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ABSTRACT

We propose a convex combination of two blind equalizers adapted
respectively by CMA (Constant Modulus Algorithm) and SWA
(Shalvi-Weinstien Algorithm). The performance of the proposed
scheme is, in the worst case, as good as that of the best of its compo-
nents. This behavior provides a good tracking capability, since both
CMA or SWA may have a better tracking performance, depending
on the kind of nonstationary environment. A steady-state analysis
(using energy conservation) is also presented, considering both the
proposed scheme, and the convex combination of two CMAs.

Index Terms— Adaptive filters, blind equalization, convex com-
bination, energy conservation, tracking analysis, Constant Modulus
Algorithm.

1. INTRODUCTION

In order to improve adaptive filter performance, some attention has
been given to the combination of algorithms. A convex combi-
nation of one fast and one slow LMS (Least Mean-Square) filter
was introduced in [1] and analyzed via energy conservation relations
in [2]. Furthermore, it was shown that this structure is universal in
the mean-square error sense, presenting a worst case performance
as good as that of the best of its components, and outperforming
both of them when the correlation between the a priori errors of the
component filters is low enough [2]. The scheme was also proposed
for blind equalization applications, considering the combination of
one fast and one slow CMA (Constant Modulus Algorithm) [3], but
without a theoretical model for the overall mean-square error.

Another well-known blind equalization algorithm is the Shalvi-
Weinstein Algorithm (SWA) [4]. Based on the link between blind
equalization and classical adaptive filtering of [5], CMA and SWA
can be interpreted as the blind versions of LMS and RLS (Recur-
sive Least-Squares), respectively. Thus, as shown in [6], the ratio
between the minimum EMSE (Excess Minimum Square Error) for
SWA and CMA is the same as between the RLS and LMS algo-
rithms, in nonstationary environments. Consequently, as with LMS
and RLS, the tracking behavior of CMA and SWA depends on the
kind of nonstationary environment [7, 8]. They present similar per-
formances when the matrix Q of the random-walk model in (7) is
a multiple of the identity matrix. For other choices of Q, one algo-
rithm may perform better than the other. Taken together, the results
of [5–7] mean that, if Q is a multiple of R (autocorrelation of the
input signal), CMA is superior, and if Q is a multiple of R−1, SWA
is superior.
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This paper has two main contributions. First, to take advan-
tage of the differences in the tracking performances of CMA and
SWA [6], employing a convex combination of them. The proposed
combination should acquire the good initial convergence properties
of SWA, and have a good tracking performance for all nonstation-
ary environments. Second, using energy conservation relations, we
present a tracking analysis for the proposed scheme, and also for the
convex combination of two CMAs proposed in [3]. In both cases, we
consider nonconstant modulus, real-valued constellations (the exten-
sion to complex constellations is straightforward).

The paper is organized as follows. In the next section, we de-
scribe convex combinations of blind equalizers. In Section 3, the
steady-state analysis is presented. Then, simulation results and the
conclusions are shown in sections 4 and 5, respectively.

2. PROBLEM FORMULATION

A communication system model considering a T/L fractionally-
spaced equalizer is shown in Figure 1.
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Fig. 1. Communication system model considering a T/L
fractionally-spaced equalizer.

Under certain well-known conditions, this model ensures perfect
equalization in a noise-free environment, e.g. [9, 10]. The transmit-
ted signal a(n) is assumed i.i.d. (independent and identically dis-
tributed) and non Gaussian. We assume M -tap FIR equalizers, with
input vector u(n). The output of an equalizer, in a noise free envi-
ronment, can be written as

y(n) = u
T (n)w(n − 1),

where w(n − 1) is the equalizer weight vector. The blind equalizer
must mitigate the channel effects without training data and recover
the signal a(n) for some delay τd.

A convex combination of two equalizers can also be used, as
proposed in [3] and depicted in Figure 2. In this scheme, the overall
weight vector is given by w(n − 1) = η(n)w1(n − 1) + [1 −
η(n)]w2(n − 1). Similarly, the output of the overall equalizer is
given by

y(n) = η(n)y1(n) + [1 − η(n)]y2(n), (1)

where yi(n), i = 1, 2 are the outputs of the equalizers, i.e., yi(n) =
uT (n)wi(n−1), u(n) is the common regressor vector, and wi(n−
1) are the weight vectors of each component equalizer. The mixing
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Fig. 2. Adaptive convex combination of two blind equalizers.

parameter η(n) is modified via a sigmoidal function and the auxil-
iary variable α(n − 1) [1–3], that is,

η(n) = sgm[α(n − 1)] =
1

1 + e−α(n−1)
, (2)

with α(n) being updated as

α(n) = α(n − 1) − µαeα(n)η(n)[1 − η(n)], (3)

where
eα(n) = (y2(n) − ra)y(n)[y1(n) − y2(n)], (4)

ra = E{a4(n)}/E{a2(n)}, and E{·} denotes the expectation op-
eration. Equation (3) was obtained in [3], using a stochastic gradient
rule to minimize the instantaneous constant modulus cost given by
J(n) = (y2(n) − ra)2. The auxiliary variable α(n) is used to keep
η(n) in the interval [0, 1]. A drawback of this scheme is that α(n)
stops updating whenever η(n) is close to 0 or 1. To avoid this, [2, 3]
suggest that α(n) be restricted (by simple saturation) to lie inside a
symmetric interval [−α+, α+].

We generalize the above results, assuming that the coefficients
wi, i = 1, 2 are adapted by algorithms of the form

wi(n) = wi(n − 1) − ρi Mi(n)u(n)ei(n), (5)

where

ei(n) = (y2
i (n) − ra)yi(n), (6)

ρi is a step-size, and Mi(n) is a symmetric and non-singular matrix.
CMA and SWA employ the step-sizes and the matrices Mi(n) as in
Table 1. In this table, I is the identity matrix, 0 � λi < 1 is
the forgetting factor, γ , 3E{a2(n)} − ra. For SWA, the matrix
Mi(n) is obtained by using the matrix inversion lemma [8, p.67].
R̂(n) is an estimate of the autocorrelation matrix of the input signal
R , E{u(n)uT (n)}.

3. TRACKING ANALYSIS

In a nonstationary environment, the variation in the zero-forcing
solution wo is assumed to follow the random-walk model [8, p.
359], that is,

wo(n) = wo(n − 1) + q(n). (7)

In this model, q(n) is an i.i.d. sequence with positive definite auto-
correlation matrix Q = E{q(n)qT (n)} and is independent of the

Table 1. Parameters of CMA and SWA.

Alg. ρi M
−1
i (n)

CMA µi I

SWA γ−1
R̂(n) =

n∑

l=1

λn−l
i u(l)uT (l)

initial conditions {wo(−1),w(−1)} and of {u(l)} for all l < n [8,
Sec. 7.4].

Let the overall a priori error be ea(n) = uT (n)w̃(n − 1),
where w̃(n − 1) = wo(n − 1) − w(n − 1). One measure of
equalizer performance is given by the steady-state EMSE, defined
as ζ , limn→∞ E{e2

a(n)}. The a priori error ea(n) can be written
as a function of the a priori errors of the component equalizers, i.e.,

ea(n) = η(n)ea,1(n) + [1 − η(n)]ea,2(n), (8)

where ea,i(n) = uT (n)w̃i(n− 1) and w̃i(n− 1) = wo(n− 1)−
wi(n − 1), i = 1, 2.

Using the energy conservation approach of [8, Ch. 7], a steady-
state analysis of algorithms of the form (5) was presented in [6, 11,
12]. The steady-state EMSE of CMA, in a nonstationary environ-
ment, is given by [12, Table III]

ζCMA ≈
µξTr(R)

2γ
+

Tr(Q)

2γµ
, (9)

where ξ , E{a6(n) − (ra)2a2(n)}, Tr(A) stands for the trace of
matrix A. For SWA, we have [6, Table II]

ζSWA ≈
M(1 − λ)ξ

2γ2
+

Tr(QR)

2(1 − λ)
. (10)

Using the same arguments of [2, Sec. III], it is possible to show
that the considered convex combination is universal in the mean
square error sense. Thus, considering the convex combination of
SWA and CMA, when SWA outperforms CMA in the steady-state,
the behavior of the overall filter will be close to that of SWA and
ζ ≈ ζSWA. On the other hand, when CMA is superior, ζ ≈ ζCMA.
Moreover, there are situations where the combination will outper-
form both of them. In this case, the EMSE of the overall filter will
be close to

ζ ≈ ζ12 +
∆ζ1∆ζ2

∆ζ1 + ∆ζ2
, (11)

where ζ12 is the cross-EMSE , defined as

ζ12 , lim
n→∞

E{ea,1(n)ea,2(n)}, (12)

and ∆ζi = ζi−ζ12, i = 1, 2. Eq. (11) was obtained in [2, Eq. (33)]
for the combination of two LMS filters. However, it is also valid
for the convex combination of blind algorithms of the form (5), as
for example, for the combination of two CMAs, one CMA and one
SWA, or two SWAs. The EMSE of the overall filter is the minimum
of the values calculated by the expressions of each component filter
and (11).

Analytical expressions for ζ12 for blind algorithms have not been
computed before. In the following analysis, we obtain such expres-
sions for the combinations of two CMAs with different step-sizes
(µ1-CMA and µ2-CMA), and one SWA with one CMA (λ1-SWA



with µ2-CMA). Subtracting both sides of (5) from wo(n) and using
(7) for i = 1, 2, we arrive at

w̃i(n) − q(n) = w̃i(n − 1) + ρiMi(n)u(n)ei(n). (13)

In order to obtain ζ12, we multiply the transpose of (13) with i =
2 by (13) with i = 1 (for the combination of one SWA with one
CMA, we use R̂(n) as a weighting matrix), and take expectations.
To simplify the resulting expression, the following assumptions are
considered:

A1. E{a(n)} = 0, γ > 0 [4, 8].

A2. When n → ∞,
E{w̃T

2 (n)Aw̃1(n)} = E{w̃T

2 (n−1)Aw̃1(n−1)} for any
weighting matrix A. This assumes that the filters are operat-
ing in stable conditions, and have reached steady-state.

A3. a(n−τd) and ea,i(n), i = 1, 2 are independent at the steady-
state. This assumption was used in the steady-state analysis of
CMA [11, As.I.1,p.84] and essentially requires the estimation
error {ea,i(n)} of the equalizer to be insensitive, at steady-
state, to the actual transmitted symbols {a(n)}.

A4. The squared Euclidean norm of the regressor u(n), i.e.,
‖u(n)‖2, and ei(n), i = 1, 2 are independent at the steady-
state. This requires the energy of the input vector to be inde-
pendent of the equalizer output [11, As.I.2, p.84].

A5. Eq. (6) can be rewritten using the approximation
yi(n) ≈ a(n − τd) − ea,i(n) since at the steady-state
a(n − τd) ≈ uT (n)wo(n − 1).

A6. limn→∞ E{e1(n)e2(n)} ≈ ξ. To obtain this approximation,
we use A1, A3, and A5, and consider that terms depending
on higher-order combinations of ea,1(n) and ea,2(n) can be
disregarded. This means that we assume

|E{e`
a,1(n)ek

a,2(n)}| � |ξ|, ` + k ≥ 2.
Similar assumptions were employed in [11, Th.3 and Th.4].

A7. E{e1(n)ea,2(n)} = E{e2(n)ea,1(n)} ≈ −γζ12, in steady-
state. This assumption is obtained by using A3, A5, and con-
sidering that, for ` = 1 and k = 3, or ` = 3 and k = 1,
γ|ζ12| � |E{e`

a,2(n)ek
a,1(n)}|.

A8. In the analysis of one SWA and one CMA, using R̂(n) as
weighting matrix, we obtain

µE{e2(n)uT (n)R̂(n)w̃1(n− 1)}≈
−γµTr(R)

(1 − λ)M
ζ12. (14)

To obtain this approximation, we assume that the regressor
u(n) follows the model proposed in [13]. The idea is to as-
sume a simple model for u(n), but in such a way that the au-
tocorrelation R is preserved. We thus assume that u(n) may
point to any of the directions of one of the eigenvectors of R

with equal probability, but with amplitude proportional to the
square-root of the corresponding eigenvalue %i. Using this
model, (14) follows from the fact that uT (n)R = %iu

T (n)
for some i at every instant.

Considering now the random-walk model for q(n) and Assump-
tion A2, we get for the considered combinations

− E{qT (n)Aq(n)} ≈ ρ1E{ea,2(n)e1(n)}+

+ ρ2E{e2(n)uT (n)Aw̃1(n − 1)}+

+ ρ1ρ2E{e1(n)e2(n)uT (n)u(n)}. (15)

Using A1, A3–A7, after some algebra in (15), for the combination
of µ1-CMA and µ2-CMA, with A = I, we get

ζ12 ≈
µ1µ2Tr(R)ξ + Tr(Q)

γ(µ1 + µ2)
. (16)

Analogously, for the combination of λ1-SWA and µ2-CMA, with
A = R̂(n) and A1, A3–A8, we arrive at

ζ12 ≈

µ2Tr(R)ξ

γ
+

Tr(QR)

1 − λ1

1 + µ2γ
Tr(R)

M(1 − λ1)

. (17)

In stationary environments, the expressions can be simplified, mak-
ing Q = 0.

4. SIMULATION RESULTS

To verify the behavior of the proposed convex combination and the
validity of the tracking analysis, we assume Q = β2R or Q =
β2R−1 with β = 0.001, 6-PAM with statistics E{a6(n)} =
5451.7, E{a2(n)} = 11.67, and ra = 20.2, and channel co-
efficients [0.1, 0.3, 1, −0.1, 0.5, 0.2] [11]. In the combinations,
each component filter has M = 4 coefficients as a T/2-fractionally
spaced equalizer and is initialized with only one non-null element in
the second position.

Figure 3-a) shows the EMSE estimated from the ensemble-aver-
age of 200 independent runs for µ1-CMA, µ2-CMA, and their con-
vex combination, with µ1 = 10−4, µ2 = 5 × 10−5, µα = 0.1,
and α+ = 4. To facilitate the visualization, the curves were fil-
tered by a moving-average filter with 64 coefficients. At iteration
n = 45000, matrix Q is changed from Q = β2R to Q = β2R−1,
with β = 0.001. As µ1-CMA presents faster convergence than µ2-
CMA, the combination performs close to µ1-CMA during the first
4000 iterations. At steady-state, when µ2-CMA outperforms µ1-
CMA, the combined scheme presents a performance close to that
of µ2-CMA, independently of the nonstationary environment. In
Figure 3-b), we show E{η(n)}, confirming this observation. The
dashed lines in the figure show the predicted values of ζ for each al-
gorithm and their combination. Although there is no an exact agree-
ment between analysis and simulation, the predicted values model
the overall behavior of the algorithms. Note that a difference of a
few dB is common in models for blind algorithms, due to the strong
assumptions necessary for the analysis.

For the same conditions, we show in Figure 4, the behavior of
λ1-SWA (λ1 = 0.999), µ2-CMA and their convex combination. In
this case, when Q = β2R, the proposed scheme performs close to
µ2-CMA, being slightly better than it at the steady-state. However,
its convergence is close to that of λ1-SWA, during the first 2000
iterations. When Q = β2R−1, λ1-SWA outperforms µ2-CMA, and
the combination switches back to SWA. Again, E{η(n)}, shown in
Figure 4-b), confirms the behavior of the combined structure. We
should notice that the EMSE of SWA predicted by (10) for Q =
β2R shows the worst disagreement (≈ 2 dB), which is not very
large for the current application. Comparing the two combinations,
we observe that λ1-SWA with µ2-CMA can be a better alternative
than µ1-CMA with µ2-CMA, in regards of tracking performance.

5. CONCLUSIONS

We propose a convex combination of the CMA and SWA algorithms
to take advantage of their different tracking behavior. Through sim-
ulations, we verified that the scheme is universal, performing as the
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Fig. 3. a) EMSE for µ1-CMA, µ2-CMA, and their convex combina-
tion and b) ensemble-average of η(n); µ1 = 10−4, µ2 = 5× 10−5,
µα = 0.1, α+ = 4, β = 0.001; mean of 200 independent runs.
In a), the dashed lines represent the predicted values of ζ for each
algorithm and their combination.

best component filter and being better than both of them in some sit-
uations. Using energy conservation relations, we obtained analytical
expressions for the steady-state cross-EMSE of the combinations of
two CMA and CMA with SWA. Using these expressions, we esti-
mate the steady-state EMSE of the overall equalizer and find it in
reasonable agreement with experimental results.

6. REFERENCES

[1] J. Arenas-Garcı́a, M. Martı́nez-Ramón, A. Navia-Vázquez,
and A. R. Figueiras-Vidal, “Plant identification via adaptive
combination of transversal filters,” Signal Processing, vol. 86,
pp. 2430–2438, Sept. 2006.

[2] J. Arenas-Garcı́a, A. R. Figueiras-Vidal, and A. H. Sayed,
“Mean-square performance of a convex combination of two
adaptive filters,” IEEE Transactions on Signal Processing, vol.
54, pp. 1078–1090, Mar. 2006.

[3] J. Arenas-Garcı́a and A. R. Figueiras-Vidal, “Improved blind
equalization via adaptive combination of constant modulus al-
gorithms,” in Proc. of ICASSP’06. IEEE, 2006, vol. III, pp.
756–759.

[4] O. Shalvi and E. Weinstein, “Super-exponential methods for
blind deconvolution,” IEEE Transactions on Information The-
ory, vol. 39, pp. 504–519, Mar. 1993.

[5] C. B. Papadias and D. T. M. Slock, “Normalized sliding win-
dow constant modulus and decision-direct algorithms: a link
between blind equalization and classical adaptive filtering,”
IEEE Transactions on Signal Processing, vol. 45, pp. 231–235,
Jan. 1997.

0 1 2 3 4 5 6 7 8 9

x 104

−25

−20

−15

−10

−5

0

n

ζ 
(d

B
)

CMA

SWA

combination

Q=β2R Q=β2R−1

0 1 2 3 4 5 6 7 8 9

x 104

0

0.5

1

n

E
{η

(n
)}

Fig. 4. a) EMSE for λ1-SWA, µ2-CMA, and their convex combina-
tion and b) ensemble-average of η(n); λ1 = 0.999, µ2 = 5×10−5,
µα = 0.1, α+ = 4, β = 0.001; mean of 200 independent runs.
In a), the dashed lines represent the predicted values of ζ for each
algorithm and their combination.

[6] M. T. M. Silva and M. D. Miranda, “Tracking issues of some
blind equalization algorithms,” IEEE Signal Processing Let-
ters, vol. 11, pp. 760–763, Sept. 2004.

[7] E. Eweda, “Comparison of RLS, LMS and sign algorithms for
tracking randomly time-varying channels,” IEEE Transactions
on Signal Processing, vol. 42, pp. 2937–2944, Nov. 1994.

[8] A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley
& Sons, NJ, 2003.

[9] M. Mboup and P. A. Regalia, “A gradient search interpreta-
tion of the super-exponential algorithm,” IEEE Transactions
on Information Theory, vol. 46, pp. 2731–2734, Nov. 2000.

[10] N. R. Yousef and A. H. Sayed, “A feedback analysis of
the tracking performance of blind adaptive equalization algo-
rithms,” in Proceedings of IEEE Conference on Decision and
Control, Dec. 1999, vol. 1, pp. 174–179.

[11] J. Mai and A. H. Sayed, “A feedback approach to the steady-
state performance of fractionally spaced blind adaptive equal-
izers,” IEEE Transactions on Signal Processing, vol. 48, pp.
80–91, Jan. 2000.

[12] N. R. Yousef and A. H. Sayed, “A unified approach to the
steady-state and tracking analyses of adaptive filters,” IEEE
Transactions on Signal Processing, vol. 49, pp. 314–324, Feb.
2001.

[13] V. H. Nascimento, “A simple model for the effect of normal-
ization on the convergence rate or adaptive filters,” in Proc. of
ICASSP’04. IEEE, 2004, vol. II, pp. 453–456.


