
DISTRIBUTED MULTICHANNEL ADAPTIVE FILTERING

Fernando G. Almeida Neto, Vı́tor H. Nascimento∗

University of São Paulo

São Paulo, Brazil

e-mail:{fganeto, vitor}@lps.usp.br

Amanda de Paula

Federal Rural University of Pernambuco

Cabo de Santo Agostinho, Brazil

e-mail: amanda.paula@uacsa.ufrpe.br

ABSTRACT

A new distributed multichannel technique is proposed

for networks in which a different set of parameters is es-

timated by each node. The technique is proposed for non

fully-connect topologies, so that nodes must store data and

re-transmit information to other network elements. To reduce

the amount of terms stored by each node, pre-computation

of the data required by other elements is performed before

the data sharing. The proposed method is adequate for im-

plementation in networks with a large number of nodes, for

which straightforward implementations would be prohibitive

in terms of cost and memory.

Index Terms— Distributed adaptive filtering, distributed

multichannel adaptive filtering, multichannel LMS

1. INTRODUCTION

Distributed adaptive filtering techniques implement decen-

tralized processing by exploiting information shared by the

elements which constitute the network. For this purpose, a

group of agents is linked together by some connection topol-

ogy and collaborates to estimate a set of parameters of inter-

est. These techniques have been proposed for applications

such as sensor networks and target detection [1, 2]. Recently,

distributed networks were also proposed to model or mimic

the behavior of biological networks, such as fish schools, bird

formations and bee swarms [3–5]. Different strategies can be

used to connect the agents (which are also called the nodes of

the network), such as the incremental [6], the consensus [2,7]

and the diffusion [8–10] strategies. Regardless of the ap-

proach, in general these methods use locally obtained data

and information shared by other nodes to estimate a set of

parameters, which is the same for all nodes.

Despite the increasing number of publications on this sub-

ject, the techniques aforementioned cannot be applied to net-

works in which each node estimates a different set of param-

eters. For these networks, the development of algorithms is

challenging and, to the best of our knowledge, is still an open

problem. In this paper, we address this problem, and we pro-

pose distributed multichannel adaptive algorithms to exploit

∗This work is partially funded by Fapesp and CNPq grants.

the collaboration between the nodes and improve the estima-

tion of local parameters.

We start showing that a multichannel adaptive filter can

be interpreted as a fully-connected, delayless-distributed net-

work (DDN). Each channel of the adaptive filter corresponds

to a node, with its own input data and set of parameters to

estimate. The estimation performed in each node employs lo-

cal data and data shared by other network elements, which

must be available at the same time instant for all nodes. It is

shown that each element can transmit its set of estimated co-

efficients and input data, allowing the other nodes to compute

the quantities they need, or can perform pre-computation of

the data required by their neighbors before the transmission.

The pre-computation reduces the amount of transmitted data,

saving energy in the communication links. However, the ap-

proach used by the fully-connected distributed multichannel

adaptive filter may not be applied to other topologies, since

non fully connected networks may have propagation delays,

or to large networks, in which the amount of memory required

in each node would become prohibitive. To extend the dis-

tributed method to other topologies, we develop techniques

in which the nodes are allowed to store information obtained

from other elements, so that these data can be re-transmitted

to other agents latter. Using this scheme, many communica-

tion links can be removed from the network. Additionally,

we show that the amount of information stored in each node

can be reduced, if each node pre-computes the terms required

by other elements before the transmission of data. Since the

ideal number of elements stored in the nodes increases with

the cardinality of the network, we describe an approximate

scheme that limits the maximum amount of memory required

in each node. The idea is to disregard the data shared by el-

ements with low contribution to the estimation performed in

node i. We present a simulation to support this approach.

Notation: Lower case is used for scalar quantities (e.g.:

a) and bold lower case for column vectors (e.g.: b). Bold

capital letters represent matrices (e.g.: A). diag(·) defines a

diagonal matrix with the diagonal entries defined by the argu-

ment of the function, while (·)T stands for the transposition

of a matrix or vector. We use ⊗ to indicate the Kronecker

product [11]. || · ||p denotes the p-norm.

2. THE MULTICHANNEL FILTER VIEWED AS A

DELAYLESS DISTRIBUTED NETWORK

In order to show how a multichannel adaptive filter can be

interpreted as a distributed multichannel technique imple-

mented as a DDN, consider the K-channel LMS algorithm

(K-Ch-LMS). Assume that an N -entry regressor vector

xk(n), k = 1, 2, . . . ,K , is available for each channel at

instant n. Additionally, consider that the vector d(n) of

desired signals is modeled by

d(n) = (Wo)Tχ(n) + v(n), (1)

where W
o is the KN × K matrix of optimum coefficients,

χ(n) = col(x1(n), x2(n), . . . , xK(n)) stacks up the re-

gressor vectors and v(n) is the noise vector, uncorrelated with

χ(n). Define

W
o =

w
o
1,1 . . . w

o
1,K

...
. . .

...

w
o
K,1 . . . w

o
K,K

,

where each w
o
j,k, j, k = 1, 2, . . . ,K is an N -length column

vector. The k-th entry of d(n) is given by

dk(n) =

K
∑

j=1

(wo
j,k)

T
xj(n) + vk(n), (2)

so that the regressor vector of each channel contributes to the

computation of the k-th entry of d(n).
The K-Ch-LMS algorithm estimates the matrix

W(n) =

w1,1(n) . . . w1,K(n)
...

. . .
...

wK,1(n) . . . wK,K(n)

to compute an approximation to dk(n) as given by

d̂k(n) =

K
∑

j=1

θj,k(n), (3)

where θj,k(n) = w
T
j,k(n)xj(n). The iterative update of

W(n) uses the estimation error of each channel

ek(n) = dk(n)− d̂k(n) (4)

to update the vectors of coefficients with

wi,k(n+ 1) = wi,k(n) + µek(n)xi(n), (5)

∀i, k = 1, . . .K , where µ is the LMS step-size [12,13], which

for simplicity we assume constant across all channels. Substi-

tuting eq. (3) in (4) and using the resulting expression in (5),

one gets

wi,k(n+1) = wi,k(n)+µ

dk(n)−
K
∑

j=1

θj,k(n)

xi(n), (6)

for ∀i, k = 1, 2, . . .K . Notice from eq. (6) that the update of

each wi,k(n) depends on other entries of matrix W(n) and

also on xk(n), k = 1, 2, . . . ,K , so that one can say that the

channels collaborate among them, sharing their input vectors

and estimated coefficients wi,k(n), to compute the updates.

This can be interpreted as a characteristic of a distributed net-

work, as we show now.

To interpret the K-Ch-LMS as a distributed network, as-

sume that each channel from the K-Ch-LMS corresponds to a

node. Consider that the i-th node measures xi(n) and di(n),
and receives data from other nodes (here generically identi-

fied by pj(n), where j identifies the node that transmitted the

data) to estimate wi,k(n) (for k = 1, 2, . . . ,K). There is

no propagation delay between the nodes, such that all infor-

mation required to compute the estimates at time instant n is

instantaneously available. Figure 1 shows the implementa-

tion of the four-channel LMS algorithm as a fully-connected,

distributed delayless network.

In Fig. 1, node 1 estimates w1,k(n+1), for k = 1, 2, 3, 4.

Consider, for instance, the update of w1,2(n + 1). Recall-

ing eq. (6), it requires d2(n), θ1,2(n) = w
T
1,2(n)x1(n),

θ2,2(n) = w
T
2,2(n)x2(n), θ3,2(n) = w

T
3,2(n)x3(n) and

θ4,2(n) = w
T
4,2(n)x4(n). Since only w1,1(n) and x1(n)

are available at node 1, the remaining data must be obtained

from the other nodes. One possible way for nodes 2, 3 and

4 to transmit their data to node 1 is the following: node 2
transmits d2(n), w2,2(n) and x2(n), while nodes 3 and 4
share w3,2(n) and x3(n), and w4,2(n) and x4(n), respec-

tively, allowing node 1 to locally compute θ2,2(n), θ3,2(n)
and θ4,2(n). The amount of data shared by node 2 is 3N + 1
elements, while nodes 3 and 4 transmit a total amount of

3N elements each. Alternatively, nodes 2, 3 and 4 can pre-

compute d2(n) − θ2,2(n), θ3,2(n) and θ4,2(n), so that only

one scalar is transmitted by each node. One can note that

this latter method leads to a reduction in the total information

shared by each node of the network. For that reason, we

will adopt this latter approach in the rest of the paper. For

a K-node network, the i-th element of the network shares

K − 1 pre-computed parameters θi,k, k 6= i, and the scalar

θ̂i,i = di(n)− θi,i resulting in a transmission of K scalars.

Notice that if the network is fully connected, regardless

of its cardinality, each node has access to all data available in

the network at the same instant. This is not true for topologies

which are not fully connected, as depicted in Fig. 2. In this

case, we should adopt a different strategy to implement the

distributed estimation, as described in the next section.

3. MULTICHANNEL DISTRIBUTED NETWORKS

(MDNs)

In this section, we propose an algorithm for networks with

topologies in which the nodes are not fully connected. In

these cases, the nodes must have extra memory to deal with

delays between the data received from the different nodes. We

1 2

3 4

{x1(n), d1(n)} {x2(n), d2(n)}

{x3(n), d3(n)} {x4(n), d4(n)}

p1(n)

p1(n)

p1(n)

p2(n)

p2(n)

p2(n)

p3(n)

p3(n)

p3(n)

p4(n)

p4(n)

p4(n)

Fig. 1. 4-channel adaptive filter implemented as a fully-connected DDN.

1 2 3 4

{x1(n), d1(n)} {x2(n), d2(n)} {x3(n), d3(n)} {x4(n), d4(n)}

p1(n) p1(n − 1) p1(n − 2)

p2(n)

p2(n)

p2(n − 1)

p3(n)

p3(n)p3(n − 1)

p4(n)p4(n − 1)p4(n − 2)

Fig. 2. Distributed 4-channel adaptive filter.

describe the problems and solutions through the example of a

four-node network implementing the LMS technique.

To simplify our analysis, define the following vectors to

describe the information exchanged by the nodes, i.e.

p1(n)= [(d1(n)−θ1,1(n)) θ1,2(n) θ1,3(n) θ1,4(n)]
T

p2(n)= [θ2,1(n) (d2(n)−θ2,2(n)) θ2,3(n) θ2,4(n)]
T

p3(n)= [θ3,1(n) θ3,2(n) (d3(n)−θ3,3(n)) θ3,4(n)]
T

p4(n)= [θ4,1(n) θ4,2(n) θ4,3(n) (d4(n)−θ4,4(n))]
T

(7)

Consider the network1 presented in Fig. 2. Node 2 feeds

node 1 with data from 3 and 4, since there are no links be-

tween nodes 1 and 3 or 1 and 4. At time instant n − 2, node

3 receives p4(n− 2), which is stored and transmitted to node

2 at time instant n − 1. At instant n − 1, node 3 transmits

p4(n− 2) and p3(n− 1) to node 2, which stores these terms

until instant n, when p2(n), p3(n − 1) and p4(n − 2) are

finally transmitted to node 1. The same procedure is used to

re-transmit data from nodes 1 and 2 to node 4, via node 3. As-

suming that the estimation performed in nodes 1 and 4 uses

only data from the same instant, these nodes must wait until

instant n to have all data from instant n − 2 available. For

nodes 2 and 3, one can check that the delay to acquire data is

just one tap, so that at instant n, all data from instant n − 1
is available and can be applied to estimation. Using this ap-

proach, nodes 1 and 4 need to store local data from instants

n − 1 and n − 2, while nodes 2 and 3 store their own data

from instant n− 1 and obtained from their neighbors.

Applying the delayed data re-transmitted by the nodes, the

estimated parameters at instant n+ 1 are given by

1Other networks can be implemented with a similar approach. This topol-

ogy is applied to facilitate the explanation of the method.

w1,i(n+ 1) = w1,i(n− 2) + µei(n− 2)x1(n− 2)

w2,i(n+ 1) = w2,i(n− 1) + µei(n− 1)x2(n− 1)

w3,i(n+ 1) = w3,i(n− 1) + µei(n− 1)x3(n− 1)

w4,i(n+ 1) = w4,i(n− 2) + µei(n− 2)x4(n− 2)

(8)

for i = 1, 2, 3, 4. The propagation delay on each node de-

pends upon the number of re-transmissions required to feed

an element with the information from the farthest node in

the network. Networks with a high number of nodes and

less connected topologies can present higher propagation de-

lays. When the delay increases, more data must be stored

and transmitted by the nodes, which requires an efficient way

to share information. For this purpose, we employ the pre-

computation of the θj,k(n), so that the data shared by the

nodes are as presented in (7). Using (7), nodes 1 and 4 must

share 4 terms, while nodes 2 and 3 transmit 20 elements each

(4 terms locally computed and 16 terms to be re-transmitted).

Note that for larger networks, the technique may be dif-

ficult to implement, since the number of elements that must

be stored in each node increases linearly with K , so that the

memory requirements can become too large. However, our

distributed method can also be applied, if we limit the mem-

ory available in each node. The memory can be limited, for

instance, in networks for which the correlation between dk(n)
and xj(n) is low for some nodes (k 6= j). In this case, the

contribution of node j can be neglected by node k, with just

a small degradation in the mean-square deviation (MSD) per-

formance. Since the data from node j is not applied in the

estimation performed in node k, this data is not stored, reduc-

ing the memory requirements for node j.

The delays introduced in the network complicate the anal-

ysis of the proposed technique, since eq. (8) cannot be studied

using traditional tools applied to evaluate the convergence of

adaptive filters [12,13]. In the next section, we show how the

system equation of the network of Fig. 2 can be written to al-

low the numerical computation of a range of values to choose

µ, guaranteeing the stability in the mean. The approach is

presented for a four-node network, but can be extended to any

network.

4. CONVERGENCE IN THE MEAN

Consider the network presented in Fig. 2. To study its conver-

gence in the mean, define

w̃j,i(n) , w
o
j,i −wj,i(n). (9)

Use equations (2) and (9) in (4) to obtain

ei(n) =

4
∑

j=1

w̃
T
j,i(n)xj(n) + vi(n).

Subtract eq. (8) from w
o
j,i (j = 1, 2, 3, 4), and define

Ri,j(n) = xi(n)x
T
j (n), V i,j(n) = xi(n)vj(n) and

Θk,i(n) =
4

∑

j=1

Rk,j(n)w̃j,i(n) + Vk,i(n)

to obtain

w̃1,i(n+ 1) = w̃1,i(n− 2)− µΘ1,i(n− 2)

w̃2,i(n+ 1) = w̃2,i(n− 1)− µΘ2,i(n− 1)

w̃3,i(n+ 1) = w̃3,i(n− 1)− µΘ3,i(n− 1)

w̃4,i(n+ 1) = w̃4,i(n− 2)− µΘ4,i(n− 2).

(10)

Assume that vi(n) is zero-mean noise, with variance σ2
v , in-

dependent and identically distributed (i.i.d.). Additionally, as-

sume that vi(n) is independent from each xj(n), such that

E{xj(n)vi(n)} = E{xj(n)}E{vi(n)} = 0, ∀i,j .

Use the independence approximation [12,13] usually applied

to study the convergence of adaptive filters to write

E{Ri,j(n)w̃j,k(n)} ≈ E{Ri,j(n)}E{w̃j,k(n)}.

Defining

Θ̄k,i(n) =

3
∑

j=1

R̄k,jw̄j,i(n),

where w̄j,i(n) , E{w̃j,i(n)} and R̄k,j , E{Rk,j(n)}, one

gets

w̄1,i(n+ 1) = w̄1,i(n− 2)− µΘ̄1,i(n− 2)

w̄2,i(n+ 1) = w̄2,i(n− 1)− µΘ̄2,i(n− 1)

w̄3,i(n+ 1) = w̄3,i(n− 1)− µΘ̄3,i(n− 1)

w̄4,i(n+ 1) = w̄4,i(n− 2)− µΘ̄4,i(n− 2).

(11)

Define matrix W̄(n), which contains the vectors w̄j,k(n),
∀j, k = 1, 2, 3, 4, in the positions defined by their indices.

Additionally, define the matrix R, in which the block at posi-

tion j, k is given by R̄j,k, ∀j, k = 1, 2, 3, 4. Define

∆ = (I− µR). (12)

Using W̄(n), R and ∆, and introducing A = 04N , B =
B ⊗ IN and C = C ⊗ IN , where B = diag(0, 1, 1, 0) and

C = diag(1, 0, 0, 1), eq. (11) can be expressed as

W̄(n+1)=A∆W̄(n)+B∆W̄(n−1)+C∆W̄(n−2). (13)

Define ω(n) = Vec(W̄(n)), where Vec(·) stacks up the

columns of W̄(n) in ω(n). Eq. (13) is vectorized to

ω(n+ 1) = [I4 ⊗ (A∆)]ω(n) + [I4 ⊗ (B∆)]ω(n− 1)

+ [I4 ⊗ (C∆)]ω(n− 2). (14)

Since eq. (14) is a third-order system of equations, the usual

approach to study the dynamical properties of adaptive filters

cannot be applied. In order to obtain bounds to select a range

of step sizes which guarantee the convergence in the mean,

one can write
ω̃(n) = Uω̃(n− 1), (15)

where

U =

[I4 ⊗ (A∆)] [I4 ⊗ (B∆)] [I4 ⊗ (C∆)]
I 0 0

0 I 0

 ,

and study the convergence in the mean accessing the eigen-

values of U. Since the eigenvalue decomposition of U is not

trivial, one can write this matrix using values obtained from

a given problem and numerically compute a range of values

for µ for which the absolute value of each eigenvalue is less

than 1, guaranteeing the stability. A similar approach can be

applied to write U for an arbitrary number of nodes.

5. SIMULATIONS

In this section, we compare the performance of the proposed

technique and the multichannel LMS algorithm, implemented

as a fully-connected DDN. For this purpose, we consider the

7-Ch-LMS algorithm and our approach to implement the dis-

tributed 7-Ch-LMS in the network presented in Fig. 3. The

proposed technique is implemented in two different ways. In

the first approach, the data of each element is shared with all

nodes of the network, so that the maximum propagation de-

lay is 5 taps. In the second approach, we assume that the cor-

relation between dk(n) and xj(n) decreases as the distance

between nodes k and j enlarges, so that the contribution of

far nodes to the estimated coefficients is low and can be disre-

garded. In this case, the amount of data transmitted and stored

by the nodes is reduced, allowing us to limit the available

memory in each element. In our simulation, the reduction in

correlation between dk(n) and xj(n) is obtained by choos-

ing the w
o
k,j such that ||wo

k,j ||2 ∝ c(k, j), with c(k, j) = 1

if k = j, and c(k, j) = 1/4m+1 if m nodes are required to

re-transmit data from node j to node k. It is assumed that if

c(k, j) < 1/64, then the contribution of node j can be ex-

cluded from the estimation performed by node k. For the net-

work presented in Fig. 3, this implies in a maximum delay of 2
taps. vk(n) is i.i.d. Gaussian noise, with zero mean and vari-

ance 10−3, independent from xk(n), k = 1, 2, . . . ,K . The

figure of merit used in the comparison is the MSD, which is

computed for each node and then applied to obtain the net-

work MSD, given by

MSDNetwork =
1

K

K
∑

k=1

MSDk,

where MSDk is computed for the k-th node. The input data

xk(n), k = 1, 2, . . . ,K , is a 20-entry tap delay-line, and each

element of xk(n) is zero-mean, Gaussian, i.i.d. and with uni-

tary variance. At the beginning of the simulation, we ran-

domly define the set of optimum parameters W
o, which is

normalized so that the 2-norm of the matrix W
o is unitary

(||Wo||2 = 1). These values for the entries of Wo are kept

the same for all iterations. The step size used for each algo-

rithm is indicated in Fig. 4, where we also present the curve

obtained when there is no collaboration among the nodes, so

that seven LMS filters operate independently from each other.

The curves are obtained by average of 200 realizations.

Note from Fig. 4 that the proposed technique achieves

almost the same MSD performance of the 7-Ch-LMS algo-

1 2 7

{x1(n), d1(n)} {x2(n), d2(n)} {x7(n), d7(n)}

Fig. 3. Distributed 7-channel adaptive filter.

0 1000 2000 3000 4000 5000
−35

−30

−25

−20

−15

−10

−5

0

M
S

D
(d

B
)

Number of iterations

7 independent LMS algorithms (µ = 3.8·10−3)

(disregarding low-correlated terms)

Distributed 7-Ch-LMS (µ = 4.1·10−3)

Distributed 7-Ch-LMS (µ = 3.5·10−3)

Fully-connected distributed 7-Ch-LMS
(µ = 4·10

−3)

Fig. 4. MSD comparison between the 7-Ch-LMS and the distributed 7-Ch-

LMS algorithms. Mean of 200 realizations.

rithm, if every node in our approach has access to the delayed

data from the other elements of the network. If our method

dismisses data from far nodes, a performance degradation oc-

curs, but the algorithm still outperforms the LMS algorithms

operating separately.

6. FINAL REMARKS

In this paper, we showed that a mutichannel adaptive filter

can be interpreted as a fully-connected, delayless distributed

network, in which each channel corresponds to a node. More

general distributed networks, in which the nodes are not fully

connected, were also considered. In this case, we showed

that these networks can still be implemented with multichan-

nel adaptive filters through the introduction of memory in the

nodes. For larger networks, the amount of information stored

and transmitted by each node can become impractical with the

increase of K . In order to mitigate this problem, we limit the

available memory in each node. If the correlation between

dk(n) and xj(n) is low, we can neglect the contribution of

node j to the estimation performed in node k, reducing the

data that must be stored in this node. A small degradation is

introduced in the MSD performance, but the algorithm still

outperforms adaptive filters operating without collaboration.

In future works we intend to develop models for the mean-

square performance of MDNs.

7. REFERENCES

[1] J. Chou, D. Petrovic, and K. Ramachandran, “A dis-

tributed and adaptive signal processing approach to re-

ducing energy consumption in sensor networks,” in

Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications, March 2003, vol. 2, pp.

1054–1062 vol.2.

[2] R. Olfati-Saber and R.M. Murray, “Consensus problems

in networks of agents with switching topology and time-

delays,” IEEE Trans. Automat. Contr., vol. 49, no. 9, pp.

1520–1533, Sept 2004.

[3] S.-Y. Tu and A.H. Sayed, “Tracking behavior of mobile

adaptive networks,” in The Forty Fourth Asilomar Con-

ference on Signals, Systems and Computers, Nov 2010,

pp. 698–702.

[4] F.S. Cattivelli and A.H. Sayed, “Modeling bird flight

formations using diffusion adaptation,” IEEE Trans.

Signal Processing, vol. 59, no. 5, pp. 2038–2051, May

2011.

[5] J. Li and A.H. Sayed, “Modeling bee swarming behav-

ior through diffusion adaptation with asymmetric infor-

mation sharing,” in EURASIP Journal on Advances in

Signal Processing, 2012:18, 2012.

[6] C.G. Lopes and A.H. Sayed, “Incremental adaptive

strategies over distributed networks,” IEEE Trans. Sig-

nal Processing, vol. 55, no. 8, pp. 4064 –4077, aug.

2007.

[7] S. Kar and J.M.F. Moura, “Consensus + innovations

distributed inference over networks: cooperation and

sensing in networked systems,” IEEE Signal Process-

ing Mag., vol. 30, no. 3, pp. 99–109, May 2013.

[8] C.G. Lopes and A.H. Sayed, “Diffusion least-mean

squares over adaptive networks: Formulation and per-

formance analysis,” IEEE Trans. Signal Processing, vol.

56, no. 7, pp. 3122 –3136, july 2008.

[9] A.H. Sayed, “Diffusion adaptation over networks,” in

Academic Press Library in Signal Processing:, Rama

Chellappa and Sergios Theodoridis, Eds., vol. 3, Signal

Processing Theory and Machine Learning, pp. 323–454.

Chennai: Academic Press, 2014.

[10] A.H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z.J. Towfic,

“Diffusion strategies for adaptation and learning over

networks: an examination of distributed strategies and

network behavior,” IEEE Signal Processing Mag., vol.

30, no. 3, pp. 155–171, May 2013.

[11] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis,

Cambridge University Press, Cambridge, MA, 1991.

[12] A.H. Sayed, Fundamentals of adaptive filtering, John

Wiley & Sons, 2003.

[13] V.H. Nascimento and M.T.M. Silva, “Adaptive filters,”

in Academic Press Library in Signal Processing:, Rama

Chellappa and Sergios Theodoridis, Eds., vol. 1, Signal

Processing Theory and Machine Learning, pp. 619—

761. Chennai: Academic Press, 2014.

