-jammer-plus-noise component can
be modelled as

Rν = E{ννH} = Rc + Rj + Rn, (2)

where H represents Hermitian transpose, Rc = E{ccH}, Rj =
E{jjH} and Rn = E{nnH} denote clutter, jamming and noise co-
variance matrix respectively. In practice, the interference-plus-noise
covariance matrix Rν is typically unknown. The common approach
is to estimate it from the secondary data set which does not con-
tain the signal of interest (r = ν). In this context, we can refer the
interference-plus-noise covariance matrix Rν as R.

An optimal STAP, in the maximum SINR sense, is given by
ωopt = γR−1st, where γ is an arbitrary scalar. Normally, since
R is unknown, secondary data {r(k)}K

k=1is employed to estimate
the covariance matrix by means of the well-known formula

R̂ =
1

K

K∑

k=1

r(k)rH(k), (3)

where r(k) denotes the received data vector at the time instant k
and K denotes the number of training samples. Such estimate can
be sufficiently accurate when K is at least twice as great as M and
the training samples are assumed i.i.d. However, it has been widely
recognized that the clutter environments are often heterogeneous and
the impact of the heterogeneity on the STAP performance loss has
been investigated in [6]. Thus, KA signal processing is becoming an
important technique to combat the heterogeneity [9]. In [8, 10], the
covariance matrix is estimated by combining an initial guess of the
covariance matrix R0, derived from the digital terrain database or
the data probed by radar in previous scans, and the sample average
covariance matrix estimate in the present scan R̂, so that

R = αR0 + βR̂. (4)

Formula (4) can be restricted to a convex combination [10] as fol-
lows

R = αR0 + (1− α)R̂ α ∈ (0, 1). (5)

With the estimated covariance matrix, many STAP algorithms in-
cluding data prewhitening [8,9] and knowledge-aided constraints [11]
improve clutter mitigation performance. However, most of these
KA-STAP algorithms require a matrix inversion operation with
a complexity of O(M3), which motivates us to develop a novel
KA-STAP with lower complexity and greater flexibility.

3. PROPOSED KA-STAP ALGORITHM

The principle of our proposed algorithm is detailed in this section.
We consider the inverse covariance matrix estimate by using a linear
combination of the inverse covariance matrices instead of the covari-
ance matrix itself, more precisely, given by

R−1 = αR−1
0 + βR̂−1. (6)

To reduce the number of mixing parameters to be estimated, a con-
vex combination is considered as follows

R−1 = ηR−1
0 + (1− η)R̂−1, (7)

where η ∈ (0, 1) [13].
The sample average inverse covariance matrix can be simplified

by the matrix inversion lemma [14] such that

R̂−1(n + 1) = λ−1R̂−1(n)− λ−2R̂−1(n)r(n)rH(n)R̂−1(n)

1 + λ−1rH(n)R̂−1(n)r(n)
,

(8)
where λ is a forgetting factor. Thus, the inverse covariance matrix
estimate can be recursively calculated, which brings a significant re-
duction in the computational complexity. The remaining work is to
effectively estimate the mixing parameter η.

If we multiply the target space-time steering vector s at both
sides of (7), the formula will lead to a combination of two filters
given by

R−1(n)s = ηR−1
0 s + (1− η)R̂−1(n)s,

⇒ ω(n) = η(n)ω0(n) + (1− η(n))ω̂(n),
(9)

where we define ω(n) = R−1(n)s, ω0(n) = R−1
0 (n)s and

ω̂(n) = R̂−1(n)s. The systematic diagram of the proposed KA-
STAP algorithm is shown in Fig. 2. Thus, the mixing parameter
η can be optimized in the sense of minimizing output power. The
optimum mixing parameter which minimizes the cost function L(η)
is given by

ηo = arg min
η

L(η) = arg min
η

E
{
|ωH(n)r(n)|2

}
. (10)

By equating the gradient of the cost function L(η) with respect to η
to zero, we get

ηo =
<

{
sH(R̂−1 −R−1

0 )RR̂−1s
}

sH(R−1
0 − R̂−1)R(R−1

0 − R̂−1)s
. (11)

where <{·} denotes the real part of a complex value. However, be-
cause R in (11) is unkown, we have to come up with an adaptive
algorithm to estimate η in real time using the MV criterion, which
will be presented in the following section.
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Fig. 2. The systematic diagram of the proposed KA-STAP algo-
rithm.

4. MIXING PARAMETER ESTIMATION

In this section, an adaptive algorithm is developed to estimate the
mixing parameter η(n). Here, we borrow the ideas from [13] which
deal with the adaptation of η(n) for the convex combination of two
adaptive filters. It should be remarked that our adaptation of η is
derived based on the minimum variance (MV) criterion for complex
systems, which is an extension of previous results that dealt only
with real variables and the mean square error (MSE) criterion.

For the adaptation of the mixing parameter η(n), we use a gra-
dient descent method to minimize the output power of the overall
filter, say p(n) = |y(n)|2, where y(n) is the output of the overall
filter which is a function of η(n), given by

y(n) = η(n)y0(n) + [1− η(n)]ŷ(n), (12)

where y0(n) = ωH
0 r(n) and ŷ(n) = ω̂H(n)r(n) are the outputs

of the two filters at time n. Instead of directly modifying η(n), an
auxiliary variable ε(n) is adapted to restrict η(n) to an interval [0,1]
via a sigmoidal function such that [13]

η(n) = sgm[ε(n)] =
1

1 + e−ε(n)
. (13)

The normalized update equation for ε(n) is given by [13]

ε(n + 1) = ε(n)− µε

2[σε + q(n)]

∂p(n)

∂ε(n)
. (14)

where µε is a step size, σε is a small positive constant and q(n) can
be expressed by

q(n + 1) = (1− λq)|y0(n)− y1(n)|2 + λqq(n), (15)

where λq is a forgetting factor. It was shown that better behavior is
obtained by the normalized adaptation of the mixing parameter and
the selection of λq is rather easy [13]. Because ε should be a real
number, we have to modify the recursion of [13]. Expanding the
cost function, we obtain

|y(n)|2 =
∣∣∣η(n)[y0(n)− ŷ(n)] + ŷ(n)

∣∣∣
2

=η(n)2|y0(n)− ŷ(n)|2

+ 2η(n)<
{

[y0(n)− ŷ(n)]ŷ(n)∗
}

+ |ŷ(n)|2.
(16)

To derive the recursion in (14), we firstly simplify ∂p(n)
∂ε(n)

as follows

∂p(n)

∂ε(n)
=

∂p(n)

∂η(n)

∂η(n)

∂ε(n)
, (17)

Table 1. Radar System Parameters
Parameter Value
Antenna array Sideway-looking array (SLA)
Carrier frequency (fc) 1 GHz
Transmit pattern Uniform
PRF (fr) 1000 Hz
Platform velocity (v) 75 m/s
Platform height (h) 9000 m
Clutter-to-Noise ratio (CNR) 40 dB
Elements of sensors (N ) 10
Number of Pulses (J) 8
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Fig. 3. The SINR performance against the number of snapshots for
the proposed algorithm with λ = 0.998, λq = 0.7, σε = 0.001,
µε = 5 and ε ∈ [−4, +4].

where

∂p(n)

∂η(n)
=

∂|y(n)|2
∂η(n)

=2η(n)|y0(n)− ŷ(n)|2

+ 2<
{

[y0(n)− ŷ(n)]ŷ(n)∗
}

,

(18)

and
∂η(n)

∂ε(n)
= − −e−ε(n)

[1 + e−ε(n)]2
= η(n)[1− η(n)]. (19)

Thus, the adaptation of ε(n) in (14) can be rewritten as

ε(n + 1) =ε(n)− µε

σε + q(n)

{
η(n)|y0(n)− ŷ(n)|2

+ <{
[y0(n)− ŷ(n)]ŷ(n)∗

}}
η(n)[1− η(n)].

(20)

To further improve the behavior of the adaptation, we need to con-
strain ε to an interval [ε−, ε+]. Such constraint restricts η in the
interval (0, 1), otherwise, the adaptation will stop when η is equal to
0 or 1.

5. NUMERICAL EXAMPLES

In this section we assess the proposed KA-STAP algorithm in an air-
borne radar application under certain heterogenous clutter condition.



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snaphot

M
ix

in
g 

P
ar

am
et

er
s

 

 
KA−STAP (Convex)
Stoica’s Scheme

E{η(n)}

E{α(n)}

Fig. 4. Ensemble-average of η(n) and α(n) for our proposed
scheme and Stoica et al.’s scheme, respectively.

The parameters of the radar platform are shown in Table 1. We as-
sume that the clutter-to-noise-ratio (CNR) is fixed at 40 dB and there
is no jammer. Assuming that the calibration-on-clutter is known, the
prior clutter covariance matrix can be calculated using these radar
parameters. To model the heterogenous clutter, the spectral vari-
ation is introduced and target-like signals are Poisson-seeded over
300 training snapshots [6, 9]. We investigate the SINR performance
against the number of snapshots for our proposed algorithm and the
behavior of the mixing parameter η. In the simulation, the filter ω̂
is implemented by using the recursive least squares (RLS) algorithm
with λ = 0.998. The parameters for the adaptive algorithm adapting
η(n) are set as λq = 0.7, σε = 0.001 and µε = 5. Furthmore, we
constrain ε to the interval [-4,+4]. All presented results are averages
over 1000 independent Monte-Carlo runs.

Fig. 3 shows the SINR performance against the number of snap-
shots for our proposed algorithm. We compare it with two compo-
nent filters and Stoica et al.’s scheme. The curves show that our pro-
posed KA-STAP with convex combination algorithm outperforms
Stoica et al.’s scheme almost 3dB at the steady-state, although Sto-
ica et al.’s scheme converges faster in the first 50 snapshots. We
also note that Our proposed algorithm performs, most of time, bet-
ter than two component filters. The component filter using the prior
covariance matrix has fixed performance and after 50 snapshots its
performance is exceeded by another component filter using the es-
timated covariance matrix. In Fig. 4, the mixing parameters η(n)
and α(n) for our proposed scheme and Stoica et al.’s scheme are
shown, respectively. The experimental curves were estimated from
the ensemble-average of 1000 independent runs. Note that they have
different meanings that η(n) is the mixing parameter for the con-
vex combination of two inverse matrices and α(n) is the the mixing
parameter for the convex combination of two matrices. Our mixing
parameter η is adapted with the normalized algorithm according to
the output power and converges to a steady-state value close to 0.

6. CONCLUSIONS

In this paper, motivated by the fact that knowledge-aided space-
time adaptive processing (KA-STAP) algorithms have the potential
to substantially enhance detection performance combating heteroge-

neous clutter effects, we developed a KA-STAP algorithm to esti-
mate the inverse interference covariance matrix rather than the co-
variance matrix itself, by combining the prior covariance matrix in-
verse, R−1

0 , and the inverse sample covariance matrix estimate R̂−1.
The computational load was greatly reduced due to the avoidance of
the matrix inversion operation. Furthermore, an adaptive algorithm
based on the MV criterion for the mixing parameter was developed
for performing the convex combination with complex signals. The
results showed the potential of our proposed algorithm and a sub-
stantial performance improvement over prior art.
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