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ABSTRACT

A new distributed multichannel technique is proposed
for networks in which a different set of parameters is es-
timated by each node. The technique is proposed for non
fully-connect topologies, so that nodes must store data and
re-transmit information to other network elements. To reduce
the amount of terms stored by each node, pre-computation
of the data required by other elements is performed before
the data sharing. The proposed method is adequate for im-
plementation in networks with a large number of nodes, for
which straightforward implementations would be prohibitive
in terms of cost and memory.

Index Terms— Distributed adaptive filtering, distributed
multichannel adaptive filtering, multichannel LMS

1. INTRODUCTION

Distributed adaptive filtering techniques implement decen-
tralized processing by exploiting information shared by the
elements which constitute the network. For this purpose, a
group of agents is linked together by some connection topol-
ogy and collaborates to estimate a set of parameters of inter-
est. These techniques have been proposed for applications
such as sensor networks and target detection [1,2]. Recently,
distributed networks were also proposed to model or mimic
the behavior of biological networks, such as fish schools, bird
formations and bee swarms [3-5]. Different strategies can be
used to connect the agents (which are also called the nodes of
the network), such as the incremental [6], the consensus [2,7]
and the diffusion [8-10] strategies. Regardless of the ap-
proach, in general these methods use locally obtained data
and information shared by other nodes to estimate a set of
parameters, which is the same for all nodes.

Despite the increasing number of publications on this sub-
ject, the techniques aforementioned cannot be applied to net-
works in which each node estimates a different set of param-
eters. For these networks, the development of algorithms is
challenging and, to the best of our knowledge, is still an open
problem. In this paper, we address this problem, and we pro-
pose distributed multichannel adaptive algorithms to exploit
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the collaboration between the nodes and improve the estima-
tion of local parameters.

We start showing that a multichannel adaptive filter can
be interpreted as a fully-connected, delayless-distributed net-
work (DDN). Each channel of the adaptive filter corresponds
to a node, with its own input data and set of parameters to
estimate. The estimation performed in each node employs lo-
cal data and data shared by other network elements, which
must be available at the same time instant for all nodes. It is
shown that each element can transmit its set of estimated co-
efficients and input data, allowing the other nodes to compute
the quantities they need, or can perform pre-computation of
the data required by their neighbors before the transmission.
The pre-computation reduces the amount of transmitted data,
saving energy in the communication links. However, the ap-
proach used by the fully-connected distributed multichannel
adaptive filter may not be applied to other topologies, since
non fully connected networks may have propagation delays,
or to large networks, in which the amount of memory required
in each node would become prohibitive. To extend the dis-
tributed method to other topologies, we develop techniques
in which the nodes are allowed to store information obtained
from other elements, so that these data can be re-transmitted
to other agents latter. Using this scheme, many communica-
tion links can be removed from the network. Additionally,
we show that the amount of information stored in each node
can be reduced, if each node pre-computes the terms required
by other elements before the transmission of data. Since the
ideal number of elements stored in the nodes increases with
the cardinality of the network, we describe an approximate
scheme that limits the maximum amount of memory required
in each node. The idea is to disregard the data shared by el-
ements with low contribution to the estimation performed in
node 7. We present a simulation to support this approach.

Notation: Lower case is used for scalar quantities (e.g.:
a) and bold lower case for column vectors (e.g.: b). Bold
capital letters represent matrices (e.g.: A). diag(-) defines a
diagonal matrix with the diagonal entries defined by the argu-
ment of the function, while ()" stands for the transposition
of a matrix or vector. We use ® to indicate the Kronecker
product [11]. || - ||, denotes the p-norm.



2. THE MULTICHANNEL FILTER VIEWED AS A
DELAYLESS DISTRIBUTED NETWORK

In order to show how a multichannel adaptive filter can be
interpreted as a distributed multichannel technique imple-
mented as a DDN, consider the /K -channel LMS algorithm
(K-Ch-LMS). Assume that an N-entry regressor vector
xk(n), k = 1,2,...,K, is available for each channel at
instant n. Additionally, consider that the vector d(n) of
desired signals is modeled by

d(n) = (W°)"x(n) + v(n), (1

where W? is the KN x K matrix of optimum coefficients,
x(n) = col(x1(n), xa(n),..., xK(n)) stacks up the re-
gressor vectors and v (n) is the noise vector, uncorrelated with
x(n). Define

(0] o
WK1 WK K

where each W;-)_k, 7.k =1,2,..., K is an N-length column

vector. The k-th entry of d(n) is given by

K

di(n) = (w9 ,)"x;(n) + ve(n), 2)

j=1

so that the regressor vector of each channel contributes to the
computation of the k-th entry of d(n).
The K-Ch-LMS algorithm estimates the matrix

W171(n) Wl,K(n)

W(n) = : :
wk1(n) wk k(n)

to compute an approximation to dj(n) as given by

K
n) = ZHj,k(n), 3)
j=1

where 0 x(n) = ijJC(n)xj (n). The iterative update of
‘W (n) uses the estimation error of each channel

ex(n) = di(n) — di(n) “4)
to update the vectors of coefficients with
wik(n+1) = wik(n) + per(n)xi(n), )

Vi, k =1,... K, where i is the LMS step-size [12,13], which
for simplicity we assume constant across all channels. Substi-
tuting eq. (3) in (4) and using the resulting expression in (5),
one gets

K
wik(n+1) = wik(n)+ pfdi(n) = 0 , (6)
j=1

forVi,k = 1,2, ... K. Notice from eq. (6) that the update of
each w; 1,(n) depends on other entries of matrix W (n) and
also on x(n), k = 1,2,..., K, so that one can say that the
channels collaborate among them, sharing their input vectors
and estimated coefficients w; ,(n), to compute the updates.
This can be interpreted as a characteristic of a distributed net-
work, as we show now.

To interpret the K-Ch-LMS as a distributed network, as-
sume that each channel from the K-Ch-LMS corresponds to a
node. Consider that the i-th node measures x;(n) and d;(n),
and receives data from other nodes (here generically identi-
fied by p;(n), where j identifies the node that transmitted the
data) to estimate w; (n) (for k = 1,2,...,K). There is
no propagation delay between the nodes, such that all infor-
mation required to compute the estimates at time instant n is
instantaneously available. Figure 1 shows the implementa-
tion of the four-channel LMS algorithm as a fully-connected,
distributed delayless network.

In Fig. 1, node 1 estimates w1 ,(n+1), fork = 1,2,3, 4.
Consider, for instance, the update of wy 2(n + 1). Recall-

ing eq. (6), it requires dy(n), 612(n) = wi,(n)xi(n),
O22(n) = w£2(n)X2(n), Os2(n) = W§2(H)X3(n) and
042(n) = wj,(n)x4(n). Since only wi i(n) and x;(n)

are available at node 1, the remaining data must be obtained
from the other nodes. One possible way for nodes 2, 3 and
4 to transmit their data to node 1 is the following: node 2
transmits da(n), wo 2(n) and x2(n), while nodes 3 and 4
share w3 2(n) and x3(n), and w4 2(n) and x4(n), respec-
tively, allowing node 1 to locally compute 02 2(n), 032(n)
and 04 2(n). The amount of data shared by node 2 is 3N + 1
elements, while nodes 3 and 4 transmit a total amount of
3N elements each. Alternatively, nodes 2, 3 and 4 can pre-
compute da(n) — 022(n), 052(n) and 04 2(n), so that only
one scalar is transmitted by each node. One can note that
this latter method leads to a reduction in the total information
shared by each node of the network. For that reason, we
will adopt this latter approach in the rest of the paper. For
a K -node network, the i-th element of the network shares
K — 1 pre-computed parameters 6; .,k # %, and the scalar
é“ = d;(n) — 6, resulting in a transmission of K scalars.
Notice that if the network is fully connected, regardless
of its cardinality, each node has access to all data available in
the network at the same instant. This is not true for topologies
which are not fully connected, as depicted in Fig. 2. In this
case, we should adopt a different strategy to implement the
distributed estimation, as described in the next section.

3. MULTICHANNEL DISTRIBUTED NETWORKS
(MDNs)

In this section, we propose an algorithm for networks with
topologies in which the nodes are not fully connected. In
these cases, the nodes must have extra memory to deal with
delays between the data received from the different nodes. We
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Fig. 1. 4-channel adaptive filter implemented as a fully-connected DDN.
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Fig. 2. Distributed 4-channel adaptive filter.

describe the problems and solutions through the example of a
four-node network implementing the LMS technique.

To simplify our analysis, define the following vectors to
describe the information exchanged by the nodes, i.e.

pi(n)=[(d1(n)—01,1(n)) 61.2(n) 613(n) 614(n)]"

[ ]
p2(n)=[02,1(n) (da(n)—02.(n)) O2,3(n) O2.4(n)]" D
p3(n)=1[0s.1(n) O32(n) (ds(n)—0s3(n)) Os4(n)]"
pa(n)=[02.1(n) Oa2(n) O13(n) (da(n)—044(n))]"

Consider the network' presented in Fig. 2. Node 2 feeds
node 1 with data from 3 and 4, since there are no links be-
tween nodes 1 and 3 or 1 and 4. At time instant n — 2, node
3 receives p4(n — 2), which is stored and transmitted to node
2 at time instant n — 1. At instant n — 1, node 3 transmits
pa(n — 2) and p3(n — 1) to node 2, which stores these terms
until instant n, when pa(n), ps(n — 1) and py(n — 2) are
finally transmitted to node 1. The same procedure is used to
re-transmit data from nodes 1 and 2 to node 4, via node 3. As-
suming that the estimation performed in nodes 1 and 4 uses
only data from the same instant, these nodes must wait until
instant n to have all data from instant n — 2 available. For
nodes 2 and 3, one can check that the delay to acquire data is
just one tap, so that at instant n, all data from instant n — 1
is available and can be applied to estimation. Using this ap-
proach, nodes 1 and 4 need to store local data from instants
n — 1 and n — 2, while nodes 2 and 3 store their own data
from instant n — 1 and obtained from their neighbors.

Applying the delayed data re-transmitted by the nodes, the
estimated parameters at instant n + 1 are given by

!Other networks can be implemented with a similar approach. This topol-
ogy is applied to facilitate the explanation of the method.

wii(n+1) =wi;(n—2)+ pei(n—2)x1(n —2)
wao,i(n+1) =wy;(n—1)+ pe;(n — )xa(n —1) ®
wsi(n+1)=ws;(n—1)+ pe;(n — 1)xz(n — 1)
wai(n+1) =wy(n—2)+ pe;(n —2)x4(n —2)

fori = 1,2,3,4. The propagation delay on each node de-
pends upon the number of re-transmissions required to feed
an element with the information from the farthest node in
the network. Networks with a high number of nodes and
less connected topologies can present higher propagation de-
lays. When the delay increases, more data must be stored
and transmitted by the nodes, which requires an efficient way
to share information. For this purpose, we employ the pre-
computation of the 6, ;(n), so that the data shared by the
nodes are as presented in (7). Using (7), nodes 1 and 4 must
share 4 terms, while nodes 2 and 3 transmit 20 elements each
(4 terms locally computed and 16 terms to be re-transmitted).

Note that for larger networks, the technique may be dif-
ficult to implement, since the number of elements that must
be stored in each node increases linearly with K, so that the
memory requirements can become too large. However, our
distributed method can also be applied, if we limit the mem-
ory available in each node. The memory can be limited, for
instance, in networks for which the correlation between dy,(n)
and x;(n) is low for some nodes (k # j). In this case, the
contribution of node j can be neglected by node k, with just
a small degradation in the mean-square deviation (MSD) per-
formance. Since the data from node j is not applied in the
estimation performed in node k, this data is not stored, reduc-
ing the memory requirements for node j.

The delays introduced in the network complicate the anal-
ysis of the proposed technique, since eq. (8) cannot be studied
using traditional tools applied to evaluate the convergence of
adaptive filters [12, 13]. In the next section, we show how the
system equation of the network of Fig. 2 can be written to al-
low the numerical computation of a range of values to choose
1, guaranteeing the stability in the mean. The approach is
presented for a four-node network, but can be extended to any
network.

4. CONVERGENCE IN THE MEAN

Consider the network presented in Fig. 2. To study its conver-
gence in the mean, define
v~vj_,i(n) £ W?,i - W“(n) (9)

Use equations (2) and (9) in (4) to obtain
4
ei(n) = ZW}?i(n)Xj (n) +v;(n).
j=1
Subtract eq. (8) from w7 ; (j = 1,2, 3,4), and define

Rij(n) = xi(n)xj (n), Vi;(n) =xi(n)v;(n) and

J

©y.i(n) = Z Ry (n)Wji(n) + Vi.i(n)



to obtain
(10)

Assume that v;(n) is zero-mean noise, with variance ag, in-
dependent and identically distributed (i.i.d.). Additionally, as-
sume that v;(n) is independent from each x;(n), such that

E{x;(nvi(n)} = E{x;(n)} E{vi(n)} = 0,V .

Use the independence approximation [12, 13] usually applied
to study the convergence of adaptive filters to write

E{R;;j(n)W;r(n)} = E{R; ;(n)} E{W;x(n)}.
Defining

3
Ori(n) =Y Ri;W;i(n),
j=1

where W ;(n) £ E{W;;(n)}and Ry ; & E{Rs ;(n)}, one
gets

(1)

Define matrix W (n), which contains the vectors W, x(n),
Vi, k = 1,2,3,4, in the positions defined by their indices.
Additionally, define the matrix R, in which the block at posi-
tion 7, k is given by R, ., V4, k = 1,2, 3, 4. Define

A=(I-uR). (12)
Using W(n), R and A, and introducing A = 04y, B =

B ®Iyand C = C® Iy, where B = diag(0,1,1,0) and
C = diag(1,0,0,1), eq. (11) can be expressed as

W (n+1)=AAW (n)+BAW (n—1)+CAW (n—2). (13)

Define w(n) = Vec(W(n)), where Vec(:) stacks up the
columns of W (n) in w(n). Eq. (13) is vectorized to

wn+1) =L ® (AA)w(n) + [I1 ® (BA)Jw(n — 1)
+ 14 ® (CA)]w(n — 2). (14)

Since eq. (14) is a third-order system of equations, the usual
approach to study the dynamical properties of adaptive filters
cannot be applied. In order to obtain bounds to select a range
of step sizes which guarantee the convergence in the mean,
one can write

@(n) =Uo(n —1), (15)
where
i@ (AA)] L (BA) [ ®(CA)
U= I 0 0 ;
0 I 0

and study the convergence in the mean accessing the eigen-
values of U. Since the eigenvalue decomposition of U is not
trivial, one can write this matrix using values obtained from
a given problem and numerically compute a range of values
for 1 for which the absolute value of each eigenvalue is less
than 1, guaranteeing the stability. A similar approach can be
applied to write U for an arbitrary number of nodes.

5. SIMULATIONS

In this section, we compare the performance of the proposed
technique and the multichannel LMS algorithm, implemented
as a fully-connected DDN. For this purpose, we consider the
7-Ch-LMS algorithm and our approach to implement the dis-
tributed 7-Ch-LMS in the network presented in Fig. 3. The
proposed technique is implemented in two different ways. In
the first approach, the data of each element is shared with all
nodes of the network, so that the maximum propagation de-
lay is 5 taps. In the second approach, we assume that the cor-
relation between di(n) and x;(n) decreases as the distance
between nodes k and j enlarges, so that the contribution of
far nodes to the estimated coefficients is low and can be disre-
garded. In this case, the amount of data transmitted and stored
by the nodes is reduced, allowing us to limit the available
memory in each element. In our simulation, the reduction in
correlation between dj(n) and x;(n) is obtained by choos-
ing the wy ; such that [[w7 ;|2 o< c(k, j), with c(k, j) =1
if k = j, and c(k,j) = 1/4™%!if m nodes are required to
re-transmit data from node j to node k. It is assumed that if
c(k,j) < 1/64, then the contribution of node j can be ex-
cluded from the estimation performed by node k. For the net-
work presented in Fig. 3, this implies in a maximum delay of 2
taps. vg(n) is i.i.d. Gaussian noise, with zero mean and vari-
ance 1073, independent from x(n), k = 1,2,..., K. The
figure of merit used in the comparison is the MSD, which is
computed for each node and then applied to obtain the net-
work MSD, given by

K
1
MSDxework = 2= ; MSDy,,

where MSDy, is computed for the k-th node. The input data
xk(n), k=1,2,..., K,is a 20-entry tap delay-line, and each
element of xj(n) is zero-mean, Gaussian, i.i.d. and with uni-
tary variance. At the beginning of the simulation, we ran-
domly define the set of optimum parameters W¢, which is
normalized so that the 2-norm of the matrix W? is unitary
(I[W°[|2 = 1). These values for the entries of W¢ are kept
the same for all iterations. The step size used for each algo-
rithm is indicated in Fig. 4, where we also present the curve
obtained when there is no collaboration among the nodes, so
that seven LMS filters operate independently from each other.
The curves are obtained by average of 200 realizations.

Note from Fig. 4 that the proposed technique achieves
almost the same MSD performance of the 7-Ch-LMS algo-



{x1(n),d1(n)} {x2(n), d2(n)}

CSowes

Fig. 3. Distributed 7-channel adaptive filter.
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Fig. 4. MSD comparison between the 7-Ch-LMS and the distributed 7-Ch-
LMS algorithms. Mean of 200 realizations.

rithm, if every node in our approach has access to the delayed
data from the other elements of the network. If our method
dismisses data from far nodes, a performance degradation oc-
curs, but the algorithm still outperforms the LMS algorithms
operating separately.

6. FINAL REMARKS

In this paper, we showed that a mutichannel adaptive filter
can be interpreted as a fully-connected, delayless distributed
network, in which each channel corresponds to a node. More
general distributed networks, in which the nodes are not fully
connected, were also considered. In this case, we showed
that these networks can still be implemented with multichan-
nel adaptive filters through the introduction of memory in the
nodes. For larger networks, the amount of information stored
and transmitted by each node can become impractical with the
increase of K. In order to mitigate this problem, we limit the
available memory in each node. If the correlation between
dr(n) and x;(n) is low, we can neglect the contribution of
node j to the estimation performed in node k, reducing the
data that must be stored in this node. A small degradation is
introduced in the MSD performance, but the algorithm still
outperforms adaptive filters operating without collaboration.

In future works we intend to develop models for the mean-
square performance of MDNS.
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