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ABSTRACT

Recently, we proposed a model for the steady-state estimation
error of real-valued constant-modulus-based algorithms as a func-
tion of the a priori error and of a term that measures the variability
in the modulus of the transmitted signal. In this paper, we extend
this model to complex-valued data and use it in conjunction with the
feedback analysis method to obtain an analytical expression for the
steady-state excess mean-square error (EMSE) of the Constant Mod-
ulus Algorithm (CMA). Such expression is more accurate for larger
step-sizes than the previous ones in the literature, as confirmed by
the good agreement between analytical and simulation results. Fur-
thermore, from the EMSE expression, we obtain an estimate for the
CMA step-size interval to ensure its convergence and stability, when
it is initialized sufficiently close to the zero-forcing solution.

Index Terms— Adaptive filters, blind equalization, energy con-
servation, tracking analysis, Constant Modulus Algorithm.

1. INTRODUCTION

Blind equalizers are used in modern digital communication systems
to remove intersymbol interference introduced by dispersive chan-
nels. The Constant Modulus Algorithm (CMA) [1] is the most pop-
ular for the adaptation of finite impulse response (FIR) equalizers
due to its low computational complexity. Based on the link between
blind and supervised equalization of [2], CMA can be interpreted as
the blind version of the Least-Mean-Square (LMS) algorithm.

Analytical expressions for the steady-state excess mean-square
error (EMSE) of constant-modulus-based algorithms have been com-
puted in the literature (see, e.g., [3]-[6]). Using Lyapunov stability
and averaging analysis, an approximate expression for the EMSE of
CMA was obtained in [3]. Later, [4] and [5] focused on the CMA
steady-state performance, using feedback analysis. Considering still
the feedback method, [6] analyzed the tracking of constant-modulus-
based algorithms in a unified manner. However, all these results are
based on the assumption of a small step-size.

Recently, we proposed in [7] a model for the steady-state es-
timation error of constant-modulus-based algorithms as a function
of the a priori error and of a term that measures the variability in
the modulus of the transmitted signal. Such model, proposed for
real-valued data, is based on the assumption that the optimum fil-
ter achieves perfect equalization [4, 5]. It also allows us to analyze
the tracking performance of blind and supervised adaptive filters in
a unified manner, since the variability in the transmitted signal mod-
ulus plays a role similar to the measurement noise in the supervised
case.

This work was supported in part by FAPESP under grant 04/15114-2,
and CNPq under grant 303.361/2004-2.

This paper has three main contributions. First, we extend the
model of [7] to complex-valued data. Second, we use this model and
the feedback method of [8] to derive an expression for the EMSE of
CMA which is more accurate for larger step-sizes. Third, using this
expression, we obtain an estimate for the step-size interval of CMA
in order to ensure its convergence and stability, when it is initialized
sufficiently close to the zero-forcing solution. To the best of our
knowledge, simple bounds for the CMA step-size are not available
in the literature. The paper is organized as follows. In Section 2,
the problem is formulated. In Section 3, the steady-state analysis
is presented. Simulation results and the conclusions are shown in
sections 4 and 5, respectively.

2. PROBLEM FORMULATION

A simplified block diagram of a baseband communication sys-
tem, considering a T/L fractionally-spaced equalizer (FSE) is de-
picted in Figure 1. Under certain well-known conditions, this model
ensures perfect equalization in a noise-free environment, e.g. [9,
5]. The transmitted signal a(n) is assumed i.i.d. (independent and
identically distributed) and non Gaussian. We assume an M -tap
FIR equalizer with input regressor vector u(n) and output y(n) =
uT (n)w(n−1), where w(n−1) is the equalizer weight vector and
the superscript T indicates transposition. The equalizer must miti-
gate the channel effects and recover the signal a(n) for some delay
τd. In blind equalization, there is no training data and the algorithms
update w(n−1) using only higher-order statistics of the transmitted
signal [1, 8].

 
Channel Equalizer 

( )a n ( )y n

L

( )u n

Fig. 1. Communication system model considering a T/L
fractionally-spaced equalizer.

In this paper, we focus on the Constant Modulus Algorithm,
whose update equation is given by

w(n) = w(n− 1) + μe(n)u∗(n), (1)

where
e(n) = (ra − |y(n)|2)y(n), (2)

μ is the step-size, ra � E{|a(n)|4}/E{|a(n)|2}, the superscript ∗
stands for complex conjugate, and E{·} is the expectation operator.

3. TRACKING ANALYSIS

We assume that in a nonstationary environment, the variation in
the optimal solution wo follows a random-walk model [8, p. 359],
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that is,

wo(n) = wo(n− 1) + q(n). (3)

In this model, q(n) is an i.i.d. vector with positive-definite auto-
correlation matrix Q = E{q∗(n)qT (n)} and is independent of the
initial conditions {wo(−1),w(−1)} and of {u(l)} for all l < n [8,
Sec. 7.4]. For constant-modulus-based algorithms, there is more
than one optimal solution since perfect equalization is achieved
when the channel-equalizer impulse response assumes the form
[ 0 ··· 0 ejθ 0 ··· 0 ]T , where θ is a phase rotation. Since all these so-
lutions give equally good results, we assume that the algorithm is
initialized so that it converges to the case of θ = 0. Since we are
studying its steady-state performance, this does not imply a restric-
tion in the applicability of our results.

One measure of the filter performance is given by the EMSE,
defined as

ζ � lim
n→∞

E{|ea(n)|2}, (4)

where ea(n) = uT (n)w̃(n−1) is the a priori error and w̃(n−1) =
wo(n− 1)−w(n− 1) is the weight-error vector.

The steady-state analysis of CMA is based on the following as-
sumptions:

A1. E{a(n)|a(n)|k−1} = 0, k = 2m + 1, m ∈ N, and for
complex data E{a2(n)} = 0 (circularity condition). In other
words, a(n) is sub-Gaussian and the constellation is symmet-
ric, as is the case for most constellations used in digital com-
munications [8].

A2. The signal-to-noise ratio at the input is high, so that a(n −
τd) ≈ uT (n)wo(n−1), i.e., the optimum filter achieves per-
fect equalization. However, due to channel variation and gra-
dient noise, the equalizer weight vector w(n−1) is not equal
to wo(n− 1), even in steady-state. Using the above approxi-
mation, we have y(n) = uT (n)w(n− 1) = uT (n)[wo(n−
1)− w̃(n− 1)], i.e.,

y(n) ≈ a(n− τd)− ea(n). (5)

This approximation was also used in the CMA steady-state
analyses of [4, Sec. III-A] and [5].

Using A2, the constant-modulus error of (2), can be rewritten as

e(n)=γ(n)ea(n)+(3− α)a2(n− τd)e∗a(n)+β(n)+s(n), (6)

where

γ(n) =α|a(n− τd)|2 − ra, (7)

β(n) =a(n− τd)ra − a(n− τd)|a(n− τd)|2, (8)

s(n) =− 2a(n− τd)|ea(n)|2 − a∗(n− τd)e
2
a(n)

+ ea(n)|ea(n)|2, (9)

and α = 2 (resp., α = 3) for complex (resp., real) data. If e2
a(n)

is reasonably small in steady-state, terms depending on higher-order
combinations of ea(n) can be disregarded in (6), i.e., limn→∞ s(n)
≈ 0, which leads to the approximation

e(n) ≈ γ(n)ea(n) + (3− α)a2(n− τd)e∗a(n) + β(n). (10)

From (8) and A1, β(n) is an i.i.d. random variable, which satisfies
E{β(n)} = 0 and

σ2
β � E{|β(n)|2} = E{|a(n)|6 − (ra)2|a(n)|2}. (11)

Analogously, the first and second moments of γ(n) are given respec-
tively by

γ̄ � E{γ(n)} = αE{|a(n)|2} − ra
(12)

and

ξ � E{γ2(n)} = α(α− 2) ra E{|a(n)|2}+ (ra)2. (13)

For sub-Gaussian constellations (see A1), we always have γ̄ > 0.
The model (10) was proposed in [7] for real-valued data and is

extended here for complex-valued data. We should notice that the
same model also holds for supervised filters, only in that case we
would have γ(n) ≡ 1, α = 3, and the measurement noise v(n) in-
stead of β(n). In addition, β(n) is identically zero for constellations
which do have constant modulus, so the variability in the modulus
of a(n) (as measured by β(n)) plays the role of measurement noise
for CMA.

To proceed, we also assume that

A3. a(n − τd) and ea(n) are independent in steady-state. This
assumption essentially requires the steady-state output fluc-
tuations {ea(n)} to be insensitive, in steady-state, to the ac-
tual transmitted symbols {a(n)} [4, 5]. An immediate con-
sequence of this assumption is that γ(n) and β(n) are also
independent of a(n− τd) in steady-state.

A4. ‖u(n)‖2 and ea(n) are independent in steady-state. This re-
quires the energy of the input vector to be independent of the
a priori error [4, As.I.2, p.84];

A5. E{‖w̃(n)‖2} = E{‖w̃(n − 1)‖2} when n → ∞, i.e., the
filters are operating in stable conditions, and have reached
steady-state.

The update recursion (1) can be written in terms of the weight-
error vector w̃(n) = wo(n) −w(n). Subtracting both sides of (1)
from wo(n) and using (3), we get

w̃(n)− q(n) = w̃(n− 1)− μe(n)u∗(n). (14)

By evaluating the energies, i.e, the squared Euclidean norms on both
sides of (14), we obtain

‖w̃(n)− q(n)‖2 = ‖w̃(n− 1)‖2 + μ2‖u(n)‖2|e(n)|2
−μ [e(n)e∗a(n) + e∗(n)ea(n)] . (15)

By taking expectations of both sides of (15), using A4, A5, and the
model (3) , we arrive at

−E{‖q(n)‖2} ≈ − μE{e(n)e∗a(n) + e∗(n)ea(n)}
+ μ2E{‖u(n)‖2}E{|e(n)|2}. (16)

To simplify (16), we use (4) and the model (10) in conjunction
with A1, A3, and A4 to get the following approximations:

E{|e(n)|2} ≈ [

ξ + (3− α)E{|a(n)|4}] ζ + σ2
β (17)

and
E{e(n)e∗a(n) + e∗(n)ea(n)} ≈ 2 γ̄ ζ. (18)

Replacing (17) and (18) in (16), we obtain

ζ ≈ μ σ2
β E{‖u(n)‖2}+ μ−1E{‖q(n)‖2}

2γ̄ − μE{‖u(n)‖2} [ξ + (3− α)E{|a(n)|4}] . (19)

The terms E{‖u(n)‖2} and E{‖q(n)‖2} can be replaced by the
traces of matrices R and Q, respectively, i.e., Tr(R) and Tr(Q),

where R � E{u∗(n)uT (n)} is the autocorrelation matrix of the
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input regressor vector u(n). Then, we arrive at the analytical ex-
pression for the steady-state EMSE of CMA, shown in Table 1. The
EMSE expression of the LMS algorithm can also be obtained from
(19), making σ2

β = σ2
v , α = 3, γ̄ = 1, and ξ = 1. Thus, there is

an evident equivalence between LMS and CMA, as we can observe
comparing the expressions of Table 1.

Since the EMSE is positive by definition, the analytical expres-
sions of Table 1 must always provide positive estimates. This can be
used to obtain a rough estimate of the range of step-sizes for stable
behavior of CMA. The denominator of (19) will be positive if the
CMA step-size is chosen in the following interval

0 < μ < μmax =
2γ̄

Tr(R) [ξ + (3− α)E{|a(n)|4}] . (20)

For LMS, this argument leads to the range 0 < μ < 2/Tr(R),
which is the same approximation provided in [10].

To close this section, we should notice that the model (10) also
allows us to analyze the tracking performance of CMA using the
traditional method, where one computes a recursion for the autocor-
relation matrix of the weight-error vector. However, the feedback
method is less laborious, allowing one to obtain good approxima-
tions in a more immediate manner [8, Ch. 7]. This justifies the choice
of the feedback method in the analysis presented here.

Table 1. Analytical expressions for steady-state EMSE.

Alg. ζ

CMA
μσ2

β Tr(R) + μ−1Tr(Q)

2γ̄ − μTr(R) [ξ + (3− α)E{|a(n)|4}]

LMS
μσ2

vTr(R) + μ−1Tr(Q)

2− μTr(R)

4. SIMULATION RESULTS

To verify the validity of the tracking analysis for real and com-
plex data, we assume Q = σ2

qI, with σ2
q = 10−6 and I the iden-

tity matrix. In the real data case, we use 4-PAM (Pulse Amplitude
Modulation) with symbols {±1, ±3} and statistics E{a2(n)} = 5,
E{a4(n)} = 41, and E{a6(n)} = 365. We consider the channel 1
of Table 2 and M = 4 coefficients for a T/2-FSE, which is initial-
ized with only one non-null element in the second position. Figure 2
shows the EMSE estimated from the ensemble-average of 100 in-
dependent runs for each step-size μ. We reject the experiments in
which the algorithm diverges or converges to local minima, since
our analysis is valid for ea(n) sufficiently small (see assumption
A2). We also show the theoretical values predicted by the expres-
sion of Table 1 and by the expression derived in [5]. For μ < 10−3,
both expressions give almost the same values, which agree reason-
ably well with the simulation results. In this case, the step-size μ is
small enough for the denominator of (19) to be well approximated
by 2γ̄. However, for larger step-sizes (μ > 10−3, in this example),
the approximation is no longer valid, and the expressions give dif-
ferent values. As can be seen from the figure, the values predicted
by the expression of Table 1 are more accurate than those predicted
by [5].

In the complex data case, we use 8-QAM (Quadrature Ampli-
tude Modulation) with symbols {±1, ±j, +1 ± j, −1 ± j} and
statistics E{|a(n)|2} = 1.5, E{|a(n)|4} = 2.5, and E{|a(n)|6} =
4.5. We consider the channel 2 of of Table 2 and M = 6 coefficients
for a T/2-FSE, which is initialized with only one non-null element

in the third position. Figure 3 shows the EMSE estimated from the
ensemble-average of 100 independent runs for each μ. Again, we
reject the runs in which the algorithm diverges or converges to lo-
cal minima. For μ < 10−2, our expression and the one derived in
[5] give similar values, and good agreement with simulations. How-
ever, for larger step-sizes (μ > 10−2, in this example), the values
predicted by the expression of Table 1 are again more accurate than
those predicted by [5].

To verify the step-size interval of (20), we estimate the CMA’s
probability of divergence Pd [11], which is obtained from Nexp rep-
etitions of each experiment, starting from the same initial condition
w(0). As in [11], we assume that a sample function is labeled as
“diverging”, if ‖w(Nit)‖ ≥ 104 after Nit iterations. Then, we com-
pute the probability of divergence as

Pd = (Number of curves diverging)/Nexp.

Figure 4 shows values of the estimated Pd as a function of μ =
pμμmax, 0 < pμ ≤ 1 for the real and complex-valued previous
examples, but considering a stationary environment (σ2

q = 0) and an
initialization close to the optimal solution. We can observe that the
superior limit μmax is in the region where the algorithm becomes
unstable with Pd = 1. Hence, to guarantee the stability of CMA,
μ must be chosen smaller than μmax, e.g., μ = 0.3μmax, where
Pd ≈ 0. This was also observed for a great variety of situations such
as different channels and number of coefficients.

Although a step-size much smaller than μmax can ensure the
stability of CMA, this result will be valid only if the initialization of
the algorithm is sufficiently close to the optimal solution. Figure 5
shows the probability of divergence as a function of the initializa-
tion w(0) = pwwo, pw > 0, considering a constant step-size: μ =
μmax/3 = 0.0030 for the real case and μ = 0.4μmax = 0.0321 for
the complex case. Note that we initialize the algorithm with a vector
in the same direction as the optimal solution, but with different mag-
nitudes. The probability of divergence increases for pw > 1.5, being
more critical in the complex-valued example. For an initialization
distant from the optimal solution but with a smaller magnitude (e.g.,
pw = 0.1), although divergence was not observed, the algorithm did
not always converge to the optimal solution, staying several times in
local minima.

Table 2. Coefficients of the channels used in the simulations.

channel 1 channel 2

−0.1761 −0.1761− j0.1970
−0.6166 −0.6166− j0.7580
+0.5943 +0.5943 + j0.0054
−0.1080 −0.1080− j0.0193
+0.0505 +0.0505 + j0.0110
+0.0911 +0.0911 + j0.0246

5. CONCLUSION

Using a steady-state model for the estimation error of constant-mod-
ulus-based algorithms in conjunction with the feedback method, we
derived a more accurate analytical expression for the steady-state
EMSE of CMA. It is equivalent to the EMSE expression of the LMS
algorithm, which reinforces the link between blind and non-blind
adaptive filters. Using this result, we estimate the steady-state EMSE
of CMA equalizers and find it in reasonable agreement with exper-
imental results. From the EMSE expression, we obtained a rough
and easy to compute estimate of the range of step-sizes to guarantee
the stability of CMA. A more accurate estimate will be presented in
a future work.
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Fig. 2. Theoretical and experimental steady-state EMSE as a func-
tion of step-size for CMA; mean of 100 independent runs; 4-PAM,
M = 4, T/2-FSE, channel 1, Q = 10−6I.
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Fig. 3. Theoretical and experimental steady-state EMSE as a func-
tion of step-size for CMA; mean of 100 independent runs; 8-QAM,
M = 6, T/2-FSE, channel 2, Q = 10−6I.
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Fig. 4. Probability of divergence as a function of step-size
μ = pμμmax; Nexp = 103, Nit = 104. Real case: 4-
PAM, M = 4, T/2-FSE, μmax = 0.0091, wT
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Fig. 5. Probability of divergence as a function of the initialization
w(0) = pwwo; Nexp = 103, Nit = 104. Real case: 4-PAM,
M = 4, T/2-FSE, μ = μmax/3 = 0.0030. Complex case: 8-
QAM, M = 6, T/2-FSE, μ = 0.4μmax = 0.0321; wo is the same
as in Fig. 4.
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