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ABSTRACT

We extend the affine combination of one fast and one slow least mean-
square (LMS) filter to blind equalization, considering the combination
of two constant modulus algorithms (CMA). We analyze the proposed
combination in stationary and nonstationary environments verifying
that there are situations where the absence of the restriction on the mix-
ing parameter can be advantageous for the combination. Furthermore,
we propose a combination of two CMAs with different initializations.
Preliminary simulations show that this scheme can avoid local minima
and eventually can present a faster convergence rate than that of its
components.

Index Terms— Adaptive filters, adaptive equalizers, blind equal-
ization, unsupervised learning, constant modulus algorithm.

1. INTRODUCTION

Convex combinations of two fixed step-size adaptive filters have re-
ceived attention due to their relative simplicity and the proof that they
are universal, i.e., the combined estimate is at least as good as the best
of the component filters in steady-state, for stationary inputs [1]. This
scheme was proposed to improve the fundamental tradeoff between
convergence rate and steady-state excess mean-square error (EMSE)
in adaptive filters. It has also been exploited in nonstationary envi-
ronments to improve tracking performance, considering, e.g, the algo-
rithm proposed in [1] or the combination of algorithms with different
tracking capabilities of [2].

Recently, an affine combination of two least mean-square (LMS)
filters was proposed in [3]. Differently from the convex combination,
the mixing parameter is not restricted to the interval[0, 1]. Thus, this
method is a generalization of the convex combination.

This paper has two main contributions. First, the affine combina-
tion of [3] is extended to the combination of one fast and one slow con-
stant modulus algorithm (CMA) [4], the most used algorithm for blind
equalization. We analyze this scheme in stationary and nonstationary
environments verifying that there are situations where the use of the
affine combination can be advantageous, and compare this scheme to
the convex combination of two CMAs proposed in [5]. Second, we
show by simulations that the combination of two CMAs with different
initializations can avoid local minima and may present a faster con-
vergence rate than that of its components. In order to simplify the
arguments, we assume that all quantities are real.

2. PROBLEM FORMULATION

A simplified communications system with aT/2-fractionally-spaced
equalizer (FSE) is shown in Fig. 1. The transmitted signala(n) is
assumed independent, identically distributed (i.i.d.), and non Gaus-
sian. The unknown channel is modeled by a transfer functionH(z)

This work was supported by CNPq under grants 136050/2008-5 and
303.361/2004-2, and by FAPESP under 2008/00773-1 and 2008/04828-5.

and additive white Gaussian noise. We assume anM -tap finite im-
pulse response (FIR) equalizer, with input vectoru(n) and output
y(n) = uT (n)w(n), wherew(n) is the equalizer weight vector, and
(·)T indicates transposition. The equalizer must mitigate the channel
effects and recover the signala(n) for some delayτd, obtaining at
the output of the decision device the estimateâ(n − τd). It is well
known that FSEs may achieve the zero-forcing solution in the absence
of noise [6]. In this case, there exists an optimum vectorwo(n) such
thatuT (n)wo(n) ≈ a(n − τd).
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Fig. 1. Communications system with aT/2 FSE.

An adaptive combination of two equalizers may obtain a better
compromise between convergence rate and EMSE. As depicted in
Fig. 2, the outputs of the equalizersi = 1 andi = 2 are combined to
obtain the overall output

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n), (1)

whereyi(n)=uT (n)wi(n), i=1, 2 andλ(n) is the mixing parame-
ter. The coefficients are updated with CMA using different step-sizes,
i.e., wi(n + 1) = wi(n) + µiei(n)u(n), i = 1, 2, (2)

in whichei(n) =
ˆ
r − y2

i (n)
˜
yi(n), r = E{a4(n)}/E{a2(n)}, and

E{·} is the expectation operator [4]. The overall “error” is defined as
e(n) = [r − y2(n)]y(n).
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Fig. 2. Adaptive combination of two blind equalizers.

If λ(n) is restricted to the interval[0, 1], we have a convex com-
bination [1, 5]. Otherwise, we have an affine combination [3]. In the
convex combination of two CMAs of [5],λ(n) is updated via a sig-
moidal function and the auxiliary variableα(n), as shown in Table 1,
whereµα is a step-size. Theses equations were obtained in [5], using
a stochastic gradient rule to minimize the instantaneous constant mod-
ulus costĴ(n) =

ˆ
r − y2(n)

˜2
. The variableα(n) is used to keep

λ(n) in the interval[0, 1]. This variable is restricted (by saturation) to
lie inside an interval[−α+, α+], which ensures that it does not stop
updating wheneverλ(n) is close to 0 or 1 [1,5].

In the affine combination, the auxiliary variableα(n) and the
sigmoidal function are not used to keep the mixing parameter in
[0, 1]. Considering the combination of two CMAs, the updating of
λ(n) based on the minimization of̂J(n) does not always ensure the
desirable universal behavior of the combination. Thus, we propose



a stochastic gradient algorithm to minimize the instantaneous square
decision errorĴd(n) = [â(n − τd) − y(n)]2, as shown in Table 1. If
the step-sizeµλ is correctly chosen, the decision-error-based adapta-
tion can ensure that the affine combination is nearly universal even in
presence of noise. Similar to the affine combination of two LMS filters
of [3], λ(n) is constrained to be less than or equal to 2 for alln to
obtain a tradeoff between stability and algorithm’s tracking capability
in the initial phase of adaptation.

Table 1. Adaptations of the mixing parameter.
Combination Mixing parameter adaptation
Convex λ(n) = sgm(α(n)) = {1 + exp[−α(n)]}−1

eα(n) =
ˆ
r − y2(n)

˜
y(n)[y1(n) − y2(n)]

α(n + 1) = α(n) + µαeα(n)λ(n)[1 − λ(n)]
Affine ed(n) = â(n − τd) − y(n)

λ(n + 1) = λ(n) + µλed(n)[y1(n) − y2(n)]

3. STEADY-STATE ANALYSIS

In the tracking analysis of CMA [6, 7], the optimum solutionwo was
assumed to vary according to a random-walk model, i.e.,wo(n+1) =
wo(n) + q(n), whereq(n) is an i.i.d. random zero-mean vector with
covariance matrixQ = E{q(n)qT (n)}, and independent ofu(m)
for all m ≤ n and of the initial conditionswo(0),wi(0), λ(0) [1,8].

Assuming thatwi(0), i = 1, 2 is close enough towo(0) and that
uT (n)wo(n)≈a(n−τd), the output of the equalizeri can be approx-
imated byyi(n)≈a(n − τd)−ea,i(n), where we defined thea priori
error ea,i(n) = uT (n)[wo(n)−wi(n)]T . Using the above assump-
tions and considering that the constellation used to generatea(n) has
circular symmetry, we can rewrite the CMA “error” using the model

ei(n) ≈ γ(n)ea,i(n) + β(n), (3)
whereγ(n) = 3a2(n−τd)−r andβ(n) = r a(n−τd)−a3(n−τd).
The variableβ(n) is identically zero for constant-modulus constella-
tions, so the variability in the modulus ofa(n) (as measured byβ(n))
plays the role of measurement noise for CMA [2,7,9].

One measure of the equalizer performance is given by the EMSE
defined asζii , limn→∞ E{e2

a,i(n)}, i = 1, 2. In the steady-state
analysis of the combination of two CMA equalizers, we also have to
estimate the cross-EMSE given byζ12 , limn→∞ E{ea,1(n)ea,2(n)}
[1,2]. Using (3) in conjunction with the energy conservation relations
of [8], ζii andζ12 can be approximated by [2,7]

ζij ≈
µiµjσ

2
β Tr(R) + Tr(Q)

γ̄(µi + µj) − µiµjTr(R)ξ
, i, j = 1, 2 (4)

where σ2
β = E{a6(n) − r2a2(n)}, R = E{u(n)uT (n)}, γ̄ =

3E{a2(n)} − r, ξ = r(3E{a2(n)}+ r), and Tr(·) stands for the
trace of a matrix.

An analytical expression for the optimum mixing parameter in
steady-statēλo(∞) can be obtained by equating to zero the deriva-
tive of E{Ĵd(n)} with respect toλ(n). Using (1) and assuming that
yi(n) ≈ a(n − τd) − ea,i(n) whenn → ∞ [2,6], we arrive at

E{ed(n)[y1(n) − y2(n)]} = E{ed(n)[ea,2(n) − ea,1(n)]} = 0.
Noting that in steady-state the overalla priori error is a combination
of thea priori errors of the component filters, i.e.,

ea(n) = λ(n)ea,1(n) + [1 − λ(n)]ea,2(n), (5)
using (3), and assuming thatλo(n) is independent ofea,i(n), after
some algebraic manipulations we arrive at

λ̄o(∞) =
∆ζ2

∆ζ1 + ∆ζ2
, (6)

where∆ζi = ζii − ζ12, i = 1, 2. A similar expression was also
obtained in [1, Eq.(29)] for the convex combination of two LMS fil-
ters. The difference is that in the convex combination,λ(n) and con-
sequentlyλ̄o(∞) are restricted to the interval[0, 1].

By squaring and taking the expectations of both sides of (5) with
λ(n) = λo(n) and assuming that the variance ofλo(n) is sufficiently
small such thatlimn→∞ E{λ2

o(n)} ≈ λ̄o
2
(∞), we obtain the follow-

ing expression for the steady-state EMSE of the combination

ζ ≈ ζ12 + λ̄(∞)∆ζ1 = ζ12 +
∆ζ1∆ζ2

∆ζ1 + ∆ζ2
. (7)

This expression was also obtained in [1, Eq. (33)] for the convex com-
bination of two LMS filters. Note that when̄λo(∞) ≈ 1, ζ ≈ ζ11 and
whenλ̄o(∞) ≈ 0, ζ ≈ ζ22. On the other hand, sinceλ(n) is restricted
to [0, 1] in the convex combination, only for0 < λ̄o(∞) < 1 the con-
vex combination can outperform the component equalizers. We show
next that in some situations the absence of the restriction onλ(n) can
be advantageous for the combination.

3.1. Stationary performance
Replacing the model (4) withQ = 0 in (6) and (7), we obtain for the
stationary case

λ̄o(∞) ≈
δ

ˆ
2 − µ1Tr(R)ξ γ̄−1

˜

2 (δ − 1)
and (8)

ζ ≈
1

2

µ2σ
2
β Tr(R)

(1 + δ)γ̄ − µ2Tr(R)ξ
, (9)

where we have definedδ , µ2/µ1, with 0 < δ < 1.
To ensure the stability ofµ1-CMA, µ1 < 2γ̄/(3Tr(R)ξ) must be

satisfied [9, Eq. (14)]. Hence,̄λo(∞) is always negative, which does
not occur in the convex combination due to the restriction onλ(n).
This behavior was observed in [3] for the affine combination of two
LMS filters. Comparingζ to ζ22, we conclude that the affine com-
bination can outperform both components in steady-state. Specially,
whenδ → 1, i.e., when the components have approximately the same
step-size,λ̄o(∞)→−∞, ζ→ζ22/2, and a 3 dB reduction occurs. On
the other hand, ifµ1 ≈ µ2, the convex combination performs close to
one of its components, and an EMSE reduction does not occur.

In order to explain the behavior of the affine combination when
µ1 ≈ µ2, using (1) and the model (3), the overall steady-state error is
written as

e(n) = e2(n)
| {z }

d(n)

+λ(n) γ(n)[w2(n) − w1(n)]T u(n)
| {z }

−x(n)

. (10)

From the point of view of the computation ofλ(n), d(n) represents
the signal which has to be estimated, andx(n) plays the role of input
signal. Ifwi varies slowly compared toλ, the affine combination seeks
the best weight vector in the linew2 + λ(w1 − w2). In the case of
µ1 ≈ µ2, we also havew1 ≈ w2, andλ has to assume a large value
to take the combined vector as close as possible towo, since the input
signalx(n) depends on the difference betweenw1 andw2. Thus, if
δ → 0, (w1 − w2) → 0, and|λ| → ∞.

The properties of the affine combination in a stationary environ-
ment can be exploited to improve the EMSE reduction of the combi-
nation. To verify if a larger reduction can be achieved, we consider
the scheme of Fig. 3, where the outputs of two affine combinations are
combined with a mixing parameter to obtain the overall output. The
first combination considers two CMA equalizers with step-sizesµ1

andµ2 = δ1µ1 with 0 ≪ δ1 < 1. The second combines two CMAs
with µ3 andµ4 = δ2µ3 with 0 ≪ δ2 < 1. To obtain the largest EMSE
reduction of the scheme, we assume that the four step-sizes are differ-
ent but close to one another. The steady-state performance of the pro-
posed scheme can be evaluated using (7). Besidesζii, i = 1, . . . , 4,
ζ12, andζ34, we have to estimateζ13, ζ14, ζ23, andζ24. Thus, after
some algebraic manipulations, we conclude that the overall EMSE for
close step-sizes is

lim
(δ1,δ2)→(1,1)

ζ ≈
3

8
ζ11, (11)

which represents an EMSE reduction of 4.26 dB.
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Fig. 3. A combination of two affine combinations to improve the EMSE re-
duction in a stationary environment.

3.2. Nonstationary performance
As in the stationary case, the largest EMSE reduction of the affine
combination in relation to its components occurs whenζ11 ≈ ζ22.
This can happen in two situations: (i) whenTr(Q) ≈ µ1µ2σ

2
βTr(R);

or (ii) whenµ1 ≈ µ2. In case (i), replacing the model (4) under the
small step-size approximation in (7), after some algebra, we arrive at

ζ

ζii

≈
1

2
+

2δ

(δ + 1)2
, i = 1, 2. (12)

In case (ii), we obtain the following limit (recall thatζ11 ≈ ζ22)

lim
δ→1

ζ =
ζ22

2
+

σ2
βTr(R)Tr(Q)

2γ̄2ζ22
. (13)

Note that the EMSE reduction in both cases is limited by 3 dB. A re-
duction close to 3 dB will occur whenδ → 0 in (12) or when the sec-
ond term of the r.h.s. of (13) can be disregarded in relation toζ22/2.
We should notice that case (i) also occurs for the convex combina-
tion. However, in case (ii), the convex combination performs as its
best component, due to theλ(n) restriction. Although there may exist
an EMSE reduction, the minimum steady-state EMSE of both com-
binations is equal to the steady-state EMSE of a CMA equalizer with
optimal step-sizeµo, which happens whenTr(Q) ≈ qi, i = 1, 2,
whereqi , µ2

i σ
2
βTr(R) [10].

4. SIMULATIONS

In the first two simulations, we assume 4-PAM (pulse amplitude mod-
ulation) such thatr = 8.2, σ2

β = 28.8, and γ̄ = 6.8, and an FIR
channel with coefficients[0.1, 0.3, 1, −0.1, 0.5, 0.2] in the absence
of noise [6]. In the combinations, each component filter hasM = 4
coefficients as aT/2-FSE and is initialized with only one non-null
element in the second position.

To verify the behavior of the scheme of Fig. 3, we consider two
affine combinations of CMAs with close step-sizes. Fig. 4 shows the
EMSE and mixing parameter along the iterations estimated from the
ensemble-average of 500 independent runs. To facilitate the visual-
ization, the curves were filtered by a moving-average filter with 512
coefficients. The dashed lines in the figure show the predicted values
of ζ for each algorithm and their combinations. Since the four compo-
nent equalizers have close EMSEs, we show in Fig. 4 only the EMSEs
of µ1-CMA andµ4-CMA. Although there is no exact agreement be-
tween analysis and simulation, the predicted values model the overall
behavior of the algorithms and of their combinations. Note that a dif-
ference of a few dB is common in models for blind algorithms, due
to the strong assumptions necessary for the analysis. We can observe
from the figure that affine combinations of two CMAs with close step-
sizes provide an EMSE reduction of approximately 3 dB as predicted
by (9). An affine combination of the outputs of the combinations pro-
vides a reduction of approximately 4.26 dB in relation to each com-
ponent equalizer, as predicted by (11). A drawback of this scheme is
that the combinations converge slowly, since the convergence of the
algorithm for the updating of the mixing parameters depends on the
difference of the outputs of the components (see Table 1), which is
very small in this case.
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, i=1, 2 are the
mixing parameters of the affine combinations.

As in [1], we also use in a nonstationary environment the nor-
malized square deviation (NSD):NSDi(∞) = ζii/ζo, i = 1, 2,
NSD12(∞) = ζ12/ζo, NSD(∞) = ζ/ζo, whereζo is the optimum
steady-state EMSE of a CMA equalizer [10]. Fig. 5 shows the theoret-
ical and experimental NSD as a function ofTr(Q) for the affine and
convex combinations of two CMAs. Sinceδ = 0.1, the EMSE reduc-
tion provided by the affine combination outside the interval[q2, q1] is
almost imperceptible for the level of detail in the figure. In this exam-
ple, both combinations present very similar performance, in spite of
the restriction onλ(n) of the convex combination. Note that the max-
imum EMSE reduction is of approximately 1.8 dB (as predicted by
(12)) and occurs for both combinations atTr(Q) ≈ µ1µ2σ

2
βTr(R) ≈

4 × 10−7, whereζ11 ≈ ζ22. This reduction makes both combinations
have an EMSE close to the optimum inside[q2, q1]. The theoretical
models (4), (7), and (6) show good agreement with the experimental
results.

In order to avoid local minima, we combine two CMAs with the
same step-size but with different initializations. To improve the con-
vergence rate of the algorithms of Table 1, we consider a normalized
adaptation scheme similar to that of [11]. Basically, the step-sizesµα

andµλ are divided by[b(n) + ǫ], whereb(n) = ρb(n − 1) + (1 −
ρ)[y1(n) − y2(n)]2 with the forgetting factor0 ≪ ρ < 1 and the
small positive constantǫ. Furthermore, we replace the overall CMA
“error” e(n) in the adaptation ofα(n) of the convex combination by
the decision errored(n) to ensure its nearly universal behavior. We
assume the transmission of binary signals with symbols{±1} through
the channelH(z) = [1 + 0.6z−1]−1 with signal-to-noise ratio (SNR)
of 25 dB, and an FIR equalizer withM = 2 coefficients working in
the symbol rate. Fig. 6 shows an ensemble average of103 independent
runs for two different initialization sets. In situation 1 (Fig. 6-a), the
combinations perform close to the best component in steady-state and
reach the global minimum. The affine combination presents a faster
convergence, since it seeks the best weight vector in the whole line
w2 + λ(w1 − w2). Note that in the convergence, the mixing param-
eter of the affine combination is negative (Fig. 6-d). The restriction on
λ(n) in the convex combination causes its slower convergence. In situ-
ation 2,µ2-CMA may converges to two minima with EMSEs of -5 dB
and -20 dB, as shown in Figs. 6-b and c, respectively. In Fig. 6-b, for
412 out of103 realizations of the filters, the combinations performed
similarly to situation 1. In the remaining 588 realizations (Fig. 6-c),



the affine combination has an interesting behavior at the beginning of
the convergence: it rapidly achieves -9 dB and gets close to the global
minimum, but returns to the local minimum whenµ2-CMA converges
to -5 dB. Note that, in steady-state both components get stuck at the
same local minimum. The convex combination performs likeµ2-CMA
and the affine combination makes an useless effort to reverse this situ-
ation sinceE{λ(n)} → −200.
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Fig. 5. (a) Theoretical and experimental NSD of two CMA equalizers
(µ1 = 10−4, µ2 = 10−5), their cross-NSD, and NSD of their convex (NSDc,
µα = 0.075, α+ = 4) and affine (NSDa, µλ = 0.0075) combinations as
a function ofTr(Q); (b) Theoretical and experimental steady-state optimum
mixing parameter. The experimental points are indicated byx and were ob-
tained by an ensemble-average of 50 independent runs.

5. CONCLUSION

We proposed and analyzed an affine combination of two CMA equal-
izers. Analytical expressions for the steady-state optimum mixing pa-
rameter and for the steady-state EMSE of the combination were ob-
tained for stationary and nonstationary environments. Due to the ab-
sence of the restriction on the mixing parameter, when the component
equalizers have close step-sizes, the affine combination can provide
an EMSE reduction limited to 3 dB. However, in a nonstationary en-
vironment, the minimum steady-state EMSE of the convex or affine
combinations is equal to the steady-state EMSE of a CMA equalizer
with optimal step-size. Thus, depending on the step-sizes of the com-
ponents, the affine combination has similar performance to that of the
convex combination in a nonstationary environment. Additionally, To
avoid local minima, we combined two CMAs with the same step-sizes
but with different initializations. Through simulations, we observed
that there may exist situations where the combined scheme avoids lo-
cal minima. Comparing to the convex combination, the affine com-
bination may present faster convergence and search a minimum more
efficiently. Further work is necessary to extend this scheme to the com-
bination of more than two filters with more coefficients, and to ensure
convergence to a global minimum.
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