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ABSTRACT

One of the most popular algorithms for blind equalization is the Con-
stant Modulus Algorithm (CMA), due to its simplicity and low com-
putational cost. However, if the step-size is not properly chosen or if
the initialization is distant from the optimal solution, CMA can di-
verge or converge to undesirable local minima. In order to avoid di-
vergence, we propose a dual-mode algorithm, which works as CMA
with a time-variant step-size, but rejects non-consistent estimates of
the transmitted signal. We present a deterministic analysis of the
stability of the new algorithm for scalar filters. In the vector case,
the good performance of the new algorithm is confirmed through
numerical simulations.

Index Terms— Adaptive filters, blind equalization, Constant
Modulus Algorithm, dual-mode algorithms, stability.

1. INTRODUCTION

Blind equalizers are used in modern digital communication systems
to remove intersymbol interference introduced by dispersive chan-
nels. They avoid the repeated transmission of training signals, opti-
mizing the use of the channel capacity [1]. The Constant Modulus
Algorithm (CMA) [2] and the Shalvi-Weinstein Algorithm (SWA)
[3] are the most popular for the adaptation of these equalizers. Due to
the equivalence between the Constant Modulus and Shalvi-Weinstein
cost functions shown in [4], CMA and SWA seek to optimize the
same criterion, presenting similar convergence problems. Thus, an
inadequate choice of the step-size (resp., forgetting factor) of CMA
(resp., SWA) in conjunction with an initialization distant from the
zero-forcing solution can lead them to diverge (i.e., the norm of the
weight vector goes to infinity) or to converge to undesirable local
minima.

The convergence and stability of constant-modulus-based algo-
rithms have been the subject of research for many years. Many im-
portant results have been obtained (see, e.g., [1, 5, 6] and the ref-
erences therein). In particular, [5] analyzed the convergence of a
stop-and-go variant of CMA for constant modulus signals, consid-
ering a deterministic approach based on the feedback framework of
[7]. This analysis is based on the assumption that the equalizer out-
put is uniformly bounded in a finite interval and stability is ensured
due to the stop-and-go nature of the algorithm. However, the major
drawback of stop-and-go-based algorithms is the operation mode in
which the algorithm stops updating the coefficients until a predefined
condition is satisfied.

To avoid divergence, we propose a dual-mode algorithm which
never stops adjusting the equalizer coefficients, unlike stop-and-go-
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based algorithms. In the first mode, the algorithm works as a normal-
ized CMA: CMA with a time-variant step-size proportional to the in-
verse of the squared Euclidean norm of the input regressor vector. In
the second mode, the algorithm does not use the estimate (obtained
with higher-order statistics) of the transmitted signal, updating the
coefficient vector with an error proportional to the equalizer output.
The switching rule between the two operation modes is the same
used to avoid divergence in SWA, which was recently proposed in
[8]. It is based on a rule to check the consistency of the estimate of
the transmitted signal. If this consistency rule is satisfied, the algo-
rithm will work in the region of interest and can reach a stationary
point of the cost function. Otherwise, the estimate is rejected and a
modified update formula is used to make the algorithm return to the
region of interest. Furthermore, we give a proof that the proposed
algorithm is stable for scalar filters. In spite of the lack of a stability
proof in the vector case, results of exhaustive numerical simulations
suggest that the algorithm also does not diverge in this case, with a
performance similar to that of a well-initialized CMA with the time-
variant step-size mentioned above.

The paper is organized as follows. The problem is formulated in
Section 2, and the proposed algorithm is introduced in Section 3. In
Section 4, we present a deterministic stability analysis for the new
algorithm, for scalar filters. Simulation results and conclusions are
presented in sections 5 and 6, respectively. In order to simplify the
presentation, we assume real data throughout the paper.

2. PROBLEM FORMULATION

A simplified communications system is depicted in Fig. 1. The
signal a(n), assumed independent, identically distributed, and non
Gaussian, is transmitted through an unknown channel, whose model
is constituted by an FIR (Finite Impulse Response) filter H(z) and
additive white Gaussian noise η(n). From the received signal u(n)
and the known statistical properties of the transmitted signal, the
blind equalizer must mitigate the channel effects and recover the sig-
nal a(n) for some delay τd. The output of the equalizer is given by
y(n) = uT (n)w(n − 1), where u(n) is the input regressor vector,
w(n− 1) the equalizer weight vector (both column vectors with M
coefficients), and the superscript T denotes the transpose of a vector.

The equations of CMA and SWA are given respectively by

w(n) = w(n− 1) + μe(n)u(n) (1)

and

w(n) = w(n− 1) +
1

3σ2
a − r

e(n)R̂−1(n)u(n), (2)

where e(n) = y(n)
[
r − y2(n)

]
, r = E{a4(n)}/E{a2(n)}, σ2

a =

E{a2(n)}, E{·} denotes the expectation operation, and (1−λ)R̂(n)
is an estimate (with forgetting factor λ) of the autocorrelation matrix
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of the input signal, i.e., R � E{u(n)uT (n)}. Note that the constel-
lation a(n) in practice is sub-Gaussian, ensuring that the denomina-
tor (3σ2

a − r) in (2) is always positive [3, 7].

It is well-known that SWA and CMA present a tradeoff between
convergence rate and computational cost [3, 9]. This tradeoff tend to
be less critical when “normalized” versions of CMA are compared
to SWA. Different versions of normalized CMA have been proposed
in the literature (see, e.g., [10, 6] and the references therein). To the
best of our knowledge, they are based on variants of CMA other than
(1) and do not present a mechanism to avoid divergence. Thus, the
design of a stable blind equalization algorithm, along with a faster
convergence for CMA, are problems of wide interest. With these
goals, we propose a stable dual-mode algorithm based on a novel
normalized CMA, as shown in the next section.
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Fig. 1. Schematic representation of a communications system.

3. A DUAL-MODE ALGORITHM

SWA can be interpreted as a quasi-Newton algorithm, where R̂−1(n)
is an estimate of the Hessian of the constant-modulus cost function
[9]. Thus, we will start the derivation of our normalized version
of CMA from the following regularized Newton-type recursion, in-
spired in the recursion (2) for SWA,

w(n) = w(n− 1) +
μ̃

3σ2
a − r

[δI + R]−1E{e(n)u(n)},

where μ̃ is a step-size and δ is a small positive parameter. As in the
derivation of the NLMS (Normalized Least-Mean-Square) algorithm
[7, p. 225], the quantities [δI + R] and E{e(n)u(n)} should be re-
placed by instantaneous approximations, which leads to the stochas-
tic recursion

w(n) = w(n− 1) +
μ̃

3σ2
a − r

[δI + u(n)uT (n)]−1e(n)u(n).

Then, using the matrix inversion lemma [7, p. 67], we get

w(n) = w(n− 1) +
μ̃

(3σ2
a − r)(δ + ‖u(n)‖2)e(n)u(n), (3)

which can be interpreted as a normalized CMA (NCMA).

In order to derive a robust form for NCMA, we rewrite (3) in the
form of a supervised algorithm, i.e.,

w(n) = w(n− 1) +
μ̃

δ + ‖u(n)‖2 [d(n)− y(n)]u(n), (4)

where d(n) = x(n)y(n) and

x(n) =
3σ2

a − y2(n)

3σ2
a − r

.

Note that (4) has the same structure as the NLMS algorithm. The
difference is that d(n), as well as y(n), is an estimate of the desired
response. We conjecture that the consistency between these two esti-
mates will be ensured if d(n) and y(n) have the same sign, which is
equivalent to requiring the correction factor x(n) to be always pos-
itive. Since the denominator of x(n) is always positive, x(n) ≥ 0
occurs when y2(n) ≤ 3σ2

a. On the other hand, if y2(n) > 3σ2
a, the

algorithm leaves what we call the region of interest and the estimate
d(n) is simply rejected, i.e., we make d(n) = 0 and (4) reduces to

w(n) = w(n− 1)− μ̃

δ + ‖u(n)‖2 y(n)u(n). (5)

To complete the derivation of the algorithm, the step-size μ̃
should be chosen. If, at a certain iteration, ‖w(n−1)‖ is so large
that y2(n) > 3σ2

a, we can guarantee that ‖w(n)‖ ≤ ‖w(n−1)‖,
by choosing μ̃ as follows. Expanding y(n)=uT (n)w(n−1) in (5),
we obtain

w(n) =

[
I− μ̃

δ + ‖u(n)‖2 u(n)uT (n)

]
w(n− 1), (6)

and since u(n)uT (n) has one eigenvalue equal to ‖u(n)‖2, and
M−1 zero eigenvalues, the matrix between brackets has all eigenval-
ues with absolute values less than one if μ̃< 2. The proposed dual-
mode algorithm is summarized in Table 1 and denoted by DM-CMA.
Using a recursion to update the successive squared-norms of the re-
gressors [7, p. 227], each iteration of DM-CMA requires 2M + 6
multiplications, 2M + 3 additions, 1 division, and 1 comparison,
which represents a computational cost slightly higher than that of
CMA.

We should notice that μ̃ < 2 by itself does not imply in y2(n +
1) ≤ y2(n), i.e, this condition does not guarantee that the algorithm
returns to the region of interest, but only that the Euclidean norm of
the coefficient vector does not increase with time. To prove stability,
we need a persistence of excitation condition, as we show next for
the scalar case.

Table 1. Summary of DM-CMA.

Initialization:

w(−1) = [0 · · · 0 1 0 · · · 0]T

0 < μ̃ < 2, δ: small positive constant

for n = 0, 1, 2, 3, ... do:

y(n) = uT (n)w(n− 1)

x(n) =
3σ2

a − y2(n)

3σ2
a − r

if x(n) ≥ 0,
d(n) = x(n)y(n)

else
d(n) = 0

end
ē(n) = d(n)− y(n)

w(n) = w(n− 1) +
μ̃

δ + ‖u(n)‖2 ē(n)u(n)

end

4. A STABILITY ANALYSIS FOR THE SCALAR CASE

The difficulty of finding a stability proof arises from the fact that we
want to ensure that w(n) is bounded, but, in order to maintain a good
performance, we only switch to a different mode of operation when
y2(n)=(uT (n)w(n−1))2 is large. For a rigorous proof, one needs
to make sure that there is no way for w(n) to diverge to infinity
without uT (n)w(n−1) also diverging to infinity. In this section, we
present a simple, but rigorous, stability proof for the scalar (M =1)
case, using a simplified persistence of excitation condition1.

1A less restrictive and more usual persistence of excitation condition is

0 < b ≤ ∑N
k=0 u2(k) ≤ B < ∞ [11]. However, the use of this condition

is considerably involved, even for the simpler case of the LMS algorithm,
and we believe that the simpler condition is sufficient to describe the stability
properties of the proposed algorithm.
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In order to simplify the arguments, we assume that u(n) is
bounded from above and below, i.e., 0 < b ≤ u2(n)≤ B <∞. In
this case, we also have y2(n) = u2(n)w2(n−1). We prove now
that w2(n) always enters and stays inside a ball w2(n) ≤ 3σ2

a/b.
By contradiction, we assume that this condition is not true. It then
follows that

y2(n + 1) = u2(n + 1)w2(n) ≥ b(3σ2
a/b) = 3σ2

a,

so w(n + 1) will be computed from (6), and

w2(n + 1) =

[
1− μ̃u2(n + 1)

δ + u2(n + 1)

]2

w2(n) ≤ αw2(n),

where α < 1 for μ̃ < 2 (e.g., α = [1− μ̃b/(δ + b)]2 < 1, if μ̃ ≤ 1).
Since w2(n + 1) will be strictly smaller than w2(n), we conclude
that w2(n) will decrease until at some time n + k, w2(n + k) ≤
3σ2

a/b.

It is relevant to notice that, when the algorithm is in the region
of interest, it may converge to a good or a poor stationary point, that
is, it presents the same problems of constant-modulus-based algo-
rithms, except the divergence.

A similar analysis in the vector case (M ≥ 2) should use persis-
tence of excitation conditions [11], and will be presented in a further
work. However, we tested the algorithm extensively for longer fil-
ters, and never observed divergence. Some of these simulations are
presented in the next section.

5. SIMULATION RESULTS

The proposed DM-CMA is compared to NCMA and CMA, assum-
ing 2-PAM (Pulse Amplitude Modulation) with symbols {±1} or 4-
PAM with symbols {±1;±3}, a channel H(z) = h0+z−1+h0z

−2,
and an equalizer with M = 11 coefficients in all simulations. If not
mentioned otherwise, the equalizer is initialized with a the typical
center spike [1] and the adaptation parameters μ and μ̃ are adjusted
to make the algorithms converge to the same steady-state EMSE.

Fig. 2 shows the squared error for each algorithm, the sign of
x(n), and the equalizer output y(n) for h0 = 0.3 and a signal-to-
noise ratio (SNR) of 20 dB. To facilitate visualization, the squared
error curve was filtered by a moving-average filter with 16 coeffi-
cients. CMA diverges after 200 iterations and NCMA after 6250
iterations. On the other hand, DM-CMA has a stable and adequate
behavior. We can observe from the sign of x(n) that there are points
in which DM-CMA leaves the region of interest, but quickly returns
to it. The figure shows that, little before NCMA became unstable,
DM-CMA used (5) to update w(n), thereby avoiding divergence.

In the sequel, the algorithms are compared in terms of the prob-
ability of divergence Pd [12] and of the steady-state excess mean-
square error (EMSE). The probability of divergence is obtained from
L repetitions of each experiment, starting from the same initial con-
dition w(0). As in [12], we assume that a sample function is labeled
as “diverging”, if ‖w(N)‖ ≥ 104 after N iterations. Then, we com-
pute the probability of divergence as Pd = (Number of curves diverging)/L.
The EMSE, defined as E{e2

a(n)}=E{[â(n−τd)−y(n)]2}, is esti-
mated through ensemble-averages corresponding to (1−Pd)L inde-
pendent runs for each algorithm. Thus, each EMSE value is associ-
ated to a Pd value.

Fig. 3 shows EMSE and Pd as a function of SNR for a chan-
nel with little intersymbol interference, i.e., h0 = 0.1. For SNR ≥
20 dB, the algorithms have similar performance, since Pd = 0 and
the reached EMSE is the same. For SNR≤ 20 dB, although DM-
CMA and NCMA have also similar steady-state performance, the
probability of divergence for the latter increases with increased noise,
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Fig. 2. Squared error in dB (e2(n) for CMA and ē2(n) for
NCMA and DM-CMA), sign of x(n) for DM-CMA and output
of the equalizer for DM-CMA and NCMA; 2-PAM, h0 = 0.3,
SNR = 20 dB, μ = 0.044, μ̃ = 1, δ = 10−5.

reaching Pd ≈ 1 for SNR ≤ 2.5 dB, while DM-CMA does not di-
verge for the range of SNR considered. CMA presents a more unsta-
ble behavior than NCMA, diverging with Pd =1 for SNR<10 dB.

Fig. 4 shows EMSE and Pd as a function of the channel H(z) =
h0+z−1+h0z

−2 in the absence of noise. The larger the value of h0,
the greater is the intersymbol interference introduced by the chan-
nel. For 0.1 ≤ h0 ≤ 0.3, the algorithms behave in a similar man-
ner, since divergence is not observed. However, for 0.5 ≤ h0 ≤ 1
CMA always diverges and NCMA has Pd ≈ 1, converging only in
a small number of times (e.g., 24 times in 103 runs for h0 = 0.7).
Again, DM-CMA does not diverge, presenting the same steady-state
performance of the ensemble-average of (1 − Pd)L runs of CMA
and NCMA. Thus, besides avoiding divergence, (5) does not cause
meaningful changes in the performance of the algorithm since a
quick return to the region of interest was always observed.

The algorithms were also simulated with different initializations
as shown in Fig. 5. They were initialized with a vector in the same
direction as the optimal solution wo but with different magnitudes,
i.e., w(0) = pwo, 0.2 ≤ p ≤ 3.8. For p ≥ 1.8, CMA and
NCMA have Pd ≈ 1. In this case, an initialization far from wo

seems to be more critical for NCMA, since we did not observe con-
vergence for p ≥ 2.2. For an initialization distant from the opti-
mal solution but with a smaller magnitude (e.g., p = 0.2), although
Pd ≈ 0, the algorithms did not always converge to the optimal solu-
tion (EMSE = 50 dB), staying several times in local minima. For
all the initial conditions considered, DM-CMA did not diverge. Note
that CMA presents an EMSE value a little smaller than that of DM-
CMA for p = 3 and p = 3.4. However, CMA converged only once
(Pd = 0.9990), which does not indicate an acceptable performance
of the algorithm, while DM-CMA converged in all the 103 runs.
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Fig. 6 shows EMSE and Pd as a function of step-sizes μ̃ for
NCMA and DM-CMA, and μ (different scale) for CMA. We con-
sider a non-constant modulus signal (4-PAM) and the channel h0 =
0.3 in the absence of noise. The probability of divergence is close to
1 for μ ≥ 8× 10−4 for CMA and μ̃ > 0.4 for NCMA. We can also
observe that DM-CMA does not diverge for the considered range of
step-sizes, i.e., 0.01 ≤ μ̃ ≤ 1.8 and presents performance close
to the stable runs of CMA and NCMA. Thus, DM-CMA avoids di-
vergence and maintains an adequate behavior even for non-constant
modulus signals.
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6. CONCLUSION
In order to avoid divergence in CMA, we propose a dual-mode al-
gorithm. In the region of interest, it works as a normalized CMA.
Outside the region of interest, it rejects the estimate of the transmit-
ted signal. Using a deterministic argument, we show for scalar filters
that the proposed algorithm is stable. We performed a large number
of simulations also for filters with several taps, and never observed
divergence of the new algorithm. In a future work we intend to ex-
tend the stability analysis, using a less restrictive persistence of ex-
citation condition, to the vector case.
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