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Spatial diversity helps parameter estimation in distributed networks.
In this paper, a sparsity-aware link combination strategy is proposed,
which considers both the spatial sparsity in a network and the inherent
sparsity of the system, where two types of zero-attracting adaptive
combiners are proposed based on the least-mean-square (LMS) algorithm.
The proposed algorithms exploit l1-norm regularization through the
adaptive combination of neighboring nodes’ weights such that the
proposed algorithms can adaptively track the variations of network
topology. Simulation results illustrate the advantages of the proposed
link combination algorithm in terms of convergence rate and steady-state
performance for distributed sparse system learning.

Introduction: Collaborative signal processing [1, 2] is considered as a
promising way to estimate parameters of interest in a distributed network.
Each node collects local data and exchanges its own estimate with its
neighbors. There are primarily two steps at each node, an adaptive step
and a combination step. In the adaptive one, the node updates the local
estimate. In the other step, each node combines its own estimates with
those from its neighborhood.

In this paper we consider the problem of distributed estimation under
two sparsity constraints: first, the case in which the weight vector to be
estimated is itself sparse; and second, the use of sparsity-aware algorithms
for link selection in order to reduce the communication cost in distributed
networks.

In many situations, the parameters of interest may only contain few
non-zero coefficients, so the zero-attracting least-mean-square (ZA-LMS)
algorithm was proposed for sparse system identification [3], attaining
better performance in terms of faster convergence rate and low steady-
state errors compared to the standard LMS. Moreover, sparsity-promoting
algorithms in distributed learning were also proposed [4], performing
better in terms of stability and tracking behavior.

On the other hand, for a fixed node the received signal to noise ratio
(SNR) among its neighbors may vary considerably. Therefore, only the
nodes with higher SNRs would effectively contribute to enhance the
network performance. This creates a form of sparsity in the optimal
solution in the spatial domain. An adaptive convex combination scheme
was proposed in [5], assigning optimized combination coefficients to
neighbors’ weights. As the number of nodes increases, the problem of
computational complexity becomes more pressing. The exploitation of a
subset of connected links is an effective way to avoid low SNR nodes
and simultaneously reduce the computation burden. A sparsity-inspired
link selection (SILS) algorithm was proposed in [6] which can track the
network topology based on residual errors resulting from individual filters.
However, the combination vector updating algorithm only depends on
the maximum and minimum errors collected from each node’s neighbors
and the number of active nodes is strongly dependent on the number of
neighbor nodes. Therefore, if there are only a few good nodes in a large
network, the algorithm may consume a long time to converge.

In this paper, a sparsity-aware link selection approach is proposed
for the adaptive combination of neighbor node weights, which takes
both spatial and system sparsity into account. An l1-norm penalty is
incorporated to acquire the relationship of residual errors among the
connected nodes. Then, a sparse online learning technique is again
considered in the combination step, where the combination vector tracks
the sparse pattern of the system adaptively. Due to the simplicity of the
LMS algorithm, two algorithms, namely zero-attracting distributed LMS
(ZA-DLMS) and joint zero-attracting distributed LMS (JZA-DLMS), are
proposed to implement sparse combination. From the simulation results,
the advantages of the performance of the sparsity-aware algorithms are
shown in terms of convergence rate and steady-state mean square deviation
(MSD).

Problem Formulation: We consider a distributed network composed of N
nodes in a coordinated network, which is similar as in [5]. The set Nk

denotes the neighborhood of node k, including itself, and the cardinality
of Nk is Nk. Each node k collects a scalar measurement yk(n)∈R and

a column regressor xk(n)∈RM×1 with length M over successive time
instants n≥ 0, that are related via a linear regression model

yk(n) =xT
k (n)ho + vk(n), (1)

where ho ∈RM×1 is the vector that we want to estimate, assumed sparse
[4], vk(n)∈R represents noise and modeling errors at each node, assumed
zero mean with variance σ2

k.
The purpose of cooperative estimation is to estimate ho at each node

k and time n in a distributed manner. Using the ZA-LMS algorithm as
the core adaptive filter, we have the adaptation step and combination
step [4], i.e., ψk(n) =hk(n− 1) + µk(yk(n)− xT

k (n)hk(n− 1))−
νk

∂Jk(n)
∂hk

and hk(n) =
∑

i∈Nk
ci,k(n)ψi(n), where ψk(n) is the local

estimate, Jk(n) is the sparse penalty function to regulate the sparsity
of the system (here the l1-norm is considered, i.e., Jk(n) = ∥hk(n)∥1)
and νk is the penalty parameter of the kth node. The kth node
exploits the measured data {yk(n),xk(n)} to update its intermediate
weight vector ψk(n), and hk(n) combines the estimates {ψi(n)}
received from each node’s neighbors, i∈Nk, and {ci,k(n)} are the
time-varying combination weights. To study the behavior of the whole
network, we introduce the notationΨk(n)! [ψ1(n), . . . ,ψNk

(n)]M×Nk

and ck(n)! [c1,k(n), . . . , cNk,k(n)]T ∈RNk×1. Accordingly, we have
hk(n) =Ψk(n)ck(n).

In this paper, we focus on an approach to effectively update the ci,k(n)
such that the performance of the network can be improved in terms of
both convergence rate and steady-state errors. Following [5], the problem
can be decoupled into N subproblems, resulting in a distributed solution.
For each node k, we minimize the cost function Lk =E{(yk(n)−
xT
k (n)Ψk(n)ck(n))2 + νkJk(n)} with respect to ck(n).

Sparsity-aware adaptive combiners: Recalling that there are variations in
the regressor data across the distributed nodes because of spatial diversity,
the number of links between nodes can be reduced. There are three main
reasons for selecting a subset of Nk, defined by Ωk ⊆Nk: i) less local
noise is added through the combination step, ii) the computation load
can be reduced, iii) nodes with high SNRs can help the network achieve
faster convergence rate and lower steady-state MSD. Mathematically, the
optimization problem is

min
Ωk

E{(yk(n)− xT
k (n)Ψk(n)ck(n))

2 + νkJk(n)}

s.t. ci,k(n)> 0,
∑

i∈Ωk

ci,k(n) = 1, ci,k(n) = 0 for i /∈Ωk. (2)

where the convex constraints (2) are necessary conditions to guarantee
convergence and unbiased estimates [1]. In order to find the optimized
subset Ωk, we need to determine the non-zero entries of ck(n).
Consequently, we define the instantaneous error after the local adaptive
filter at the kth node as

ek(n) = yk(n)− (Ψk(n)ck(n))
Txk(n) = yk(n)− ck(n)

T x̃k(n) (3)

where

x̃k(n)!ΨT
k (n)xk(n) = [ŷ1,k(n), . . . , ŷi,k(n), . . . , ŷNk,k(n)]

T , (4)

and ŷi,k(n) =ψ
T
i (n)xk(n), i∈Nk represent the estimates of yk(n)

relative to the kth node. Since cT
k Nk

= 1 where N represents the N × 1
vector whose entries are all one, the instantaneous error can be expressed
further by

ek(n) = cT
k (n)( Nk

yk(n)− x̃k(n)) =
∑

i∈Nk

ci,k(n)vi,k(n), (5)

where vi,k(n) denotes the individual error resulting from applying the
estimate ψi(n) from the ith node to the data at the kth node. Since only
the relative values of ci,k(n) are the parameters of interest, we can simplify
the optimization if we i) ignore the constraints, ii) obtain the combination
coefficient vector ck(n) by the proposed combination approach as (7) or
(9) below, iii) take max{ci,k(n), 0}, i∈Nk, and normalize them each time
such that they satisfy (2), iv) eliminate the weights whose entries ci,k(n)
are very small in the combination, where the threshold is defined as βk, v)
normalize ci,k(n) again.

ZA-DLMS combiner: In the combination step a new cost function is
defined by minimizing the received instantaneous errors with an l1-norm
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Fig. 1. Topology of the distributed network.
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Fig. 2 (Top) received signal variances σ2
x,k . (Middle) local noise variances σ2

k .
(Bottom) SNR at each node.

penalty on the coefficient vector, which is expressed by

LZA
k (n) =

1

2
e2k(n) + γZA

k ∥ck(n)∥1 (6)

where γZA
k is the regulation parameter that controls a tradeoff between the

residual error and sparsity of the combination coefficients. According to
(3) and (4), x̃k(n) can be considered as a new input vector. Using gradient
descent updating, the ZA-DLMS filter update is obtained by

ck(n+ 1) = ck(n)− µZA
k

∂LZA
k (n)

∂ck(n)

= ck(n) + µZA
k ek(n)x̃k(n)− ρZA

k sgn(ck(n)) (7)

where the ρZA
k = µZA

k γZA
k and sgn(·) is a component-wise sign function

defined as sgn(x) = x/|x|, x ̸= 0 and sgn(x) = 0, x= 0. µZA
k is the step-

size of the filter at node k. The complexity of the proposed ZA-DLMS is
still as low as that of LMS, O(M).

JZA-DLMS combiner: After combining the individual weights, the
updated weight at the kth node may add residual errors in the combined
weight. Therefore, taking the sparsity of the system into consideration, the
l1-norm penalty still must be imposed on the combined weight hk(n),
resulting in the cost function LJZA

k (n), i.e.,

LJZA
k (n) =

1

2
e2k(n) + γJZA

k ∥ck(n)∥1︸ ︷︷ ︸
spatial sparsity

+ γ̄JZA
k ∥Ψk(n)ck(n)∥1︸ ︷︷ ︸

system sparsity

(8)

where the two regulation parameters γJZA
k and γ̄JZA

k control the balance
between error and sparsity. Similarly, the updating equation of the adaptive
combines for the JZA-DLMS algorithm is obtained by

ck(n+ 1) = ck(n)− µJZA
k

∂LJZA
k (n)

∂ck(n)

= ck(n) + µJZA
k ek(n)x̃k(n)− ρJZA

k sgn(ck(n))

− ρ̄JZA
k ΨT

k (n)sgn
(
Ψk(n)ck(n)

)
(9)

where ρJZA
k = µJZA

k γJZA
k and ρ̄JZA

k = µJZA
k γ̄JZA

k .
The proposed JZA-DLMS algorithm considers jointly the sparsity both

of the network links and of the optimal weight vector such that the quality
of estimation is improved further with the prior information about sparsity.
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Fig. 3 Comparison of the different combination strategies in terms of the
network MSD. The step size and sparsity parameters are as follows for k=
1, . . . , 15. Local LMS, µk = 1× 10−4, νk = 1× 10−6. Combiner, µConvex

k =

µZA
k = µJZA

k = 1× 10−4, ρJZA
k = 1× 10−6, ρ̄JZA

k = 1× 10−6, βk = 0.05,
and ρSILS

k = 5× 10−3, εSILS
k = 10.

Simulation results: The topology of the network is considered as shown
in Fig. 1, where the link combination algorithms (uniform [4], convex [5],
SILS [6] and the proposed ones) are applied at each node. The input signal
and the observed noise are both white Gaussian random sequences with
zero mean, where the covariance matrices are Rx,k = σ2

x,kIM and noise
variances are σ2

k respectively, where k= 1, . . . , 15. It can be observed in
Fig. 2 that the 2nd, 3rd, 6th and 9th node have relative higher SNRs, which
illustrates the sparsity in spatial domain. We simulate a 200-tap regressor
with 10 non-zero coefficients at the first 10 taps in Fig. 3, with a sparsity
ratio of 10/200. Based on 100 Monte Carlo trials, the proposed ZA-DLMS
and JZA-DLMS show faster convergence rate and lower steady-state MSD
than the other approaches, where the JZA-DLMS performs better than ZA-
DLMS since it still considers the sparsity of the system.

Conclusion: In this paper, we proposed a sparsity-aware adaptive
combination strategy for sparse system learning. The proposed ZA-DLMS
and JZA-DLMS adaptively combine the individual nodes’ weights by the
l1-norm penalization such that the network achieves better performance
with faster convergence rate and lower steady-state MSD. Simulation
results showed sparsity-aware algorithms are superior to the traditional
ones in distributed sparse system learning.
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