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ABSTRACT

Combinations of adaptive filters have attracted attention as a simple
solution to improve filter performance, including tracking properties.
In this paper, we consider combinations of LMS and RLS filters, and
study their performance for tracking time-varying solutions. We show
that a combination of two filters from the same family (i.e., two LMS
or two RLS filters) cannot improve the performance over that of a sin-
gle filter of the same type with optimal selection of the step size (or
forgetting factor). However, combining LMS and RLS filters it is pos-
sible to simultaneously outperform the optimum LMS and RLS fil-
ters. In other words, combination schemes can achieve smaller errors
than optimally adjusted individual filters. Experimental work in a plant
identification setup corroborates the validity of our results.

Index Terms— Adaptive filters, convex combination, steady-state
analysis, tracking performance, RLS algorithm, LMS algorithm.

1. INTRODUCTION

Combinations of adaptive filters have gained considerable attention
lately, since they decrease the sensitivity of the filter to choices of pa-
rameters such as the step size, forgetting factor or filter length (see,
e.g., [1–5]). Using a combination of two filters with different step
sizes, for example, one can obtain fast convergence and low steady-
state misadjustment, or use the combination to find the optimum step
size in a nonstationary environment [1]. In general, this combination
approach is more robust than variable step-size schemes [5].

In tracking of time-varying scenarios, combination schemes offer
improved tracking capabilities with respect to the component filters
[4]. However, it has been noticed in simulations that the excess mean-
square error (EMSE) obtained by the combination of two filters of the
same family [e.g., two least mean-squares (LMS) filters with different
step sizes, or two recursive least-squares (RLS) filters with different
forgetting factors] will never be better than the performance of a single
filter employing the optimum step size (or optimum forgetting factor)
for a given nonstationary condition [1,6].

More recently, the combination of filters from different families
(one LMS and one RLS) was proposed as a way to take advantage of
the different tracking properties of LMS and RLS [5]. In fact, despite
the fast initial convergence provided by RLS, it was shown in [7] that
LMS may outperform RLS depending on how the optimum solution
changes with time. Although a theoretical analysis and several simu-
lations were provided in [5], it was not noticed that the combination
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Table 1. Parameters of the considered algorithms.

Alg. ρi M
−1

i (n)

LMS µi I

RLS 1 bRi(n) =

nX

l=1

λn−l
i u(l)uT (l)

may actually obtain a smaller EMSE than its component filters even
when the optimum step size is used for LMS and the optimum forget-
ting factor is used for RLS. In other words, the combination of filters
of different families may obtain a performance that would not be pos-
sible with a combination of two filters of the same family, or with an
algorithm that chooses the optimum step size for LMS (or the optimum
forgetting factor for RLS). In this paper we illustrate these facts both
through theoretical analysis and simulations.

The paper is organized as follows. In the next section, we present
the data model and introduce the notation that will be used throughout
the paper, reviewing also some results for the tracking performance
of LMS and RLS filters. Then, in Sec. 3 we recall some theoretical
results regarding the performance of convex and affine combination
of adaptive filters in nonstationary environments. We also prove that
combinations of filters of the same family cannot improve the perfor-
mance over that of a single filter with optimum selection of the param-
eters (i.e., step size or forgetting factor), and that this limitation can be
overcome when filters of different families are combined. Several ex-
amples that validate the analysis are provided in Sec. 4. Finally, Sec. 5
presents the main conclusions of our work.

2. PROBLEM FORMULATION

In this paper, we consider combinations of two LMS, two RLS or one
RLS and one LMS filters. The update laws for LMS and RLS may be
written as

wi(n) = wi(n − 1) + ρiM i(n)u(n)ei(n), (1)

where the indexi = 1, 2 refers to each filter in the combination,
wi(n) ∈ R

M is the coefficient vector of each filter at timen, ρi

is a step-size parameter,u(n) ∈ R
M is the input regressor vector,

andei(n) is the estimation error. For RLS,M i(n) ∈ R
M×M is an

estimate of the inverse of the regressor autocovariance matrix,R =
E{u(n)uT (n)}, and can be computed in an efficient way using the
matrix inversion lemma or, if lattice algorithms are used, its explicit
evaluation may be avoided [8]. Table 1 lists the values of the different
parameters in (1) for each class of the considered filters.

The estimation error is given by

ei(n) = d(n) − yi(n), (2)



Table 2. Analytical expressions for the steady-state EMSEs of LMS
and RLS.

Alg. ζ

LMS
µiσ

2
v Tr{R} + µ−1

i Tr{Q}
2

RLS
νiσ

2
vM + ν−1

i Tr{QR}
2

Table 3. Optimum tracking parameters (µo andνo) and steady-state
EMSEs (ζo) for LMS and RLS.

Alg. µo, νo ζo

LMS

s
Tr{Q}

σ2
v Tr{R}

p
σ2

v Tr{R}Tr{Q}

RLS

s
Tr{QR}

σ2
vM

p
σ2

vM Tr{QR}

whereyi(n) = wi(n − 1)T u(n), i = 1, 2 are the filter outputs, and
d(n) is the desired response. As it is well-known, there exists a linear
regression model relatingd(n) andu(n), such that

d(n) = w
T
o u(n) + v(n), (3)

wherev(n) is white and zero-mean measurement noise with variance
σ2

v, uncorrelated withu(n), andwo provides the optimum linear least
mean-squares estimate ofd(n) given u(n) [8]. We assume in this
paper, as it is common in studies of adaptive filters, thatu(n) and
v(n) are stationary zero-mean processes, and moreover thatv(n) is
independent ofu(m) for all m, n.

Define also thea priori errorsea,i(n) = [wo−wi(n−1)]T u(n).
Under the stated assumptions, the mean-square errorE{e2

i (n)} may
be shown to be [8]

E{e2
i (n)} = ζi(n) + σ2

v,

whereζi(n) = E{e2
a,i(n)} is the so-called excess mean-square error

(EMSE) of each filter.
The optimum weight vectorwo is usually not constant in practice.

A common approach to model its variations is through the brownian
motion model below, which allows a tractable analysis

wo(n) = wo(n − 1) + q(n), (4)

where{q(n)} is a sequence of i.i.d. vectors with zero mean and auto-
correlation matrixQ = E{q(n)qT (n)}.

Using this model and (1)–(3), and assuming sufficiently small step
size and forgetting factor sufficiently close to 1, it can be shown that
the steady-state EMSE [i.e.,ζi = limn→∞ ζi(n)] of LMS and RLS
are as given in Table 2 [5,7,8]. For convenience, we will often useνi =
1− λi. Sinceνi plays in the expressions for RLS a similar role to that
of µi for LMS, we will also refer toνi as a “step size”. Differentiating
the expressions in Table 2 with respect to eitherµi or νi, one can
compute the optimum step sizesµo andνo for a given environment
(i.e., values ofQ, R and noise varianceσ2

v). These optimum values,
along with the resulting optimum EMSEs for each filter, are given in
Table 3 [7,8].

Through these expressions, it was shown in [7] that, despite its
slow initial convergence, LMS may present better tracking perfor-
mance than RLS, depending on the values ofQ andR. In particular,
if Q is proportional toR, the optimum steady-state EMSE of LMS
will be smaller than that of RLS. On the contrary, ifQ is proportional
to R−1, RLS will present better performance. WhenQ is propor-
tional to I (the identity matrix), both algorithms will present similar
behavior [7].

In the next section we introduce combinations of adaptive filters,
and prove that the tracking performance of the combination of two
LMS or two RLS filters is lower bounded by the values of Table 3, but
the combination of one RLS with one LMS algorithm may achieve a
better performance.

3. CONVEX COMBINATIONS AND OPTIMAL TRACKING

One promising way of increasing the performance of adaptive filters is
to run two or more filters in parallel, and combine their outputs con-
structing an overall output given by

y(n) = η(n − 1)y1(n) + [1 − η(n − 1)]y2(n).

Up to now, good results have been obtained with both a convex com-
bination model, in which the mixing parameterη(n) is constrained to
remain in the interval[0, 1] [1], and an affine combination model, in
which η(n) may be any real number [3]. In the first case, the mixing
parameter is usually updated using an auxiliary variablea(n), accord-
ing to

a(n) = a(n − 1) + µ̃a(n)e(n)∆e(n) η(n − 1) [1 − η(n − 1)],

η(n) =
1

1 + exp [−a(n)]
,

in which µ̃a(n) is a (possibly normalized) step size,e(n) = d(n) −
y(n) is the overall estimation error, and∆e(n) = e2(n) − e1(n). In
general, to avoid slow adaptation close toη = 1 or η = 0, a(n) is con-
strained (by simple saturation) to the interval[−a+, a+]. A common
choice fora+ is 4.

For affine combinations, one possible method for updating the
mixing parameter is through the recursion

η(n) = η(n − 1) + µa(n)e(n)∆e(n).

In both cases, it is convenient to choose a normalized step sizeµ̃a(n)
using an estimatep(n) of E{∆e2(n)}, such that

p(n) = λpp(n − 1) + (1 − λp)∆e2(n),

whereλp is a forgetting factor, and̃µa(n) = µa/[δ + p(n)], δ being
a small regularization term [6,9].

It can be shown that the optimum mixing parameter in steady state
is given by [1,3,6]

η∗ =
ζ2 − ζ12

ζ1 − 2ζ12 + ζ2

, (5)

whereζ12 = limn→∞ E{ea,1(n)ea,2(n)} is the steady-state cross-
EMSE between both filters in the combination, given in Table 4 for
the different combination possibilities considered in this paper [5]. For
convex combinationsη∗ is given by (5) only if the value falls in the
interval [0, 1], otherwiseη∗ = 0 (resp. 1), if (5) is negative (resp.
larger than 1).

The EMSE of the combination, using the optimumη∗, is given by

ζ∗ =
ζ1ζ2 − ζ2

12

ζ1 − 2ζ12 + ζ2

(6)



Table 4. Analytical expressions for the steady-state cross-EMSE of
the considered combinations.

Combination ζ12

µ1-LMS andµ2-LMS
µ1µ2 Tr{R}σ2

v + Tr{Q}
µ1 + µ2

λ1-RLS andλ2-RLS
ν1ν2Mσ2

v + Tr{QR}
ν1 + ν2

λ1-RLS andµ2-LMS µ2ν1 σ2
v Tr

˘
Σ

¯
+ Tr

˘
QΣ

¯
,

whereΣ , (ν1I + µ2R)−1R.

We remark that the optimality here is with respect to the choice ofη
only, which we denote by the subscript∗.

We will now search for the optimumζ∗ with respect to the step
sizes for the particular case of a combination of two filters of the same
family. Consider first the combination of two LMS filters. Assuming
that the optimalη∗ is selected in steady state (which is usually a good
approximation for the considered recursions [6, 9]), the steady-state
EMSE of the combination will be given by (6) withζ1 andζ2 given
by the first row in Table 2, andζ12 given by the first row in Table 4.
Differentiatingζ∗ with respect toµ2, and after some manipulations,
we obtain

d ζLMS
∗

d µ2

= −1

2

(Tr{Q} − µ2
1σ

2
v Tr{R})2(Tr{Q} − µ2

2σ
2
v Tr{R})

(µ1µ2σ2
v Tr{R} + Tr{Q})2(µ1 + µ2)2

,

where we have used the superscriptLMS to emphasize that we are con-
sidering a combination of two LMS filters. From this expression one
can see thatd ζLMS

∗ / d µ2 = 0 if µ2 = µo (notice the factor depend-
ing onµ2 in the numerator), so the minimum value ofζLMS

∗ is attained
when one of the component filters has optimum step sizeµo. Note that,
due to the symmetry of the combination, we would reach the same con-
clusion if we had differentiated with respect toµ1 (this is easily seen
if one replacesη by 1 − η in all expressions).

Furthermore, if we substituteζ2 = ζLMS
o and µ2 = µo in the

expressions forη∗ from (5) and forζ12 from Table 4, we conclude that
η∗o = 0. This means that

ζLMS
∗o = ζLMS

o ,

whereζLMS
∗o is the optimal EMSE of the combination, both with respect

to the mixing parameters and the step sizes of the constituent filters. In
other words, the smallest EMSE obtainable with a combination of two
LMS algorithms is exactly equal to that obtained with a single LMS
filter with optimum step sizeµo.

Just the same conclusion is obtained for a combination of two RLS
filters. The only difference is that for two RLS filters, the derivative
d ζRLS

∗ / d ν2 reads

d ζRLS
∗

d ν2

= −1

2

(Tr{QR} − ν2
1σ2

vM)2(Tr{QR} − ν2
2σ2

vM)

(ν1ν2σ2
vM + Tr{QR})2(ν1 + ν2)2

,

and again we see thatν2 = νo minimizes the overall steady-state error
of the combination, andζRLS

∗o = ζRLS
o .

The above results allow us to conclude that, although a combina-
tion of two LMS (or two RLS) filters can improve the tracking per-
formance when the degree of nonstationarity is not knowna priori
or time-varying, the steady-state EMSE of the combination is lower
bounded by the optimal EMSE of an individual filter from the same
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Fig. 1. Steady-state EMSE of a combination of two LMS filters for
varyingα andµ2, andµ1 = 0.3µo (left) andµ1 = 3µo (right).

family. In the next section, we will illustrate that this is not the case for
a heterogeneous combination of one LMS and one RLS filters. Since
for the combination of one RLS and one LMS filters the expressions
become too complex for an analytical approach, we will proceed to
show via examples that for this case it is possible to obtain an over-
all steady-state EMSE strictly smaller that the minimum ofζLMS

o and
ζRLS

o .

4. EXAMPLES

In this section we include several experiments for the identification of
a time-varying system. Three sets of experiments have been consid-
ered: the first one consists of a combination of two LMS filters with
different step sizes; two RLS filters with different forgetting factors are
combined in the second group of simulations; and the last experiment
implements a combination of one LMS and one RLS filters, both of
them with optimal step sizes (i.e.,µo andνo).

In all cases, the unknown plantwo, of lengthM = 7, was ini-
tialized with random values from interval[−1, 1], being wo(0) =
[.9003,−.5377, .2137,−.028, .7826, .5242,−.0871]T . Then, the so-
lution is changed at each iteration according to the random-walk model
(3), with a covariance matrix ofq(n) given by

Q = γ

»
α

R

Tr(R)
+ (1 − α)

R−1

Tr(R−1)

–
, (7)

where constantγ has been selected to beγ = 10−5, so that Tr(Q) =
γ, andα ∈ [0, 1] is a control parameter that allows to tradeoff between
a situation withQ ∝ R (for α = 1), for which ζLMS

o < ζRLS
o , and

Q ∝ R−1 (α = 0), in which the reverse situation occurs.
The input signal is the output of a first-order AR model with trans-

fer function[1−a2]/(1−az−1) usinga = 0.8, fed with i.i.d. Gaussian
noise with varianceσ2

u = 1

7
, so that Tr(R) = 1. The output additive

noise is i.i.d. Gaussian with zero-mean and varianceσ2
v = 10−2.

Regarding the adjustment for the combinations, we have used convex
combinations with fixed step sizeµa = 100, while the step sizes of
the constituent filters are selected as explained below.

All estimated steady-state EMSEs have been obtained by averag-
ing 25000 runs of the algorithms once the filters have completely con-
verged, and100 independent runs.

To start with, we will consider the combination of two LMS filters.
Note that in this caseµo =

√
10−3 independently of the value ofα.

Fig. 1 depicts the steady-state EMSE of the combination for differentα
andµ2, and for two different values of the step size for the first compo-
nent,µ1 = 0.3µo andµ1 = 3µo. In both subfigures, we observe a flat
region for which the combination inherits the performance of the filter
with step sizeµ1. As predicted by our analysis in the previous section,
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Fig. 2. Steady-state EMSE of a combination of two RLS filters for
varyingα andν2, andν1 = .001 (left) andν1 = .0186 (right).

the optimal behavior of the combination is observed whenµ2 = µo.
Therefore, the combination performs in this situation similarly to an
LMS filter with optimal step size.

Similar conclusions can be extracted for the convex combination
of two RLS filters. Fig. 2 illustrates the behavior of such a combination
scheme for different values ofα andν2. In this case,νo changes with
α. Therefore, in this situation we have selectedν1 = 0.001 (left panel
of Fig. 2) andν1 = 0.0186 (right panel), respectively smaller and
larger than the optimal step sizes forα = 0 andα = 1. For eachα,
we explore values for the step size of the second filter in the range from
νo/10 to 10νo. Again, as predicted by the analysis, the best behavior
results forν2 = νo, showing thatζRLS

∗o = ζRLS
o .

We conclude the section considering the more interesting case of a
combination including one LMS and one RLS filters. We will illustrate
that it is possible for this heterogeneous combination to outperform the
smallest EMSEs that could be achieved by any individual LMS or RLS
filters. To this end, let us select for eachα the optimal step sizes for the
LMS and RLS components according to Table 3. The upper panel of
Fig. 3 displays the theoretical steady-state EMSEs of both constituent
filters and of their combination, and shows good agreement with the
real curves obtained through simulation (intermediate panel). We can
see that for all values ofα other thanα = 0 andα = 1, the combined
LMS-RLS scheme reduces the individual EMSEs of both components,
thus leading to the interesting result thatζLMS-RLS

∗o < min[ζLMS
o , ζRLS

o ],
i.e., this combined scheme is able to improve the tracking capabilities
of optimal LMS and RLS filters.

It is also interesting to pay attention to the optimal values of the
mixing parameter (bottom panel of Fig. 3). In first place, we see that
for α ∈ [0, 1] the optimal mixing parameter lies in interval[0, 1], i.e.,
affine combinations can be expected to work equally well –but not
better– than convex combinations for the considered scenario. It is
also important to remark that no gains over the tracking performance
of optimal LMS or RLS can occur whenQ ∝ R (α = 1) or Q ∝
R−1 (α = 0), since in these cases optimal selections of the mixing
parameters areη = 0 andη = 1, respectively.

5. CONCLUSIONS

In this paper we have studied the tracking performance of combina-
tions of LMS and RLS filters. We have provided theoretical and em-
pirical evidence that the steady-state EMSE of a combination of two
filters of the same family is lower bounded by the optimal EMSE of
a filter of the same family. However, heterogeneous combinations of
one LMS and one RLS filters have been shown to simultaneously re-
duce the EMSEs of both optimal LMS and RLS filters, thus providing
a way to obtain filters with superior tracking capabilities.
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Fig. 3. Steady-state performance of an adaptive combination of one
LMS and one RLS filters with optimal step sizes (µo andνo, respec-
tively). The figure displays, from top to bottom, the theoretical EMSE
of both constituent filters and of the combination for different values
of α, the observed EMSEs obtained through simulation, and the theo-
retical and simulated steady-state values ofη(n).
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[4] J. Arenas-Garćıa, A. R. Figueiras-Vidal, and A. H. Sayed, “Tracking
properties of a convex combination of two adaptive filters,” in Proc.
2005 IEEE Workshop on Stat. Signal Process., Bourdeaux, France.

[5] M. T. M. Silva and V. H. Nascimento, “Improving the trackingcapability
of adaptive filters via convex combination,”IEEE Trans. Signal Process.,
vol. 56, no. 7, pp. 3137–3149, July 2008.

[6] R. Candido, M. T. M. Silva, and V. H. Nascimento, “Affine combinations
of adaptive filters,” inConf. Rec. of the 42nd Asilomar Conf. on Sign.,
Syst. & Comp., 2008.

[7] E. Eweda, “Comparison of RLS, LMS, and sign algorithms for tracking
randomly time-varying channels,”IEEE Trans. Signal Process., vol. 42,
no. 11, pp. 2937–2944, Nov. 1994.

[8] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley-Interscience,
2003.

[9] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garćıa, “A
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