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ABSTRACT

This paper proposes an improved model for the transient of convex
combinations of adaptive filters. A previous model, based on a first-
order Taylor series approximation of the nonlinear functions that ap-
pear in convex combinations, tended to overestimate the variance of
the auxiliary variable used to estimate the mixing parameter. In this
paper, we apply a second-order Taylor approximation that improves
these estimates, and obtains better agreement with simulations. In ad-
dition, we also extend the model to include a simple mechanism for
the transfer of coefficients between the constituent filters, a procedure
that greatly improves the convergence of the overall filter, and provide
an expression to select the free parameter used in such a scheme.

Index Terms— Adaptive filters, convex combination, transient
analysis, LMS algorithm.

1. INTRODUCTION

Over the last years, combinations of adaptive filters have been a topic
of intense research in the signal processing community (see, e.g., [1–
9]). The first combined scheme that attracted attention was the convex
combination of adaptive filters due to its relative simplicity and the
proof that the combination is universal, i.e., the combined estimate is
at least as good as the best of the component filters in steady-state, for
stationary inputs [3]. In such scheme, depicted in Fig. 1, the output
of the overall filter is given byy(n) = λ(n)y1(n)+[1−λ(n)]y2(n),
whereλ(n) ∈ [0, 1] is the mixing parameter,yi(n), i = 1, 2, are the
outputs of the transversal filters, i.e.,yi(n) = uT (n)wi(n−1), u(n)
andwi(n−1) ∈ R

M being, respectively, the common regressor vector,
and the weight vectors of each component filter.
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Fig. 1. Convex combination of two transversal adaptive filters.
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In order to restrict the mixing parameter to the interval[0, 1]
and to reduce gradient noise whenλ ≈ 0 or λ ≈ 1, a nonlin-
ear transformation and an auxiliary variablea(n) are used, i.e.,
λ(n) = 1/[1+e−a(n−1)], where a(n) is updated to minimize the
square of the overall errore(n) = d(n)− y(n) [3]:

a(n) = a(n−1)+µa

ˆ
y1(n)−y2(n)

˜
e(n)λ(n)

ˆ
1−λ(n)

˜
. (1)

In practice,a(n) is restricted (by saturation of the above recursion) to
an interval[−a+, a+], since the factorλ(n)

ˆ
1 − λ(n)

˜
in (1) would

virtually stop adaptation ifa(n) were allowed to grow too much.
We assume that the two component filters are adapted to minimize

their own quadratic errors using the least mean square (LMS) algo-
rithm with different step sizes (µ1 > µ2), i.e.,

wi(n) = wi(n−1) + µiei(n)u(n), i = 1, 2. (2)
whereei(n) = d(n)− yi(n).

The performance of the convex combination of two LMS algo-
rithms can be improved if interaction between the component filters is
allowed, as proposed in [2]. The convergence of the slow filter can be
accelerated when an abrupt change appears by transferring a partof
the filterw1 to w2. Thus, the modified adaption rule forw2 becomes

w2(n)=α [w2(n−1) + µ2e2(n)u(n)]+(1−α)w1(n−1), (3)
whereα is a parameter close to 1. As observed in [2], an inconvenience
of the new learning rule is that it increases the final misadjustment of
the slow filter. To avoid this, the coefficient transfer must only be
applied whenλ(n) ≥ β, whereβ is a threshold close to the maximum
value that can be reached byλ(n). Common choices in the literature
area+ = 4 andβ = 0.98.

By relying on a Taylor series approximation of the nonlinearities,
a theoretical model for the transient behavior of convex combinations
was proposed recently in [9]. Although the problem is highly nonlinear
and quite challenging, good agreement between model and theory was
obtained, except for an overestimation of the variance of the auxiliary
variablea(n) in some instants, which in turn led to an overestimation
of the overall excess mean-square error (EMSE) during the switching
from the fast to the slow filter.

In this paper, we extend the transient analysis of [9], improving
the model for the variance of the auxiliary variablea(n) using second-
order Taylor approximation and including the coefficient transfer pro-
cedure. We also obtain a theoretical expression for selecting parame-
ter α of the weight transfer procedure. The theoretical models allow
a better understanding of the influence of design parameters on per-
formance, providing the designer with tools to correctly apply the al-
gorithms. Although our analysis is valid for combinations of different
kinds of adaptive filters, we particularize the results for the combi-
nation of two LMS filters with different step sizes. Furthermore, we
assume that the auxiliary variablea(n) is updated via (1). However,
using the results of [9], our analysis can be easily extended to the nor-
malized mixing parameter estimation algorithm of [5]. In order to
simplify the arguments, we assume that all quantities are real.



2. TRANSIENT ANALYSIS

In the analysis, a linear regression model for the desired signal is as-
sumed, i.e.,d(n) = uT (n)wo + v(n), wo being the unknown op-
timum coefficient vector (Wiener solution) andv(n) an i.i.d. (inde-
pendent and identically distributed) and zero-mean random process
with varianceσ2

v. In order to make the analysis more tractable, the
sequences{u(n)} and {v(n)} are assumed stationary and we will
use the common assumption thatv(n) is independent ofu(n) (not
only uncorrelated) [10, Sec. 6.2.1]. Defining the weight-error vectors
ewi(n) = wo−wi(n) and thea priori errorsea,i(n) = uT (n) ewi(n−
1), we find that

ei(n) = ea,i(n) + v(n), (4)
and similarly for the overall error, i.e.,e(n) = ea(n) + v(n). An
important consequence of this model is thatv(k) will be independent
of all wi(j), ewi(j), andea,i(k), i = 1, 2, j < k, for any particular
time instantk [10, Lemma 6.2.1].

It is common in the literature to evaluate the EMSE asζij(n) ,

E{ea,i(n)ea,j(n)} ≈ Tr(RSij(n−1)), whereE{·} represents ex-
pectation,R , E{u(n)uT (n)}, and

Sij(n) , E{ewi(n) ewT

j (n)}, i, j = 1, 2 (5)
is the covariance (i = j) or the cross-variance (i 6= j) matrix of the
weight-error vectors. This approach is based on the independence as-
sumption between the regressor vectoru(n) and weight-error vectors
ewi(n−1), which is a widely accepted assumption [10,11].

In the sequel, we obtain recursions forS12(n) andS22(n), assum-
ing the coefficient transfer procedure. We should notice that the case
without coefficient transfer can be obtained makingα← 1. Subtract-
ing both sides of (2) (withi=1) and (3) fromwo, we obtain

ew1(n) = ew1(n−1)− µ1e1(n)u(n) and (6)

ew2(n) = α [ ew2(n−1)−µ2e2(n)u(n)]+(1−α) ew1(n−1). (7)

To obtain a recursion forS12(n), we multiply (6) by the trans-
pose of (7) and take expectations on both sides. Using (4), after some
algebra, we get

E{ew1(n) ewT

2 (n)} ≈ αE{ew1(n−1) ewT

2 (n−1)}

−αµ2E{ew1(n−1) ewT

2 (n−1)u(n)uT (n)}

+(1−α)E{ew1(n−1) ewT

1 (n−1)}

−αµ1E{u(n)uT (n) ew1(n−1) ewT

2 (n−1)}

+αµ1µ2E{u(n)uT (n) ew1(n−1) ewT

2 (n−1)u(n)uT (n)}

+αµ1µ2σ
2
vE{u(n)uT (n)}

−(1−α)µ1E{u(n)uT (n) ew1(n−1) ewT

1 (n−1)}. (8)

Assuming independence betweenu(n) and ewi(n−1) and Gaussian
input regressors, the following approximation holds [10–12]

E
˘
u(n)uT (n)S12u(n)uT (n)

¯
≈2RS12R + Tr (RS12)R.

Using these assumptions, (8) can be simplified to

S12(n) ≈ αS12(n−1)−αµ1RS12(n−1)−αµ2S12(n−1)R

+ αµ1µ2

ˆ
2RS12(n−1)R + Tr(RS12(n−1))R+σ2

vR
˜

− (1−α)µ1RS11(n−1) + (1−α)S1(n−1). (9)

Analogously, multiplyingw2(n) by its transpose in (3) and using
the same previous assumptions, we obtain

S22(n) = α2
S22(n−1)−α2µ2 [S22(n−1)R+RS22(n−1)]

+ α2µ2
2

ˆ
2RS22(n−1)R + Tr(RS22(n−1))R+σ2

vR
˜

− α(1−α)µ2 [RS12(n−1) + S12(n−1)R]

+ 2α(1−α)S12(n−1). (10)

We can now study the convergence rate ofw2 as a function
of α. For this purpose, we first determine a recursion for the
diagonal of QT S22(n)Q, where Q is an orthogonal transforma-
tion that diagonalizesR, i.e., QT Q = I, QT RQ = Λ, where
Λ = diag(λ1, . . . , λM ) and λ1, λ2 · · ·λM are the eigenvalues of
R. Definingsij(n) = diag(QT Sij(n)Q), i, j = 1, 2 (the diagonal
elements ofQT Sij(n)Q) andℓ = [ λ1 ... λM ]T , (10) reduces to

s22(n)=α2
A2s22(n−1)−2α(1−α)µ2Λs12(n−1)+α2µ2

2σ
2
vℓ, (11)

whereA2 =
ˆ
I− 2µ2Λ + µ2

2

`
2Λ2 + ℓℓ

T
´˜

. Making α → 1 and
changing the index2 by 1 in (11), we can obtain a similar expression
for s11(n), i.e.,

s11(n) = A1s11(n−1) + µ2
1σ

2
vℓ. (12)

When the transfer of coefficients occurs,w2 should followw1 closely.
The slowest mode in (12) has a convergence rate ofλmax(A1), where
λmax(A) is the largest eigenvalue of matrixA. We chooseα so that
the slowest mode in (11) converges at least as fast as that, i.e.,

α ≤
p

λmax(A1)/λmax(A2). (13)
For sufficiently small step-sizesµ1 andµ2, (13) reduces to

α ≤

s
1− 2µ1λmin(R)

1− 2µ2λmin(R)
. (14)

We now derive a model for the mixing parameterλ(n). Noting
thaty1(n)− y2(n) = ea,2(n)− ea,1(n), we can rewrite

e(n) = λ(n)ea,1(n) + [1− λ(n)]ea,2(n) + v(n). (15)
To simplify notation, the time index is omitted in some variables. The
recursion fora(n) then reads (withλ = λ(a(n−1))=1/[1+e−a(n−1)

˜
)

a(n) = a(n−1)+µa

ˆ
−λe2

a,1 + (1− λ)e2
a,2

+ (2λ− 1)ea,1ea,2 + (ea,2 − ea,1)v
˜
λ(1− λ). (16)

We can rewrite this expression in a more convenient form defining

ε1 , e2
a,1, ε2 , e2

a,2, (17a)

ε3 , ea,1ea,2, ε4 , (ea,2 − ea,1)v(n), (17b)

f1(a) , − λ2(1− λ), f2(a) , λ(1− λ)2, (17c)

f3(a) , λ(2λ− 1)(1− λ), f4(a) , λ(1− λ), (17d)

so that
a(n) = a(n−1) + µa

4X

k=1

fkεk. (18)

We will now find an approximate recursion for the expected value of
a(n). Since the distribution ofa(n) is unknown, we cannot com-
pute exact expected values involving the nonlinear functions (17c) and
(17d). We therefore expand these nonlinear functions as a Taylor se-
ries, around the expected valueā(n−1) , E{a(n−1)}, i.e.,

fk(a) ≈ fk(ā) +
dfk

da
(ā)

`
a− ā

´
, k=1, · · · , 4 (19)

Although these first-order approximations suffice for modeling the
transient ofā(n), for the mean-square analysis second-order expan-
sions produce more accurate results. Therefore, Table 1 includes
both first- and second-order derivatives offk (denoted asgk andhk,
respectively), fork = 1, · · · , 4. We noticed in simulations that this
mixed model is more accurate than a complete second-order model.

Denotingf̄k = fk[ā(n− 1)] andḡk = gk[ā(n− 1)], the approx-
imate recursion fora(n) becomes

a(n) ≈ a(n−1)+µa

4X

k=1

`
f̄k + (a− ā)ḡk

´
εk. (20)

We use this recursion in the remainder of this section to study the tran-
sient of the convex combination algorithm.



Table 1. First and second order derivatives offk, k = 1, · · · , 4.

k gk , dfk/da hk , d2fk/da2

1 −3λ4+5λ3−2λ2 12λ5−27λ4+19λ3−4λ2

2 −3λ4+7λ3−5λ2+λ 12λ5−33λ4+31λ3−11λ2+λ

3 6λ4−12λ3+7λ2−λ −24λ5+60λ4−50λ3+15λ2−λ

4 2λ3−3λ2+λ −6λ4+12λ3−7λ2+λ

2.1. Convergence in the mean

We now take expected values on (20), using (4) and assuming that
A1. The auxiliary variablea(n) varies slowly enough for the condi-

tional expected valueE{eℓ
a,i(n)em

a,ja(n)|a(n)} to be approxi-
mately equal toE{eℓ

a,i(n)em
a,j(n)}a(n), wherei, j = 1, 2 and

ℓ, m = 0 . . . 4, m + ℓ ≤ 4.
Simulations show thata(n) converges slowly compared to variations
in the inputu(n) and thus to variations on thea priori errors, even for
the large values of step sizeµa usually employed. A consequence of
A1 is thatE{(a−ā)ḡkεk}≈0, k = 1, · · · , 4, so

ā(n)≈ ā(n−1) + µa

ˆ
f̄1ζ11(n) + f̄2ζ22(n) + f̄3ζ12(n)

˜
. (21)

As in (1), we restrict̄a(n + 1) to the interval[−a+, a+].
To complete the first-order analysis, we should notice that the

mean of the overalla priori error is zero. Defininḡλ = λ(ā(n−1)),
λ̄′ = dλ

da
[ā(n−1)], and applying an approximation similar to that used

in (20) to the overalla priori errorea(n) = λ[ea,1(n) − ea,2(n)] −
ea,2(n), we obtain

ea(n) ≈
h
λ̄ + (a− ā)λ̄′

iˆ
ea,1(n)− ea,2(n)

˜
+ ea,2(n), (22)

so, using model (4) and Assumption A1, we haveE{ea(n)} ≈ 0.

2.2. Mean-square analysis
Using (1) and (22) we can obtain a model for the EMSE of the combi-
nation. Squaring (22), taking the expected value, and using model (4)
and Assumption A1, we obtain

E{e2
a(n)} ≈

ˆ
λ̄2+σ2

a(n−1)λ̄′2˜̂
ζ11(n)−2ζ12(n)+ζ22(n)

˜

+ 2λ̄
ˆ
ζ12(n)− ζ22(n)

˜
+ ζ22(n). (23)

We now find a recursion forσ2
a(n) = E{a2(n)} − ā2(n). Squaring

(18), we arrive at

a2(n)=a2(n−1)+µ2
a

4X

k=1

4X

ℓ=1

fkfℓεkεℓ+2µaa(n−1)
4X

k=1

fkεk. (24)

Using first-order Taylor series as in (19), the functionfkfℓ can be
approximated around̄a(n−1) by

fkfℓ ≈ f̄kf̄ℓ+
`
ḡkf̄ℓ+f̄kḡℓ

´
(a−ā). (25)

To obtain a more accurate model for the variance ofa(n) than that of
[9], we approximate the functiona(n−1)fk by a second-order Taylor
series around̄a(n−1), i.e.,

afk ≈ āf̄k + (f̄k + āḡk)(a−ā) + 0.5(2ḡk + āh̄k)(a−ā)2, (26)

whereh̄k are the second-order derivatives offk shown in Table 1 for
k = 1, · · · , 4, and calculated at̄λ = λ(ā(n−1)).

Thus, using (25), (26), and A1, taking expectations on both sides
of (24), noting thatE{a−ā} = 0 andE{(a−ā)2} = σ2

a, we obtain

E{a2(n)} ≈ E{a2(n−1)}+ µ2
a

4X

k=1

4X

ℓ=1

f̄kf̄ℓE{εkεℓ}

+ 2µa

4X

k=1

ˆ
ā(n−1)f̄k+

`
ḡk + 0.5āh̄k

´
σ2

a(n−1)
˜
E{εk}. (27)

Now, note thatE{ε4} = E{ε4εk} = 0 for k = 1, 2, 3. To com-
plete the computation of (27), third- and fourth-order powers of
ek

a,1(n)eℓ
a,2(n), with k + ℓ = 3 or 4 [represented byE{εkεℓ} in (27)]

should be evaluated. For this purpose, we need another assumption,
also common in the literature, and which gives good results mainly for
long adaptive filters:

A2. The a-priori errorsea,1(n) andea,2(n) are jointly Gaussian,
which implies [12]

E{e4
a,i(n)} = 3ζ2

ii(n), i = 1, 2 (28)

E{ek
a,1(n)eℓ

a,2(n)}=0, if k + ℓ = 3, (29)

E{ek
a,1e

ℓ
a,2}=

8
><
>:

3ζ11(n)ζ12(n), if k=3, ℓ=1,

3ζ12(n)ζ22(n), if k=1, ℓ=3,

2ζ2
12(n)+ζ11(n)ζ22(n), if k=ℓ=2.

(30)

Finally, subtracting the square of (21) from (27) and using A2, the
recursion forσ2

a(n) becomes

σ2
a(n) = σ2

a(n−1)

»
1+

2X

k=1

“
ḡk+0.5ā(n−1)h̄k

”
ζkk

+
“
ḡ3+0.5ā(n−1)h̄3

”
ζ12

–
+µ2

a

ˆ
2

`
f̄2
1 ζ2

11+f̄2
2 ζ2

22

´

+f̄2
3

`
ζ2
12+ζ11ζ22

´
+f̄2

4 σ2
v(ζ11−2ζ12+ζ22)

+4
`
f̄1f̄2ζ

2
12+f̄1f̄3ζ11ζ12+f2f3ζ22ζ12

´˜
. (31)

Sincea(n) ∈ [−a+, a+] andσ2
a(n) = E{a2(n)} − ā2(n), we trun-

cate at each iteration the varianceσ2
a(n) to the interval[0, a2

+−ā2(n)].
When compared to the recursion forσ2

a(n) derived in [9, Eq.(17)],
(31) gives more accurate results, as will be shown in Sec. 3.

2.3. Transient model considering the transfer of coefficients
Expanding the mixing parameterλ(n) as a first-order Taylor series
aroundā(n−1) yields the approximationσ2

λ(n)≈
ˆ
λ̄′(n)

˜2
σ2

a(n−1)
for its variance. When the transfer of coefficients occurs,λ(n) ≥ β ≈
1 and its derivativēλ′(n) is small. Hence, the varianceσ2

λ(n) will be
also small. Thus, the transient model for the coefficient transfer proce-
dure is easily obtained if instead ofλ(n) ≥ β, we use the approximate
conditionλ̄(n) ≥ β to switch from the model withα = 1 to the model
with α 6= 1.

3. SIMULATION RESULTS

In this section, we carry out simulation work to validate the accurate-
ness of the new second-order model for the transient of the convex
combination, both for the cases with and without transfer of coeffi-
cients. A vectorwo of lengthM = 7 is generated randomly before
each series of experiments, and normalized to have unitary norm. The
noisev(n) is i.i.d. Gaussian with varianceσ2

v = 10−2, and regres-
sorsu(n) are generated from a stationary sequence{u(n)} passing
through a tap-delay line, where

u(n + 1) = λuu(n) +
p

1− λ2
uǫ(n),

whereǫ(n) is a white Gaussian noise with variance 1. All simulated
curves have been obtained by averaging 1000 independent runs.

Fig. 2 compares the transient analysis from [9] and the extended
second-order model proposed in this paper when no weight transfer
is applied. We illustrate both a case with white input (with settings
λu = 0, µ1 = 0.05, µ2 = 0.005 andµa = 100), and another one with
colored regressors (λu = 0.7, µ1 = 0.1, µ2 = 0.01 andµa = 100).
As we can see, the new model provides a more accurate approximation
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Fig. 2. Comparison of the transient model from [9] and the extended
model proposed in this paper. The two first rows illustrate the estima-
tions ofE{a2(n)}, σ2

a(n), while the two bottom rows depict EMSE
evolution and a detail of the switching between components.

of E{a2(n)}, and tends to correct the overstimation of the variance
observed for the model from [9], both for white and colored inputs.
This more accurate estimation of the variance results also in a better
prediction of the EMSE of the combination, what is specially clear for
white input, where the old model predicted a bump during the transient
which does not appear in the simulations. We should also mention that
qualitatively similar results are also observed for other values ofµa.

Fig. 3 represents the performance of the combination when the
transfer of coefficients mechanism is applied. We consider the previ-
ous scenario with white input, and use different values of parameter
α. The upper pannel shows a good agreement between the theoretical
and simulated curves, and illustrate the faster convergence provided by
the weight transfer mechanism. The bottom pannel displays a detail of
the EMSE evolution for the overall filter during the switching between
components, for different values ofα. In the light of the results, we
can conclude that (14) allows an appropriate selection of the constant,
in terms of the speed of convergence of the overall filter.

4. CONCLUSIONS

This work presented a new analytical model for the transient of the
convex combination of two adaptive filters. Including the coefficient
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Fig. 3. Theoretical and simulated EMSEs for the combination of filters
with weight transfer.

transfer procedure, recursions were derived for the mean and variance
of the auxiliary variablea(n), as well as for the EMSE of the combined
filter. In special, the model for the variance ofa(n), which is based on
a second-order Taylor series, is more accurate than our previous model
as shown by simulations. The new model avoids an overestimation of
the variance during the transition from the fast to the slow filters, what
results in a more accurate EMSE prediction.

5. REFERENCES
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