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ABSTRACT

We present a computationally ef cient method for sinusoidal noise
cancellation based on the FXLMS algorithm. It features subsam-
pling in order to increase convergence speed and decrease compu-
tational requirements, and most importantly, does not require extra
noise added to the lter output for secondary path identi cation. In
addition, it is robust to secondary path variations and in low SNR
scenarios, which are frequently found in practical active noise con-
trol systems, features fast tracking and can be directly generalized to
multichannel systems. We illustrate its operation with simulations.

Index Terms— Active noise control, acoustic noise, sinusoidal
noise cancellation, ltered-X least mean square methods, secondary
path model.

1. INTRODUCTION

Tonal noise is present in many noise control scenarios. It is typi-
cally found in applications featuring periodic driving signals, such
as power transformers and rotating machinery. To perform active
noise control (ANC), one would like to generate a signal which in-
terferes destructively with the original noise, thereby cancellating it.
To adaptively model the noise-generating mechanism, one often re-
sorts to the least-mean squares (LMS) algorithm [1].
In practical applications, the secondary path (SP) de ned from

the controller output to the cancellation points is not trivial: it in-
corporates a D/A converter, ampli ers, transducer gains and dis-
tortions, an acoustic delay, re ections, and an A/D converter. The
FXLMS algorithm [2] compensates for the secondary path transfer
function, and as long as the SP is correctly modeled and the adap-
tation step is suf ciently small, the FXLMS lter weights converge
to the Wiener solution [3]. As shown in [4], this is also true for the
complex FXLMS and multitonal noise.
The requirement to correctly model the SP often demands more

time and resources than the cancellation main loop. Acoustic im-
pulse responses can be very long, resulting in high computational
requirements and slow convergence of the SP identi er. Moderate
errors in the SP model lead to slow convergence for the control l-
ter, and large errors can cause the controller to diverge. To com-
plicate matters, most general-purpose online SP identi cation and
tracking algorithms use a system identi cation con guration, and
therefore require auxiliary noise to be added to the controller output,
increasing the residual noise power. For open- eld control of power
transformer noise, the task is particularly dif cult: a large number of
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transducers is necessary (i.e., several SP models must be estimated
in parallel), and the error microphones must be placed far away from
the control loudspeakers (so the SNR for a conventional SP identi -
cation lter will be very low, resulting in very slow convergence).
In order to mitigate or circumvent these issues, several alterna-

tives have been proposed. For example, [5, 6, 7] improve the system
identi cation con guration with auxiliary adaptive lters, auxiliary
noise power control and variable step sizes. Even though these modi-
cations increase overall robustness and convergence characteristics,
they have higher computational costs. The requirement to use long
lters makes wideband SP estimation an inherently complex step
that one would like to avoid. This is specially true for narrowband or
tonal ANC, where a model valid only for the frequency band of the
noise suf ces.
A few methods require no secondary path identi cation. [8] pro-

poses a frequency-domain perturbation method with a variable step
size to update the adaptive lter. For modest perturbations, conver-
gence is much slower than for LMS-based methods. The method
proposed in [9] uses 3 LMS lters for the complete ANC system.
Since these lters are expected to be long, this solution is also com-
putationally demanding.
It is a necessary condition for FXLMS stability in the tonal noise

scenario that the estimated SP phase error remain below ±90◦ [2].
Based on this observation, [10] proposes monitoring the residual
noise power and switching the sign of the adaptation coef cient if
divergence is detected. This sign change is equivalent to a 180◦

phase shift, which is enough to satisfy the ±90◦ bound and results
in convergence for suf ciently small adaptation steps. However, as
the SP estimated phase error increases, the maximum allowable step
size and convergence speed decrease. If the phase error is close to
the bound, the tonal FXLMS will not have acceptable tracking per-
formance. This method also has no provision for detecting phase
changes before divergence is experienced.
In the following sections we introduce an FXLMS algorithm for

single-tone noise which only requires estimation of the secondary
path delay. It features subsampling to improve convergence speed
and decrease computational requirements, online tracking to detect
slow secondary path variations and can be easily generalized to a
multi-channel scenario.

2. PROBLEM FORMULATION

Fig. 1 shows a block diagram for the FXLMS algorithm in a feed-
forward con guration. In this section, P (z) is the main acoustic
path, S (z) is the secondary path, Ŝ (z) is the estimated secondary
path and W (z) is the adaptive lter. x (n) is the reference signal,
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Fig. 1. Block diagram for the FXLMS algorithm

xf (n) is the reference signal ltered by S (z), xf̂ (n) is the refer-
ence signal ltered by Ŝ (z), d (n) is the primary noise at the can-
cellation point, y (n) is the control signal, e (n) is the residual noise
at the cancellation point and v (n) is zero mean additive noise, un-
correlated with x (n).
The ltered tap vector and adaptive weight vector are de ned as

x
f̂
(n) =

ˆ
xf̂ (n) xf̂ (n − 1) · · · xf̂ (n − L + 1)

˜T
,

w (n) =
ˆ
w0 (n) w1 (n) · · · wL−1 (n)

˜T
,

(1)

where ·T is the transpose operator, and the adaptive lter has length
L. The adaptive lter coef cients are updated by

w (n) = w (n − 1) + μx
f̂
(n) e (n) . (2)

Assuming that w (n) converges, perfect noise cancellation is possi-
ble forK sinusoids as long as L ≥ 2K.
Let p = E [x

f̂
(n) d (n)] and R

f f̂
= E

ˆ
xf (n)xT

f̂
(n)

˜
. The

mean weight behavior is given by

Ew (n) = Ew (n − 1) + μ (p − R
f f̂

Ew (n − 1)) . (3)

If Ŝ (z) = S (z), R
f f̂
reduces to the ltered signal autocorrela-

tion matrixRf and (3) has a form identical to that of standard LMS.
Assuming μ is properly selected, the convergence speed is deter-
mined by the eigenvalue spread ofRf .
We now review the±90◦ stability bound, as presented in [10]. If

x (n) is a sinusoid with frequency ω, S (z) and Ŝ (z) can be repre-
sented by the complex numbers Sω = S

`
ejω

´
and Ŝω = S

`
ejω

´
.

We can write Ŝω in terms of Sω , so that Ŝω = cωSωejθω , where cω

and θω are real constants and represent amplitude and phase estima-
tion errors, respectively. If Px (ω) is the power of the input sinusoid,
a necessary condition for convergence is

0 < μ <
2 cos (θω)

cωPx (ω) |Sω|
2
. (4)

Given a secondary path delay of Δ samples (Δ = 0 for the
LMS case), [2] gives a popular empirical upper bound for FXLMS
stability,

0 < μ <
1

Px (L + Δ)
. (5)

3. PROPOSEDMETHOD

Given (5), one would like to minimize the adaptive lter length L.
For a single sinusoid, L = 2 is suf cient for perfect cancellation. If
Ŝ (z) = S (z), x (n) = cos (ωn) and S

`
ejω

´
= Aejφ, then

xf (n) =
ˆ
A cos (ωn + φ) A cos (ω (n − 1) + φ)

˜T (6)

Fig. 2. Block diagram for the proposed algorithm

andRf is given by

Rf =
A2

2

»
1 cos ω

cos ω 1

–
. (7)

The eigenvalues of Rf are A2

2
(1 ± |cos ω|), so that its condition

number κ (Rf ) grows monotonically from 1 to +∞ as ω varies
away from π/2. In order to minimize the eigenvalue spread, one
would like to sample the signal with ω as close to π/2 as possible
(approximating the well-known adaptive notch lter [12]).
A block diagram for the proposed algorithm is presented in Fig.

2. In order to place the signal frequency closer to π/2, we subsample
the reference and error signals by an integer factor N , which also
allows signi cant computational savings.
Since x (n) is sinusoidal, the anti-aliasing lters before decima-

tion and after interpolation can be implemented as peak IIR lters.
Aside from being computationally simple, they present zero phase
shift at their center frequency. This property allows us to add or re-
move peak lters from the error path or reference path while keeping
the FXLMS controller stable.
As the frequency of the sinusoidal noise usually changes with

time, we use a frequency estimator in order to adaptively design
narrow anti-aliasing lters. This has the added bene t that we can
choose the optimum N on-line. An interesting frequency estima-
tor is Quinn and Fernandes’ iterative method [11], which is compu-
tationally equivalent to a 2 pole IIR lter followed by 2 multiply-
accumulate operations per sample. Its output is the desired fre-
quency conveniently expressed1 as α = 2 cos ω̂.
In the proposed method, all peak lters are centered on ω̂ and the

particular application dictates their respective bandwidths. If x (n)
is reasonably free of noise and harmonics, the anti-aliasing lter pre-
ceding decimation may have a large bandwidth or may be removed
altogether. Small bandwidths imply large group delays, implying a
trade-off between tracking capability and noise rejection.
When choosing the bandwidth of the interpolation lter, one

should consider the expected residual noise. Smaller bandwidths
reduce noise contributions due to aliasing, but also decrease con-
vergence speeds due to larger group delays. Given that the group
delay next to a lter peak is inversely proportional to its bandwidth,
series associations of peak lters can deliver better results. If ω is
approximately known a priori, an optimal combination of interpo-
lators can be designed. If the subsampling rate N is large (and the
sampling rate cannot be reduced), interpolation should be performed

1Given a bandwidth parameter γ, 2nd order peak IIR lters have the form

H (z) =
(1 − γ) + (γ − 1) z−2

1− (2γ cos ω) z−1
− (1− 2γ) z−2
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in multiple steps, and the same bene ts of series interpolators can be
obtained.
This same discussion applies to the lter applied to e (n). Ex-

cellent results can be achieved without ltering e (n), as long as the
error does not contain sinusoids2 at frequencies close to ω, or high
frequency sinusoids whose frequencies alias to the neighborhood of
ω. Sinusoids present in e (n) with frequencies far from ω create a
sinusoidal beat pattern in w which couples to the output of W (z),
but is ltered out by the interpolator. In general, e (n) should be
ltered to guarantee robustness. Filtering also prevents white noise
from folding down, reducing its in uence by a factor of N .
Instead of using a full secondary path model, we simply delay

the reference signal. The element z−D represents a coarse delay
which must be estimated off-line. In scenarios with long acoustic
paths, neglecting this delay line and implementing the smallest phase
shift to meet the ±90◦ bound leaves the controller very sensitive to
frequency variations in x (n), forcing μ to very small values.
The element z−d is a variable delay which is estimated as fol-

lows. Before the controller is initialized, the system measures the av-
erage background noise power. For values of d from 0 up to one pe-
riod delay and in increments corresponding to phase changes smaller
or equal to 45◦, the system runs the FXLMS loop for a short time
and monitors the residual noise power. If the noise power exceeds
a preset threshold, divergence is assumed. Otherwise, the selected
d is supposed to be within the ±90◦ bound for convergence. After
testing all values of d, the median of all convergent values of d is
selected.
Once the adaptation is running, the system estimates whether its

value of d remains adequate. To do this we employ the following
method: (1) put the adaptation on hold (set μ = 0); (2) set w to
w̃ = (1 − δ)w (n0), where n0 is the current sample and δ is a
small positive value whose purpose will be clari ed below; (3) lter
the nextM samples with w̃; (4) evaluate

C (i) =

n0+M−1X
n=n0

w̃
T
xd (n − i) ed (n) (8)

for i in the neighborhood of d, whereM is the test duration in sam-
ples at the decimated rate and xd(n) is the decimated regressor (see
Fig. 2). This test may be executed in parallel for all i; (5) update

d = d + arg max
i

C (i) (9)

This procedure may be interpreted as follows. Assuming that
prior to the test w had converged to provide cancellation, dd (n) ≈
yd (n) = wT xd (n − Δ) and ed (n) ≈ vd (n), where the ·d sub-
script indicates decimation and Δ is the actual secondary path de-
lay. Thus, ltering with w̃ produces ed (n) ≈ δdd (n) + vd (n) =
δwT xd (n − Δ) + vd (n). Since v (n) and x (n) are independent,
C (i) is proportional to the cross-correlation between wT x (n − Δ)
and wT x (n − D − d − i), the predicted output of the control l-
ter after traversing a secondary path with delay D + d + i. This
cross-correlation is maximum when D + d + i is closest toΔ.
The assumption that w had converged prior to evaluating C (i)

underscores the importance of having a fast cancellation loop. The
measures taken along this section make this assumption practical.
The choice of δ is a compromise between noise immunity, tracking
capability and residual noise. Small values of δ imply longer corre-
lation times, during which no adaptation is performed. Large values
of δ increase the residual noise during the test.

2That is, other than the sinusoid the system is trying to supress.

Interpolator BW (rad) NRNP (dB) Convergence Time
0.1 · π −19.1 25 samples
0.05 · π −25.1 50 samples
0.01 · π −39.1 400 samples
0.005 · π −45.1 1000 samples

0.1 · π (2×) −41.0 100 samples
0.05 · π (2×) −53.2 250 samples

Table 1. Performance of the proposed method for various interpola-
tors (fs = 2 kHz, f0 = 250 Hz,N = 2, optimal μ)
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Fig. 3. Residual noise plots with v (n) = 0, zero delay and -40 dB
NRNP. From top to bottom: 250 Hz sinusoid, interpolator composed
of two peak lters, each with BW = 0.1 · π rad; 250 Hz sinusoid,
single interpolator with BW = 0.01 ·π rad; 200 Hz sinusoid, single
interpolator; 200 Hz sinusoid, single interpolator, increased μ.

4. SIMULATIONS

The following simulations consider a sampling rate fs = 2kHz and
subsampling rate N = 2. Cancellation/interpolation performance is
measured with the normalized residual noise power:

NRNP(dB) = 10 log10

E
ˆ
e2 (n)

˜
E [d2 (n)] + E [v2 (n)]

Table 1 shows a comparison between different interpolators. For
these simulations, v(n) = 0 and the NRNP represents the noise oor
due to interpolator aliasing. We consider that the adaptive lter has
converged when the NRNP stabilizes.
Fig. 3 shows residual noise plots due to interpolator aliasing. For

sinusoids at 250 Hz and 200 Hz we have, respectively, κ (Rf ) = 1
and κ (Rf ) = 1.89, and the convergence times differ by approxi-
mately the ratio of these condition numbers (i.e., 1.89). The bottom
plot illustrates a ringing effect produced by the IIR lters for large
values of μ. This initially produces fast convergence, but coef cient
values overshoot their optimum and the settling time is sub-optimal,
albeit by a very small amount.
Fig. 4 shows learning curves made by averaging 1000 runs with

E
ˆ
d2 (n)

˜
= E

ˆ
v2 (n)

˜
= 0.5 and using the lters from Fig. 3.

347



100 200 300 400 500 600 700 800 900 1000

0.5

1

Full band samples (at 2 kHz)

f0 = 250 Hz, μ = 0.2, two interp.

noise floor

100 200 300 400 500 600 700 800 900 1000

0.5

1

Full band samples (at 2 kHz)

f0 = 250 Hz, μ = 0.045

noise floor

100 200 300 400 500 600 700 800 900 1000

0.5

1

Full band samples (at 2 kHz)

f0 = 200 Hz, μ = 0.045

noise floor

100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

1

Full band samples (at 2 kHz)

f0 = 200 Hz, μ = 0.2

noise floor

Fig. 4. E
ˆ
e2 (n)

˜
curves for zero delay and E

ˆ
d2 (n)

˜
=

E
ˆ
v2 (n)

˜
= 0.5, averaged over 1000 runs. The interpolation lters

are the same as in Fig. 3.

Note that larger adaptation steps correspond to larger steady-state
errors. These plots illustrate the algorithm’s robustness under very
high noise levels (typically one would not apply this method with
such large step sizes).
Fig. 5 compares behavior under abrupt secondary path changes

for a SP estimator using auxiliary white noise [2], a 2 tap LMS l-
ter with no SP tracking as used in [10], and the proposed method.
The input was a 250 Hz sinusoid, and S (z) was modeled as a 90
tap FIR lter with an impulse response featuring two exponentially
decaying peaks. The auxiliary noise method was set up with an 100
tap model, and Ŝ (z) was initialized to match S (z). The simulation
imposes 45◦ phase increments on instants multiple of 104 samples,
and despite the long interval between changes, the white noise esti-
mator could not track them. The conventional LMS lter diverges
very quickly once the 90◦ bound is exceeded.

5. CONCLUSION

We have presented an algorithm for tonal noise cancellation which
models the secondary path as a delay. It is robust to noise and
secondary-path variations, quickly tracks primary noise disturbances
and has modest computational requirements. It compares very well
with more traditional options for ANC, especially in applications
featuring sources with small frequency uctuations and environments
with low SNRs. Its generalization to multichannel applications is
straightforward, and allows sharing elements involved in decimation
and interpolation. Future work includes theoretically characterizing
its performance, and applying it to the open- eld control of power
transformer noise.
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