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ABSTRACT In order to restrict the mixing parameter to the interj@l1]

This paper proposes an improved model for the transient of congg to reduce gfad'e”t noise Whén ~ 0 or A~ a nonl!n-
combinations of adaptive filters. A previous model, based on a fifq! transformation alnd an aUX|I|ary. variabign) are .ugec.i, 1.e.,
order Taylor series approximation of the nonlinear functions that &%) = 1/[1+e” "], where a(n) is updated to minimize the
pear in convex combinations, tended to overestimate the variancg%@re of the overall erref(n) = d(n) — y(n) [3]:

the auxiliary variable used to estimate the mixing parameter. In thisa(n) = a(n—1)+pa [y1(n)—y2(n)]e(n)A(n)[1-A(n)]. (1)
paper, we apply a second-order Taylor approximation that improwegractice,a(n) is restricted (by saturation of the above recursion) to
these estimates, and obtains better agreement with simulations. Imadaterval(—a , a ], since the factoi(n)[1 — A(n)] in (1) would
dition, we also extend the model to include a simple mechanismfrtually stop adaptation ifi(rn) were allowed to grow too much.

the transfer of coefficients between the constituent filters, a procedureWe assume that the two component filters are adapted to minimize
that greatly improves the convergence of the overall filter, and proviteir own quadratic errors using the least mean square (LMS) algo-
an expression to select the free parameter used in such a schemerithm with different step sizesig > p2), i.e.,

Index Terms— Adaptive filters, convex combination, transient wi(n) = wi(n—1) + pie;(n)u(n), i=1,2. (2)
analysis, LMS algorithm. wheree;(n) = d(n) — yi(n).
The performance of the convex combination of two LMS algo-
1. INTRODUCTION rithms can be improved if interaction between the component filters is

Over the last years, combinations of adaptive filters have been a tefived, as proposed in [2]. The convergence of the slow filter can be
of intense research in the signal processing community (see, e-g.2gcelerated when an abrupt change appears by transferring af part
9]). The first combined scheme that attracted attention was the corigxilterwi to w. Thus, the modified adaption rule fer, becomes
combination of adaptive filters due to its relative simplicity and the wa(n)=a [w2(n—1) 4+ p2ez(n)u(n)]+(1—a)wi(n—1), (3)
proof that the combination is universal, i.e., the combined estimat@iferen is a parameter close to 1. As observed in [2], an inconvenience
at least as good as the best of the component filters in steady-stat@ffgie new learning rule is that it increases the final misadjustment of
stationary inputs [3]. In such scheme, depicted in Fig. 1, the outiig slow filter. To avoid this, the coefficient transfer must only be
of the overall filter is given by (n) = A(n)y1(n)+[1—A(n)]y2(n), applied whem\(n) > 3, whereg is a threshold close to the maximum
where\(n) € [0, 1] is the mixing parametey;(n), i = 1,2, are the value that can be reached hyn). Common choices in the literature
outputs of the transversal filters, i.g;(n) = u” (n)w;(n—1), u(n) area, = 4andg = 0.98.

andw;(n—1) € R" being, respectively, the common regressor vector, By relying on a Taylor series approximation of the nonlinearities,
and the weight vectors of each component filter. a theoretical model for the transient behavior of convex combinations
was proposed recently in [9]. Although the problemis highly nonlinear
and quite challenging, good agreement between model and theory was
obtained, except for an overestimation of the variance of the auxiliary
variablea(n) in some instants, which in turn led to an overestimation
of the overall excess mean-square error (EMSE) during the switching
from the fast to the slow filter.

In this paper, we extend the transient analysis of [9], improving
the model for the variance of the auxiliary variablg:) using second-
order Taylor approximation and including the coefficient transfer pro-
cedure. We also obtain a theoretical expression for selecting parame-
ter « of the weight transfer procedure. The theoretical models allow
a better understanding of the influence of design parameters on per-
formance, providing the designer with tools to correctly apply the al-
gorithms. Although our analysis is valid for combinations of different
Fig. 1. Convex combination of two transversal adaptive filters. Kinds of adaptive filters, we particularize the results for the combi-
nation of two LMS filters with different step sizes. Furthermore, we
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2. TRANSIENT ANALYSIS We can now study the convergence ratevof as a function
In the analysis, a linear regression model for the desired signal is%s®-  For th;s purpose, we first determine a recursion for the
sumed, i.e.d(n) = u”(n)we + v(n), wo being the unknown c)Io_d_wu‘:,onal o'fQ Szg(n)Q,_whereTQ is an ortThogonaI transforma-
timum coefficient vector (Wiener solution) andn) an i.i.d. (inde- Uon that diagonalize®, ie, Q'Q = I, Q RQ = A, where
pendent and identically distributed) and zero-mean random proddss diag(A1, ..., Axr) and él’)‘Q -~ Au are the eigenvalues of
with variances2. In order to make the analysis more tractable, the Definingsi;(n) = diag(Q"Si;(n)Q), b= 1,2 (the diagonal
sequencequ(n)} and {v(n)} are assumed stationary and we wilements oQ”S;;(n)Q) and€ = [ .. A |", (10) reduces to
use the common assumption thgin) is independent ofa(n) (not _ 2 2 2 2
only uncorrelated) [10, Sec. 6.2.1]. Defining the Weight-érror \xsctosﬂ(n)ia Azszz(n-1)=2a(l-a)uzAsiz(n=1)t+e 00, (11)
wi(n) = wo —w;(n) and thea priori errorse, ;(n) = u” (n)W;(n— whereA, = [1 — 2u2 A + 113 (2A2 + aT)]_ Making o — 1 and
1), we find that e(n) = eas(n) + v(n) changing the indeg by 1 in (11), we can obtain a similar expression
i — €a,i v 5 i

and similarly for the overall erfor, i.ec(n) = ea(n) + v(n). An 07 S11(1). 1€, s11(n) = Assi(n—1) + j2028 (12)
important consequence of this model is thét) will be independent hen th ’ 11f _ff' 1o /:]1 UI .f I losel
of all wi(j), Wi(7), andea(k), i = 1,2, j < k. for any particular When the transfer of coefficients occuve; should followw closely.
time instanti [10, Lemma 6 2.1] The slowest mode in (12) has a convergence rateaf. (A1), where

! e Amax(A) is the largest eigenvalue of matrik. We choosex so that

It is common in the literature to evaluate the EMSE(ggn) 2 ; ;
E{ea.i(n)ea;(n)} ~ Tr(RS,(n— 1)), whereE{-} represents ex- the slowest mode in (11) converges at least as fast as that, i.e.,

pectationR £ E{u(n)u” (n)}, and N o< \/)\m.ax(A1)//\max(A2). (13)
For sufficiently small step-sizes; andus, (13) reduces to

Sij(n) £ E{w;(n)W; (n)}, i,7=1,2 (5)
is the covariancei(= j) or the cross-variance & j) matrix of the < 1 — 21 Amin (R) (14)
weight-error vectors. This approach is based on the independence as “ V1= 2u2min(R)’
sumption between the regressor veai¢n) and weight-error vectors e now derive a model for the mixing parametein). Noting
w;i(n—1), which is a widely accepted assumption [10, 11]. thatys (n) — y2(n) = ea2(n) — eq.1(n), We can rewrite
In the sequel, we obtain recursions 8 (n) andSz2(n), assum- e(n) = A(n)ea1(n) + [1 — A(n)]ea2(n) + v(n). (15)

ing the coefficient transfer procedure. We should notice that the
without coefficient transfer can be obtained making— 1. Subtract-
ing both sides of (2) (withi=1) and (3) fromw,,, we obtain

Cflg%implify notation, the time index is omitted in some variables. The
recursion for(n) then reads (with = A(a(n—1))=1/[14+e~*("1)])

wi(n) =wi(n—1) — prer(n)u(n) and (6) a(n) = a(n—1)+pa [f/\ei,l +(1- )\)eig
w2 (n) = a[wa(n—1)—pzez(n)u(n)]+(1-a)wi(n—1). (7) + 2\ — Dea1eaz + (a2 — €a, )] A1 = A).  (16)
posg%fog[)aglng tflfg:es;ggcft%?igrsg)c;nvé%twlélitclizl:. (S)SI% EZ)e gfet‘gf;g\r/ﬁecan rewrite this expression in a more convenient form defining
algebra, we get e12ely, ex2el,, (17a)
E{w1(n)w; (n)} = aBE{W1(n—1)W; (n—1)} €3 2 €q,1€a,2, £1 2 (€a2 — €a,1)v(n), (17b)
—ap2B{W1(n—1)W; (n—1)u(n)u’ (n)} fi(a) 2 =221 -\, fala) 2 A1 — N2, (17c)
+(1-a)E{wi(n—-1)wi (n—1)} Fala) AN — 1)1 = N),  fala) 2X1 - N), (17d)
—opnB{u(n)u’ (n)#1(n—1)W5 (n—1)} <o that ,
+appeE{u(n)u’ (n)wi(n—1)w3 (n—1)u(n)u” (n)} a(n) =a(n—1) + pa Z Sr€k- (18)
+apipzoyE{u(n)u” (n)} We will now find an approximate recuﬁsjtl)n for the expected value of
—(1—a)mE{u(n)u” (n)wi(n—1)w] (n—1)}. (8) a(n). Since the distribution ofi(n) is unknown, we cannot com-

ing ind d b pe d . pute exact expected values involving the nonlinear functions (17c) and
Assuming independence _etwee(n) an V_Vi(”_ 1) and Gaussian (17d). We therefore expand these nonlinear functions as a Taylor se-
input regressors, the following approximation holds [10-12] ries, around the expected valag:—1) 2 E{a(n—1)}, i.e.
E T(n)S T ~2RS12R + Tr (RS12) R. d
{ulmju(m)Sizu(mu” ()} ~2RS, R + T (RS1,) fi(a) ~ fu(@) + %(a)(a —a), k=1--.4 (19
Although these first-order approximations suffice for modeling the
transient ofa(n), for the mean-square analysis second-order expan-

Using these assumptions, (8) can be simplified to
Slz(’l’L) ~ aSlg(n—l)—a;mRSu(n—l)—oz,ugslg(n—l)R

+ appe [QRslz(nfl)R+Tr(RSm(nfl))R#»o'gR] sions produce more accurate results. Therefore, Table 1 includes
1 B B B both first- and second-order derivatives faf (denoted ag;. andhy,
(1=a)uRS1(n—1) + (1-)S1(n—1). ©) respectively), fork = 1,--- ,4. We noticed in simulations that this
Analogously, multiplyingw2 (n) by its transpose in (3) and usingnixed model is more accurate than a complete second-order model.
the same previous assumptions, we obtain Denotingfr = fx[a(n — 1)] andgr = gx[a(n — 1)], the approx-

Sua(n) = a2Sas(n—1)— a2z [Soa(n— 1R+ RS2z (n—1)] imate recursion fot.(n) becomes4

+ o’ [2RSa22(n—1)R + Tr(RSa2(n—1))R+0.R] a(n) ~ a(n—1)+pa »_(fi + (a — a)gr)ex. (20)

—a(l—a)ug [RS12(n—1)+812(n—1)R} k=1

We use this recursion in the remainder of this section to study the tran-
+2a(1-a)Siz(n—1). (10) sient of the convex combination algorithm.



Now, note thatE{es} = E{escr} = 0 for k = 1,2,3. To com-

Table 1. First and second order derivativesfaf k =1,--- ;4. pjete the computation of (27), third- and fourth-order powers of
k| gr 2 dfy/da hi £ d? fr,/da® ek 1(n)eh o(n), with k + ¢ = 3 or 4 [represented b {eie,} in (27)]
1 3 B 5 7 3 2 should be evaluated. For this purpose, we need another assumption,
1] 3V 45A7—2A 120" 27" +19A°—4A also common in the literature, and which gives good results mainly for
2 | =3ATETAS BTN | 1205 =330 31A3 —11AZ 4\ long adaptive filters:
3| AT —1203F7AT =X | —24X° 4600 —50A3+15)0% -\ A2. The a-priori errorse,.;(n) ande, »(n) are jointly Gaussian,
E{el,(n)} =3¢i(n), i=1,2 28
2.1. Convergence in the mean k{ il Z)} Gilm) . (28)
We now take expected values on (20), using (4) and assuming that Elear(n)ear(n)}=0, i k+0=3, (29)
Al. The auxiliary variable:(n) varies slowly enough for the condi- 3¢11(n)Ciz2(n), if k=3,0=1,
tional expected val;JE{ef;fn(n)erja(n)|a(n)} ‘to'be approxi- E{efj,lefw} ={ 3¢12(n)Caz(n), if k=1,¢=3, (30)
mately equal t&{e, ;(n)eq’;(n)}a(n), wherei,j = 1,2 and 22 (n)+Ci1(n)Caz(n), if k=£=2.

Im=0...4,m+ ¢ <A4.
Simulations show thai(n) converges slowly compared to variationsinally, subtracting the square of (21) from (27) and using A2, the
in the inputu(n) and thus to variations on tteepriori errors, even for recursion foro2 (n) becomes
the large values of step size, usually employed. A consequence of

2

AlisthatE{(a—a)grer}~0,k=1,--- 4,80 oZ(n) = oZ(n—1) [1+Z(gk+0.5a(n—1)ﬁk)<kk

a(n)~ a(n—1) + pa[[i¢i1(n) + faCoz(n) + faCiz(n)].  (21) k=1
Asin (1), we restric@(n + 1) to the interval—a, a4 ]. + (g3+0.5a(n—1)7L3 Cm] +pu2 [2 (ﬁgf1+g<§2)

To complete the first-order analysis, we should notice that the
mean of the overakl priori error is zero. Definingh = A(a(n—1)), +f5 (Cha+Cralon) + fion(Cr1 —2C12+C22)
N = 22[g(n—1)], and applying an approximation similar to that used oo
in (203 to the overall priori errore,(n) = Aea,1(n) — €q,2(n)] — +H4([1f2Co+ N1 fsCuGiat fo fsCaCra) |- (31)

Ca2(n), we Ot,)tam o, Sincea(n) € [~ay,at] ando?(n) = E{a*(n)} — a*(n), we trun-
€a(n) = [/\ +(a—a)A ] [a1(n) —eaz2(n)] +eaa(n), (22) cate ateach iteration the variangi(n) to the interval0, a% —a?(n)].
so, using model (4) and Assumption A1, we h#fe,(n)} ~ 0. When compared to the recursion faf(n) derived in [9, Eq.(17)],
(31) gives more accurate results, as will be shown in Sec. 3.
2.2. Mean-square analysis
Using (1) and (22) we can obtain a model for the EMSE of the combiz - Transient model considering the transfer of coefficients

nation. Squaring (22), taking the expected value, and using mOdeE(é‘Banding the mixing parameté(n) as a first-order Taylor series
and Assumption Al, we obtain

2 U o arounda(n—1) yields the approximation? (n) ~ [\'(n)] *02(n—1)
E{ea(n)} = [N +05(n—1)A"][G1(n) = 2¢i2(n) +C22(n)] for its variance. When the transfer of coefficients occiits) > 4 ~
+ 2 [G2(n) — C2(n)] + Ca2(n). (23) 1 and its derivative\'(n) is small. Hence, the varianeg (n) will be

_ ] , ) ) ~alsosmall. Thus, the transient model for the coefficient transfeeproc
We now find a recursion fos; (n) = E{a”(n)} — a"(n). Squaring dure is easily obtained if instead dfn) > 3, we use the approximate
(18), we arrive at conditionA(n) > 4 to switch from the model witix = 1 to the model

) ) e ! with o # 1.
a”(n)=a"(n—1)+p, ZZ fkfgsksz—l—Z,uaa(n—l)Z frer. (24)
k=1¢=1 k=1 3. SIMULATION RESULTS
Using first-order Taylor series as in (19), the functifinf, can be |n this section, we carry out simulation work to validate the accurate-
approximated around(n.—1) by ness of the new second-order model for the transient of the convex
fefe = fufet (Grfet frge) (a—a). (25) combination, both for the cases with and without transfer of coeffi-
To obtain a more accurate model for the variance (of) than that of CI€Nts. A vectorw, of length M = 7 is generated randomly before
[9], we approximate the functiom(n—1) f, by a second-order TaonreaCh series of experiments, and normalized to have unitary norm. The
series around(n—1), i.e. noisewv(n) is i.i.d. Gaussian with variance? = 10~2, and regres-
= S _ - _ sorsu(n) are generated from a stationary sequefieér)} passing
afs ®afs+ (fi +ag)(a—a) +0.5(2g, + ahy)(a—a)*, (26) through a tap-delay line, where
whereh;. are the second-order derivatives faf shown in Table 1 for _ 3
k=1, ---,4,and calculated a = \(a(n—1)). u(n +1) = dyu(n) + V1 = Aie(n),
Thus, using (25), (26), and Al, taking expectations on both siddserec(n) is a white Gaussian noise with variance 1. All simulated
of (24), noting thaE{a—a} = 0 andE{(a—a)*} = o2, we obtain  curves have been obtained by averaging 1000 independent runs.
4 4 Fig. 2 compares the transient analysis from [9] and the extended

E{a*(n)} = B{a*(n—1)} + oy Y frfeB{eres} second-order model proposed in this paper when no weight transfer
k=1 (=1 is applied. We illustrate both a case with white input (with settings
4 Auw = 0, p1 = 0.05, u2 = 0.005 andy,, = 100), and another one with

+ 2;@2 [a—1) fi+ (gr + 0.5ahy) o2 (n—1)] E{ex}. (27) colored regressors\( = 0.7, 1 = 0.1, piz = 0.01 andpa = 100).
k=1 As we can see, the new model provides a more accurate approximation
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