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ABSTRACT
S c Table 1. Parameters of the considered algorithms.
Combinations of adaptive filters have attracted attention as a simple Alg. | ps M;'(n)
solution to improve filter performance, including tracking properties. ‘
In this paper, we consider combinations of LMS and RLS filters, and LMS | pi I
study their performance for tracking time-varying solutions. We show ~ I -
that a combination of two filters from the same family (i.e., two LMS RLS | 1 | Ri(n) =Y A" 'u(®)u” (1)
or two RLS filters) cannot improve the performance over that of a sin- =1

gle filter of the same type with optimal selection of the step size (or

forgetting factor). However, combining LMS and RLS filters it is po?’ﬁay actually obtain a smaller EMSE than its component filters even
sible to simultaneously outperform the optimum LMS and RLS fWhen the optimum step size is used for LMS and the optimum forget-

ters. In other words, combination schemes can achieve smaller er{fﬁésfactor is used for RLS. In other words, the combination of filters

Fhan F’P“”?a”y adjusted individual fllters.‘ Experlmental workina pIag% different families may obtain a performance that would not be pos-
identification setup corroborates the validity of our results.

sible with a combination of two filters of the same family, or with an
Index Terms— Adaptive filters, convex combination, steady-statdgorithm that chooses the optimum step size for LMS (or the optimum
analysis, tracking performance, RLS algorithm, LMS algorithm.  forgetting factor for RLS). In this paper we illustrate these facts both
through theoretical analysis and simulations.
The paper is organized as follows. In the next section, we present
the data model and introduce the notation that will be used throughout

Combinations of adaptive filters have gained considerable attenhhe paper, reviewing also some results for the tracking performance

. L ; . of LMS and RLS filters. Then, in Sec. 3 we recall some theoretical
lately, since they decrease the sensitivity of the filter to choices of P& its regarding the performance of convex and affine combination
rameters such as the step size, forgetting factor or filter length (sée SO . . )

e.g., [1-5]). Using a combination of two filters with different sted ddaptive filters in nonstationary environments. We also prove that
9 . 9 ggm_binations of filters of the same family cannot improve the perfor-

sizes, for example, one can obtain fast convergence and low steg: nce over that of a single filter with optimum selection of the param-

state mlsadjustm_ent, oruse the combination to find th_e optimum Strapfeéors (i.e., step size or forgetting factor), and that this limitation can be
size in a nonstationary environment [1]. In general, this combination ' ) e .

. ) . overcome when filters of different families are combined. Several ex
approach is more robust than variable step-size schemes [5].

. . . . T mples that validate the analysis are provided in Sec. 4. Finally, Sec. 5
In tracking of time-varying scenarios, combination schemes Og%sents the main conclusions of our work
improved tracking capabilities with respect to the component filters '

[4]. However, it has been noticed in simulations that the excess mean-
square error (EMSE) obtained by the combination of two filters of the 2. PROBLEM FORMULATION

same family [e.g., two least mean-squares (LMS) filters with different

step sizes, or two recursive least-squares (RLS) filters with differ&htiS paper, we consider combinations of two LMS, two RLS or one

forgetting factors] will never be better than the performance of a Sirg;rki‘tste?wn:sone LMS filters. The update laws for LMS and RLS may be

filter employing the optimum step size (or optimum forgetting fact

for a given nonstationary condition [1, 6]. wi(n) = wi(n — 1) + piM i (n)u(n)e:(n), (1)
More recently, the combination of filters from different families ) ] ) o

(one LMS and one RLS) was proposed as a way to take advantagét€ the index = 1,2 refers to each filter in the combination,

the different tracking properties of LMS and RLS [5]. In fact, despitgi() € R™ is the coefficient vector of each filter at time p;

the fast initial convergence provided by RLS, it was shown in [7] tH&t2 Step-size parametar(n) € R™ is the input regressor vector,

LMS may outperform RLS depending on how the optimum soluti@Rde:i(n) is the estimation error. For RLSJ;(n) € R™ "™ is an

changes with time. Although a theoretical analysis and several siggfmate gf the inverse of the regressor autocovariance méirix

lations were provided in [5], it was not noticed that the combinatiéd«(r)u" (n)}, and can be computed in an efficient way using the

matrix inversion lemma or, if lattice algorithms are used, its explicit

The work of Nascimento and Silva was partly supported by CNEYyaluation may be avoided [8]. Table 1 lists the values of the different
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1. INTRODUCTION




Through these expressions, it was shown in [7] that, despite its

Table 2. Analytical expressions for the steady-state EMSEs of LM, initial convergence, LMS may present better tracking perfor-

and RLS. mance than RLS, depending on the valueQodnd R. In particular,
Alg. ¢ if Q is proportional toR, the optimum steady-state EMSE of LMS

5 . will be smaller than that of RLS. On the contrary@fis proportional

LMS | Hi% Te{R} + p; TH{Q} to R~', RLS will present better performance. Whéhis propor-
2 tional to I (the identity matrix), both algorithms will present similar

5 - behavior [7].

vioyM +v;  Tr{QR} In the next section we introduce combinations of adaptive filters,
2 and prove that the tracking performance of the combination of two

LMS or two RLS filters is lower bounded by the values of Table 3, but

the combination of one RLS with one LMS algorithm may achieve a

Table 3. Optimum tracking parameters.d and o) and steady-statebetter performance.
EMSEs (,) for LMS and RLS.

Alg Mo, Vo

RLS

Co 3. CONVEX COMBINATIONS AND OPTIMAL TRACKING

Tr{Q} 5 One promising way of increasing the performance of adaptive filters is
LMS o2 Tr{R} oy Tr{R} Tr{Q} to run two or more filters in parallel, and combine their outputs con-

structing an overall output given by

RLS \/@ JOIMTH{QR} y(n) =n(n — Dyi(n) +[1 —n(n — 1)]y2(n).

Up to now, good results have been obtained with both a convex com-
bination model, in which the mixing parametgn) is constrained to
remain in the interval0, 1] [1], and an affine combination model, in
which r(n) may be any real number [3]. In the first case, the mixing
patameter is usually updated using an auxiliary variabie), accord-

wherey; (n) = wi(n — 1)Tu(n), i = 1,2 are the filter outputs, and

d(n) is the desired response. As it is well-known, there exists a lin
regression model relating(n) andw(n), such that

ing to
d(n) = ws u(n) +v(n), B)  aln) =a(n = 1)+ fa(n)e(n)Ae(n) n(n — 1) [1 = n(n — 1)),
. . . . . 1
wherev(n) is white and zero-mean measurement noise with variancg(n) = ——
1+ exp[—a(n)]

o2, uncorrelated withe(n), andw, provides the optimum linear least
mean-squares estimate @fn) given u(n) [8]. We assume in thisin which ji,(n) is a (possibly normalized) step siz€n) = d(n) —
paper, as it is common in studies of adaptive filters, that) and 4 (n) is the overall estimation error, amle(n) = e2(n) — e1(n). In
v(n) are stationary zero-mean processes, and moreoverthatis general, to avoid slow adaptation closejte- 1 or, = 0, a(n) is con-

independent ofi(mn) for all m, n. strained (by simple saturation) to the interftaki, ay]. A common
Define also the priori errorse, i (n) = [wo—wi(n—1)]Tu(n). choice fora, is 4.
Under the stated assumptions, the mean-square Bfgi(n)} may For affine combinations, one possible method for updating the
be shown to be [8] mixing parameter is through the recursion
Efel(n)} = Gi(n) + o3, n(n) =n(n —1) + pa(n)e(n)Ae(n).
where(; (n) = E{e2;(n)} is the so-called excess mean-square erfgrboth cases, itis convenient2t0 choose a normalized stegisize)
(EMSE) of each filter. using an estimatg(n) of E{Ae*(n)}, such that
The optimum weight vectaiw, is usually not constant in practice. - 1 1 — A )AE2
A common approach to model its variations is through the brownian p(n) pp(n = 1) +( p)Ae (),
motion model below, which allows a tractable analysis where),, is a forgetting factor, anf.(n) = pa/[0 + p(n)], é being
a small regularization term [6, 9].
wo(n) = wo(n — 1) + g(n), (4) It can be shown that the optimum mixing parameter in steady state

. . . is given by [1, 3, 6]
where{q(n)} is a sequence of i.i.d. vectors with zero mean and auto-

correlation matrixQ = E{q(n)q” (n)}. e = G2 — iz ®)
Using this model and (1)—(3), and assuming sufficiently small step TG 262+ G
size and forgetting factor sufficiently close to 1, it can be shown tvvaHereglz — Timp oo B{ea.1 (n)eas(n)} is the steady-state cross-

the stea_dy-s_tate EMSE [i.&; = lim, o C’ (n)] of LM.S and RLS EMSE between both filters in the combination, given in Table 4 for
are asgiven in Table 2[5,7,8]. For convenience, we will oftenuse e different combination possibilities considered in this paper [5]. For
1 — \i. Sincey; plays in the expressions for RLS a similar role to thgl B N PO _ Paper [o].
. “ R . . _convex combinationg. is given by (5) only if the value falls in the

of u; for LMS, we will also refer ta/; as a “step size”. Differentiating. ! . . .

- . . - interval [0, 1], otherwisen,. = 0 (resp. 1), if (5) is negative (resp.
the expressions in Table 2 with respect to eitperor v;, one can larger than 1)
compute the optimum step sizgs and v, for a given environment gThe EMSE of the combination. usind the optimum is qiven b
(i.e., values o, R and noise variance?). These optimum values, ’ 9 pumuay 1s g y
along with the resulting optimum EMSEs for each filter, are given in C1Co — (s
Table 3[7,8]. G = G -2t (6)



Table 4. Analytical expressions for the steady-state cross-EMSE
the considered combinations.

Combination Ciz2

e Tr{ R}y + Tr{Q}
M1+ pe

ul-LMS and,ug-LMS

1/11/2M012, + Tr{QR}

V1 + V2

A1-RLS and\2-RLS

2
M-RLS andus-LMs | H2viow Tr{Z} + Tr{Q=},

whereX 2 (11 + uR)"'R. Fig. 1. Steady-state EMSE of a combination of two LMS filters for
varyinga andpusz, andu, = 0.3 (left) andu: = 3o (right).

We remark that the optimality here is with respect to the choicg ofamily. In the next section, we will illustrate that this is not the case for
only, which we denote by the subscript a heterogeneous combination of one LMS and one RLS filters. Since
We will now search for the optimurd. with respect to the stepfor the combination of one RLS and one LMS filters the expressions
sizes for the particular case of a combination of two filters of the sa@some too complex for an analytical approach, we will proceed to
family. Consider first the combination of two LMS filters. Assuminghow via examples that for this case it is possible to obtain an over-
that the optimat. is selected in steady state (which is usually a go8d teady-state EMSE strictly smaller that the minimum(8f® and
approximation for the considered recursions [6, 9]), the steady-s(}ﬁetLes-
EMSE of the combination will be given by (6) withy and(. given
by the first row in Table 2, and,> given by the first row in Table 4.
Differentiating ¢, with respect touz, and after some manipulationsin this section we include several experiments for the identification of
we obtain a time-varying system. Three sets of experiments have been consid-
LMS 9 9 5 9 9 ered: the first one consists of a combination of two LMS filters with
g = _1(Tr{@} - “12% Tr{R}) (TY{QE ~ H20u T:{R}) , different step sizes; two RLS filters with different forgetting factors are
d iz 2 (pp20} Te{ R} + Tr{Q})?(p1 + p2) combined in the second group of simulations; and the last experiment
. implements a combination of one LMS and one RLS filters, both of
where we have used the supersctifit to emphasize that we are con; . . ) .
S o ) . ; them with optimal step sizes (i.g., andvy).
sidering a combination of two LMS filters. From this expression one -

LMS X . In all cases, the unknown plaat,, of lengthAM = 7, was ini-
can see thall ¢,/ d pu2 = 0if pu2 = poe (notice the factor depend-,. . ) . . -
ing on 2 in the numerator), so the minimum value@t® is attained tialized with random values from intervgt-1, 1], beingwo(0) =

gon > ) ) [.9003, —.5377,.2137, —.028, .7826, .5242, —.0871] . Then, the so-
when one of the component filters has optimum stepgiz&lote that, ;. "~ . . ’
oo lution is changed at each iteration according to the random-walk model
due to the symmetry of the combination, we would reach the same C(%S"with a covariance matrix af(n) given b
clusion if we had differentiated with respecttg (this is easily seen ™"’ 9 Y

4. EXAMPLES

if one replaces) by 1 — 7 in all expressions). R R
i i — (LM = o =vla——r+(1—0a)— 7
Furthermore, if we substituteé, MS and e = o in the Q=v T (R) +(1—-o) Rk (7)

expressions fon, from (5) and for¢;» from Table 4, we conclude that

71x0 = 0. This means that where constant has been selected to he= 10~?, so that T(Q) =

Cro> = ¢M, v, anda € [0, 1] is a control parameter that allows to tradeoff between

H : : _ H LMS RLS
where¢MS is the optimal EMSE of the combination, both with respe%soliugl_oln(yr% (;; vljhi(z;%r tﬁe?e\}g’rsfgrs\i/w;ﬁ)ﬁooccjsgo »and

to the mixing parameters and the step sizes of the constituent filters? | . . . o . i
other words, the smallest EMSE obtainable with a combination of ?:Jgsﬂlgﬁﬁtf;gg??(l is;tzzeicil;tﬁlsjitnc;faajr(s)tgo;;izrvﬁtl?] m%d%\gggsti;ns

LMS algorithms is exactly equal to that obtained with a single L ise with variance? = % so that T(R) = 1. The output additive

filter with optimum step size,. N . . .
P P Sizgto Qise is ii.d. Gaussian with zero-mean and variamge= 1072,

Just the same conclusion is obtained for a combination of two % ding the adiust tfor th binati h d
filters. The only difference is that for two RLS filters, the derivati egarding the adjusiment for the combinations, we have used convex

d ¢S/ d s, reads combinat?ons wi_th fixed step size, = 100, _while the step sizes of
the constituent filters are selected as explained below.
d¢Rs 1 (Tr{QR} — 1362 M)*(Tr{QR} — v3c2 M) All estimated steady-state EMSEs have been obtained by averag-
A 2 (noEM + T {QR}2(n + )2 ing 25000 runs of the algorithms once the filters have completely con-

verged, and 00 independent runs.
and again we see that = v, minimizes the overall steady-state error  To start with, we will consider the combination of two LMS filters.
of the combination, and®-s = ¢f-S. Note that in this casgo, = v/10—3 independently of the value @f.
The above results allow us to conclude that, although a combiRas. 1 depicts the steady-state EMSE of the combination for different
tion of two LMS (or two RLS) filters can improve the tracking pefandu:, and for two different values of the step size for the first compo-
formance when the degree of nonstationarity is not knewpriori nent,;i1 = 0.3u0 andu: = 3ue. In both subfigures, we observe a flat
or time-varying, the steady-state EMSE of the combination is lowegion for which the combination inherits the performance of the filter

bounded by the optimal EMSE of an individual filter from the sameth step size.;. As predicted by our analysis in the previous section,



Fig. 2. Steady-state EMSE of a combination of two RLS filters for
varyinga andvs, andv; = .001 (left) andv, = .0186 (right).

the optimal behavior of the combination is observed when= 1.
Therefore, the combination performs in this situation similarly to an
LMS filter with optimal step size.

Similar conclusions can be extracted for the convex combination
of two RLS filters. Fig. 2 illustrates the behavior of such a combination
scheme for different values of andv.. In this casey, changes with
«. Therefore, in this situation we have selected= 0.001 (left panel
of Fig. 2) andv; = 0.0186 (right panel), respectively smaller and
larger than the optimal step sizes for= 0 anda = 1. For eachy,
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we explore values for the step size of the second filter in the range ffdgh 3. Steady-state performance of an adaptive combination of one
15/10 to 10v,. Again, as predicted by the analysis, the best behaviddS and one RLS filters with optimal step sizes @ndws, respec-

RLS __

results forv, = o, showing that RS = ¢RLS,

tively). The figure displays, from top to bottom, the theoretical EMSE

We conclude the section considering the more interesting case®fBoth constituent filters and of the combination for different values

combination including one LMS and one RLS filters. We will illustratef «,

the observed EMSEs obtained through simulation, and the theo-

that it is possible for this heterogeneous combination to outperformfigiécal and simulated steady-state values (f).

smallest EMSEs that could be achieved by any individual LMS or RLS
filters. To this end, let us select for eaghhe optimal step sizes for the
LMS and RLS components according to Table 3. The upper panel of
Fig. 3 displays the theoretical steady-state EMSEs of both constitu %f
filters and of their combination, and shows good agreement with t
real curves obtained through simulation (intermediate panel). We can
see that for all values af other thamy = 0 anda = 1, the combined >
LMS-RLS scheme reduces the individual EMSESs of both components,
thus leading to the interesting result ta¥'S-S < min[¢tMS, (X1,

i.e., this combined scheme is able to improve the tracking capabiliti?ﬁ
of optimal LMS and RLS filters.

It is also interesting to pay attention to the optimal values of the
mixing parameter (bottom panel of Fig. 3). In first place, we see tha
for a € [0, 1] the optimal mixing parameter lies in interval 1], i.e.,
affine combinations can be expected to work equally well —but not
better— than convex combinations for the considered scenario. Itk
also important to remark that no gains over the tracking performance
of optimal LMS or RLS can occur whe@® «x R (o = 1) or Q
R~ (a = 0), since in these cases optimal selections of the mixingp]
parameters arg = 0 andn = 1, respectively.

5. CONCLUSIONS 7

In this paper we have studied the tracking performance of combina-
tions of LMS and RLS filters. We have provided theoretical and em-
pirical evidence that the steady-state EMSE of a combination of wl
filters of the same family is lower bounded by the optimal EMSE of
a filter of the same family. However, heterogeneous combinations i
one LMS and one RLS filters have been shown to simultaneously re-
duce the EMSEs of both optimal LMS and RLS filters, thus providing
a way to obtain filters with superior tracking capabilities.
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