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ABSTRACT

This paper presents a new analysis for the convergence of the LMF
{Least Mean Fourth) adaptive algorithm. The analysis improves
previous results because it explicitly shows how the stability of
the algerithm depends on the initial conditions of the weights, i.e.,
the analysis is also valid when the algorithm is initialized far from
the optimum weight vector. Analytical expressions are derived re-
lating the limiting values of the adaptation constant and the inj-
tial weight error vector. The analysis assumes a white zero-mean
Gaussian reference signal and a white measurement noise with any
even probability density function (p.d.f.)} and finds conditions for
convergence in the mean square sense.

i. INTRODUCTION

There are several approaches to analyze the convergence of adap-
tive algorithms: deterministic {worst-case) and stochastic (in the
mean, in the mean-square, and almost-sure) [1]. Walach and Wi-
drow [2] studied the convergence properties (in the mean-square
sense) of the LMF algorithm. Their analysis was restricted to
steady-state, and the stability limit was not expressed as a func-
tion of the initial conditions, even though the reported simulati-
on results indicated this dependence. In [3], the ODE method is
used to analyze general fixed-step adaptive algorithms {including
LMF). However, no analytical expression is given for the LMF sta-
bility conditions. In {4], the authors comment on the dependence
of LMF’s stability on its initial conditions. An expression is pro-
vided for the maximum adaptation constant for convergence in the
mean. However, the analysis in [4] assumes that both the input
signal and the measurement noise to be Gaussian,

More recently, [5] has shown that the stability of the LMF algo-
rithm depends on the initial conditions. However, such dependen-
ce was not explicitly determined.

This paper presents a new convergence analysis (in the mean-
square sense) of the LMF algerithm, considering a white zero-
mean Gaussian reference signal and a white zero-mean measu-
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rement noise with any even probability density function (p.d.f.).
The dependence on the initial conditions is explicitly shown th-
rough analytical expressions. The algorithm is considered stable if
the mean-square error (MSE) remains stable during the adaptation
process, and converges to a steady-state value. Since we requi-
re mean-square stability, our conditions are more restrictive (and
more useful in practice) than those presented in other works.

2. DEFINITION OF THE PROBLEM

Figure 1 shows a block diagram of the problem studied here.
wo = [w?, «d, ..., w?v]T is the impulse response vector of a line-
ar system, W(n) = [wi(n), wa(n), ..., wn(n)]7 is the adaptive
weight vector, z(n) is assumed stationary, white, zero-mean and
Gaussian with variance 2, X(n) = [z(n),z(n — 1), ...,x(n —
N+1)]7 is the observed data vector, o{n) is the adaptive filter out-
put, and e(n) is the error signal. z({n) is the measurement noise,
assumed stationary, white, zero-mean with variance o> and inde-
pendent of any other signal. Moreover, it is assumed that z{n) can
have any distribution with an even p.d.f.

z(n)
=(n) G | )R e(n)
WO
ADAPTIVE O(TL)
FILTER
W{n)
LMF

ALGORITHM

Fig. 1. LMF applied for System Identification.

3. TRACE OF THE WEIGHT ERROR
AUTOCORRELATION MATRIX

Though the conditions for convergence in the mean can provide so-
me insight, second moment stability is far more important in deter-
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mining conditions for algorithm’s convergence. Thus, we restrict
this analysis to the study of conditions for second order moment
convergence.

For white inputs, the second order moments of the weights are
related to the MSE through [2]

&) = ol +oEVT (n)V(n)), M

where V(n) = W {n) — W2 is the weight error vector. Hence, the
MSE convergence can be studied through the convergence proper-
ties of E[VT (n)V (n)).

A rtecursive expression for the behavior of E[VT(n)V (n)]
could be easily obtained by taking the trace of the recursion de-
rived in [6] for the weight error correlation matrix K(n) =
E[V(n)VT(n)] of the LMF algorithm. However, terms neglec-
ted in [6], which were not significant for the analysis made there,
become important in an analysis' considering large values of u
and, consequently, for a stability analysis. Therefore, a recursive
expression for E[V 7 (r)V (n)], must be determined starting from
the LMF weight error updating equation [2]

Vin4 1) = V(n) + pe’ (n) X (n). 2

Pre-multiplying (2) by its transpose, taking the expected value
and using the statistical properties of z{n) {odd moments equal to
zero and independent of any other signal), leads to

EVin+ 1)Vin+1)] = E[VT(n)V (r)]

— E[(XT (n)V (n))"] - 6pB* ) E[(XT (n)V(n))’]

+ B E[(XT (n)V (n))° X7 (n) X ()]

+15p” B[ ()] E[(X T (n)V (n))* X7 (n) X ()]

+ 15 B[z* ()| E[{(X T (n)V{n))* X" (n) X (n)]

+ i B[ ()] B[XT (n) X (n)] 5

In the following analysis, we assume that the effects of the sta-
tistical dependence of X (n) and V(n) can be neglected. The ex-
pected values of (3) are calculated as follows:

Expected Value 1: E[(XT(n)V{n})"]

As X (n) is Gaussian and independent of V'(n), X7 (n)V (1)
is also Gaussian when conditioned on V' (n). Therefore, we can
write

B{(X” (m)V () ™|V (n)]
T 2 k o @
= BI(X" (V) V(@) J] @m 1)

m=1
and

BXT (m)V (n))|V (n)]
=3B (X (m)V ()’ |V (n)]
= 3{E[VT (X (mX " (n)V (n)|V ()]} ©)
=3{VT(nRV(n)}’ = 3{aVT (m)V (n)}"
=302 VT IV ()VT () V (n)

"The matrix K{n) in [6] was derived neglecting the terms

E[(XT(»)V(n)2*X(n)XT{(n)] for k > 1, and considering small p
and large number of weights.

Averaging (5) over V'(n) requires extra approximations, since
the p.d.f. of V{(n) is unknown. The following approximation is
used.

EVT @)V (VT (mV(n)] = BV (a)V ()] BV (n)V (n)]
©)
Approximation (6) assumes that the variance of V7 (n)V (n) is
much smaller than its mean value (this can be considered reaso-
nable in the beginning of the adaptation process). In steady-state
the higher-order moments of the weights can be neglected (since
V(n) should be small in steady-state). Extensive simulation re-
sults have shown that this approximation® leads to good accuracy
in determining the stability conditions.
Using this (6), (5) becomes

E(XT(n)V(n)*] = 3as B[V (n)V (n)V T (n)V (n)]

~ 30 BV )V () BV )V ()]

Expected Value 2: E[(XT{n)V (n))?)

E[(XT(n)V(m)*|V(n)} = E[VT () X(n)X¥ (n)V (n)|V (n)]
= VI (R)E[X(n) X" (n){V(n)]V (n)
=VT(n)RV(n) = o2VT(m)V(n)

8

Averaging over V(n), (8) gives
E[(XT(m)V(n))"] = o2 E[V" (n)V (n)] ©®
Next, we evaluate the expected values that are multiplied by ,u2
in (3). They are derived using the same methodology presented in
f6] and [7], and alsc using approximations similar to (6).

Expected Value 3: E[(XT (n)V (n))5 X7 (n)X(n))

EUXT (n)V(n))’ X7 (n) X (n)]

= tr{ BIXT (m)V () X () X7 ()] } (10)
= (15N 4+ 90)a2 ER[VT (m)V (n)]
Expected Value 4: E[(X T (r)V (n))* X7 (n) X (n)]
E[(XT(n)V(m))' X7 (n) X (n)] an

= (3N + 12)os B VT (m)V (n)]
Expected Value 5: E[(XT (n)V (n))*X7T (n)X (n)]

E(XT (m)V (n))* X" (m)X (n)] = (N + 2)oz B[V (m)V (n)]

(12)
Expected Value 6: E[X7T (n)X (n)]

EXTm)X@)|V(n) = EIXT(n)X(n)] = 02N  (13)
2To be exact, one should use E[Vrgn)V(n)VT(n)V(n)] =

ENVTn)Vin)] + G\Z/T(n)V(n)’ where TUT (myv () is the variance

of VT {n)V(n), which cannot be calculated as V(n) has unknown p.d.f.
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Using the expected values 1-6 in equation (3), results an expres-
sion for E[VT(n + 1)V (n + 1)].
(0 —a)y(n) -

yln+1) = by + e’ (ny+d  (14)

where:

y(n) = E[VT ()V(n)l;
a=Ajp— Ayp?;

b= Bip — Bap®;

c=Cph

d = Dp?;

Ay =60l0l;

Ay = 15E[2* ()]l (V + 2);

B = 60:;

32 = lﬁcrza:rm (3N +12);
= of(15N +90)

D E[(m)]ol N

4. STABILITY ANALYSIS

Expression (14) is a nonlinear difference equation. Its convergence
depends in general on the initial condition y(0) = VT(0)V(0),
the squared Euclidean norm of the initial weight error vector.

To proceed with the determination of the stability conditions,
we need to find the equilibrium points of (14). Writing y(n+1) =
y(n) = Yoo, we obtain

yin+1) = (1 - a)y(n) — by’ (n) + cy’(n) + d = y(n) = yoo
(15}

and 5 d
oo — e — Yoot =0 (16)

Equation (16) has three roots, which represent the equilibrium
points. These roots can be expressed in analytical form as follows.

‘yxm=(31‘|'~‘»"2)"‘i
Yoo =-*(31+82)+—+J\/_(51_32) a7
Y3eo =~—(S1+82)+; J\/_(SI—SZ)
where . 1
8 = (r+\/c;{"4-—r"")i,32= (T—\/‘la"'—rg)5§
g=-g-Gor=t(-2)+ 5

Depending on the values of ¢ and r three cases can occur:

e Case I: ¢ 4 r? < 0 (only real roots)
In this case, (16) has three real negative roots (out of the
region of interest, because y(n) is a norm and cannot be ne-
gative) or two real positive roots and one real negative root
(the negative root has again no physical sense}. Figure 2 il-
lustrates the case of one negative and two positive roots, re-
presented by yneg, ¢e and ¥(0)mqz. Root ye corresponds to
the stable equilibrium point and also represents the steady-
state point E[V7T (00)V(20}]. Root (0)mqz corresponds to
an unstable point, which gives the maximum value of y(0)
that guarantees the stability of (14) for a specific value of p.

The smaller the value of p, the larger the value for y(0)max.
As pp = 0, ¥(0)mas — 00. ROt yney is always negative,
because y(n + 1) is a third-degree polynomial of y{n), with
d>0,and y(n +1) = —oo if y(n) = —oo.

e Case 2: ¢° + 72 = 0 (only real roots, and two of them are
equal and nonzero)
Equation (16) has two real and equal roots (% and 5(0)max)-
The curve f(y(n)) = y(n + 1) is tangent to the line'y{n +
1) = y(n) at the point y. = y(0)ma= (Figure 3). There is
one real negative root, represented by Yneg.
This case allows us to find the maximum value of y. Writing
@® + r? as a function of @, b, ¢ and d, yields

q3+’“2={ 3c 9.:2} {(ab_Sd)J“Ql;;}?

= 729 v (3ac+b )
+ 730 (3000 = 5" +4)’

(18)

As (18) is equal to zero for case 2, we conclude that

3 2
4(3ac+0")" = (9abe —27d* + W) (19)
Writing (19) in polynomial form, and substituting the varia-
bles a, b, c and d as functions of A1, As, By, By, C, D and
L, results

P4p,4 + Paps + P2#2 +Pip+FPo=0 20)

where:

Py = —4A43C+ A3B3 +184:8:CD—4B{D - 27C* D%;
P = 12A1A§C - 2(A1Ang -+ A%B]_Bz) — 18(A1B2 +
A2B)CD +12B,B3D;

Py = —12A3A;C + AIBZ + AIB? + 44,A:B1B; +
184:B,CD - 12B1B: D,

P, =4A3C —2(A;A: B + AIB By) + 4B} D;

Py = AlBL

The smallest positive and real root uo of (20) gives the ma-
ximum value of g that guarantees stability.

e Case 3: qa + 72 > 0 (two complex roots)

In this case there are one real root and two complex roots.
There is no point in common between f{y(r))} = y(n + 1)
and the line y(n 4+ 1) = y(n) for y(r) > 0. Therefore, there
is no value of y(0) > 0 which can guarantee the stability
of (14). This case, represented in Figure 4, occurs when the
value of  is greater than the limit value given by pug.

These results allow the explicit determination of the stability
conditions for the LMF algorithm when applied to the system in
Fig. 1 with a known W°. Given the system parameters, the ma-
ximum value of g (41,) can be determined from (20). Then, for
any g < fo, Y(0)maz can be determired from the solutions of
(16). This procedure requires prior knowledge of the system to be
identified in a design situation. This is a property of the algorithm,
not a flaw in the analysis. Given some prior estimate of W°, the
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analysis can then be used to study the robustness of the algorithm
in solving the practical problem for a given error in the estimate.

" The theoretical results have been extensively tested. Predictions
of po matched the simulation results within +£10%. Predictions of
y{0)mao were, on average, 130% above the values determined by
simulation, These errors are expected due to the complexity of the
problem and the simplifications used. However, the predictions
can serve as good guidance in a conservative design.

5. CONCLUSION

This paper presented a new convergence analysis for the LMF
adaptive algorithm. The analysis improves previous resutts in that
the dependence of the stability on the initial conditions is explicitly
shown. The results reveal a relationship between the initial condi-
tions and the step size in determining convergence. The smaller
the value of u, the larger the allowable values for the initial weight
error vector. Simulations have shown that the theoretical predicti-
ons can be useful for design purposes.
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y(n+l)

yn+1}=y(n)
fly(n)) i

¥(n)

Yneg
Fig. 2. Equilibrium points: case | (ye << y(@)maz)-

y(n+1)

Hy(n) y(o+1)=y(n}

y, S ¥
'/ Ye = y(o)maz

?Ilneg
Fig. 3. Equilibrium points: case 2 (. = (0 maz)-

y(ntl)

y{n+1)=y(n)
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Yneg

Fig, 4. Equilibrium points: case 3 (. and y(0)mec complex).
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