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ABSTRACT

We show that the least-mean fourth and the least-mean mixed-
norm algorithms are not mean-square stable when the input
regressor is Gaussian-distributed. For the LMF algorithm,
we propose an upper bound for the algorithm’s probability
of divergence, given the input and noise statistics, the step-
size and the filter length. We show that the upper bound can
also be used for the LMMN algorithm.

1. INTRODUCTION

Since its introduction by Walach and Widrow in 1984 [1],
the least-mean fourth (LMF) algorithm has been the sub-
ject of several publications. The reduced mean-square error
of LMF in comparison to the least-mean squares algorithm
(LMS) for sub-Gaussian measurement noise was considered
in [1] itself, and analyses for Gaussian regressors were given
in [2, 3, 4], among others.

The original analysis in [1] considered only the algo-
rithm behavior close to steady-state, concluding that LMF
outperforms LMS for measurement noise following a distri-
bution with shorter tail than the Gaussian. The algorithm’s
transient behavior was considered in [2, 3]. An example was
given in [3] showing that the compromise between steady-
state error and convergence speed could be better solved us-
ing the LMF algorithm, rather than LMS, even for Gaussian
noise. The LMF stability was also considered in [5], where
it is proven that the algorithm is stable for sufficiently small
step-size if the regressor and noise sequences are bounded
(i.e., belong to /..)

The potential instability of LMF was recognized right
from the start. Walach and Widrow noted in [1] that the sta-
bility region should depend on the initial conditions. Since
they only studied the algorithm in steady-state, this depen-
dence did not appear in their stability condition. This point
was clarified later in [2, 4], in which approximate expres-
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sions for this dependence were proposed for Gaussian re-
gressors. Other works took another path, and proposed a
combination of LMS and LMF: the least mean mixed-norm
algorithm (LMMN) [6].

We recently revisited the mean-square stability of LMF.
In [7] we prove that the scalar (one coefficient) version of
LMF is not mean-square stable when the regressors follow
a slightly modified Gaussian distribution, showing that a
given realization has always a nonzero probability of di-
vergence. This result is further expanded in [8] (recently
submitted for possible publication), where we propose an
approximation for the LMF probability of divergence for
filters of any length, always with Gaussian regressors. In
the present paper we review some of the results proposed
in [8], provide some new examples comparing our approxi-
mate expression for the probability of divergence with sim-
ulations, now considering tap-delay line regressors and dif-
ferent choices of measurement noise, and show that some of
our results also apply to the LMMN algorithm.

The LMF algorithm computes approximations W (n) to
a vector W, through the recursion

Wn+1) = W) +pemPXm), O

where e(n) = d(n) — W7 (n)X (n) is the error between a
desired signal d(n) and the output of an FIR adaptive filter
W (n) with an input regressor X (n).!

The LMMN algorithm uses a mixture of the LMF and
LMS recursions,

Wo(n+1) = W, (n) + pen(n) [ +

+2(1=68)ep,(n)] X (n), @
where, similarly, e, (n) = d(n) — W2
6 < 1is adesign parameter.

The main conclusion of our analysis in [7] is valid for
both LMF and LMMN: they have a finite region of attrac-
tion for the initial weight vector because they have a third-
order nonlinearity in their weight update equations. If the
inputs (regressors or noise) drive the estimation error to a

(n)X(n),and 0 <

1Al vectors belong to IRM in this paper.



value too large at any iteration of a given realization, the
weight estimates are taken out of this region of attraction
and the algorithm diverges. Thus, both LMF and LMMN
are sensitive to bursts of large noise, or to unpredicted in-
creases in the input power. Some sort of normalization, for
example as proposed in [9], might prove useful.

2. DIVERGENCE IN LMF

The LMF and LMS algorithms behave somewhat differently
when they start to diverge. LMS has a ”soft” transition be-
tween convergence and divergence. There is a range of step-
sizes for which LMS converges in the mean-square sense,
a range for which it diverges in the mean-square, but con-
verges with probability one (for the zero measurement noise
case) and a range for which the weigth error vector diverges
to infinity with probability one [10]. The LMF behavior
depends on the step-size and on the regressor probability
distribution. If the regressors and measurement noise have
probability density functions (pdfs) with bounded support?,
then there is a range of step-sizes for which the algorithm is
stable [5].

For pdfs with unbounded support (such as the Gaus-
sian), LMF will always have a nonzero probability of di-
vergence. The filter may have a nice behavior in most re-
alizations, but the weight estimates will tend to infinity for
a few realizations. This behavior is shown in Fig. 1. Here
we show three realizations, two converging and one diverg-
ing®. Here X (n) was a unity variance white Gaussian vec-
tor, 4 = 0.02, and the filter length was M = 10.
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Fig. 1. Three runs of LMF with M = 10, true W, =
00 ...07, W) =[10...07T, p =002 X(n)
zero-mean Gaussian with covariance equal to /.

2|f all values are strictly bounded.
3Note that divergence does not take long to become clear, which we
noticed to be atypical behavior for LMF.

Given this behavior, we define divergence as follows.

Definition 1 (Divergence). In this work we say that a re-
alization (a single run) of the LMF recursion diverged if
lim, o |[W(n)|| = co. We shall also say that a realiza-
tion of the algorithm converged if it did not diverge.

Any vector norm could be used in this definition. We
shall use the Euclidean norm.

3. PROBABILITY OF DIVERGENCE FOR LMF

In [8] we pose the following question: given the initial con-
dition W (0), the step-size u, the filter length M, and the
noise and regressor statistics, what is the probability that a
realization of the filter will diverge?

Our solution is an iterative procedure that computes an
approximation for the probability of divergence. We show
here briefly how the approximation was derived. First recall
that the Wiener solution to a linear estimation problem is
such that

d(n) = WZX(TL) + eo(n),

where eg(n) is uncorrelated with X (n). We assume that
eo(n) is also independent of X (n), and that X (n) is inde-
pendent of X (k), for k # n.* Defining the weight error
vector V(n) 2 W, — W(n) and p(n) 2 V7 ()X (n),
(1) may be rewritten as

Vint1)=Vn) - p [p<n>3 1 3p(n)eo(n) +
®
T 3p(n)eo(n)’ + eo<n>3] X(n).

From this, a recursion for y(n) 2 VT(n)V(n) is eas-
ily obtained. Our goal is to estimate the probability that
lim,, o0 y(n) = 0.

In order to simplify our task, we assume that y(n) =
E{y(n)| y(n — 1), X(n)}, where E{-} means statistical
expectation. This approximation replaces the noise eg(n)
and its powers by their means (in our simulations we ob-
served that the influence of the noise on the probability of
divergence is secondary to the influence of X (n)). Assum-
ing that E eg(n) = Eeg(n)® = Eeg(n)® = 0, and defining
02 = Eeg(n)?, ¥¢ = Eeg(n)* and n§ = Eeg(n)b, the
recursion for y(n) becomes

y(n+1) = y(n) — 2u [p<n>4 n 3p<n>zo§} n @

oy [p<n>6 T 15p(n)*? + 15p(n)* 0l + ng] X ()]

4These are the standard independence assumptions [11].



Under the assumptions of iid, Gaussian X (n), we ap-
proximate (the proof for the equality is given in [8])
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Substituting (V' (n)T X (n))** by aas (k)y(n)*[| X (n)||2
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Denote by D(n) the term in square brackets. It can be
shown that D(n) is always nonnegative, and that (6) con-
verges if D(n) < 1 always. Note that D(n) < 1 is a suf-
ficient, but not necessary, condition for stability: y(n) may
grow occasionaly and still remain bounded. Thus, P, 2
Pr{0 < D(n) < 1foralln > 0} is a lower bound for
the probability of convergence, and P, 21 P, is an up-
per bound for the probability of divergence. To evaluate P,

we:

1. Find the probabilities Pr{D(n) < 1| y(n) = 4(n)},

for 0 < n < N, starting from a given y(0),

2. Find an approximation g(n) for y(n) in the previous
item,

3. Make

) <1ly(n)=5n)}. @)

P.~ H Pr{D(n
We tested different approximations ¢j(n), and the choice

that gave best results was

~ 2 .
(1= 3uoi(o] +U2§y(n))] i(n), ®
=E[V(0)*,

§n+1)=
9(0) = y(0)

which is equivalent to define §(n {EV
Since X (n) is a Gaussian vector | X (n)||* follows a x?
distribution with A degrees of freedom, and the probabili-
ties in (7) may be evaluated by

Pr{[|X(n)|? < zo(n)| y(n) =G(n)},

BV (n)).

where zy(n) is the only positive root of (if g(n) = 0 and
03 =0,P.=1)
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4. EXAMPLES

We now compare our approximation for the probability of
divergence with actual probabilities observed in simulations
of the LMF algorithm. In all simulations, we ran 105 re-
alizations of the algorithm, starting with y(0) = 1, and
labelled a realization as "diverging” whenever ||V (n)| >
109 for any n.5 In [8], we only present simulations for
which the vectors X (n) were independent. Here, we present
simulations for which X (n) is the output of a tap-delay line,
and for uniform measurement noise.

Fig. 2 shows the results for uniform noise. Fig. 3 shows
the results for Gaussian noise, with regressors generated
through a tap-delay line. Fig. 4 presents the observed prob-
ability of divergence for LMMN with tap-delay regressors
and 6 = 0.8. The theoretical curve is obtained by the same
algorithm as before, but with step-size pieq = 2p(1 — 9).
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Fig. 2. Probability of divergence for LMF, iid regressors,
uniform noise, M = 100, o2 = 0.01. Dark curve: observed
probability in 10° runs with 100 time-steps. Broken curve:

Py

5. CONCLUSIONS

We showed that the LMF and LMMN algorithms are not
mean-square stable when the regressor vector is Gaussian

5Smaller choices for this bound did not change the results.



Observed probability of divergence and P;, M = 100

Fig. 3. Probability of divergence for LMF, tap-delay line
regressors, Gaussian noise, M = 100, o2 = 0.01. Dark
curve: observed probability in 10° runs with 100 time-steps.

Broken curve: P,.

(or, in general, has not a pdf with a compact support), and
proposed an upper bound for the probability of divergence
of LMF. Since in practice all signals are bounded, our result
means that the LMF algorithm is sensitive to variations in
the power of input signals. The bound can also be used for
LMMN, simply modifying the step-size . used to compute
the bound to 2u(1 — §).

Our upper bound gives designers a tool to predict when
the performance of LMF and LMMN will be acceptable (re-
call that for small step-size, the performance of LMF and
LMMN may be quite good with a large probability).
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