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Abstract— Greedy algorithms are a family of computationally
efficient optimization techniques for solving the sparse repre-
sentation problem. Matching pursuit (MP) and orthogonal MP
(OMP) are popular greedy algorithms; MP possesses the lowest
complexity whereas OMP provides better performance. In this
paper, we modify OMP using dichotomous coordinate descent
iterations and arrive at an algorithm that has performance close
to that of OMP and complexity even lower than that of MP.

I. INTRODUCTION

Sparse recovery techniques find many applications in sig-
nal processing. Real-time implementation of such techniques,
particularly on FPGAs, is an important area for research [1]–
[4]. The matching pursuit (MP) and orthogonal MP (OMP)
algorithms are considered as the most suitable candidates
for such implementation [1]–[3], [5]. MP is computationally
efficient, but its performance is inferior to that of OMP,
which is more complicated. The higher OMP complexity is
due to a sequence of least squares (LS) problems solved in
greedy iterations. In [6], it was proposed to use line search
methods [7] to reduce the complexity; specifically, methods
based on gradient descent or conjugate gradient iterations were
considered. However, the complexity of such modifications of
the OMP algorithm is still high.

In this paper, we propose a modification to OMP based on
the line search with coordinate descent (CD) iterations. The
motivation is that for an LS problem of size k, the complexity
of the above mentioned methods is O(k2) operations per
iteration, whereas the complexity of a CD iteration is O(k).
It has been previously recognized that the CD search has an
inherent property of being low complexity if the solution is
sparse [8]–[10]. CD iterations usually correspond to an exact
line search [7], i.e. the step size at each iteration is chosen to
minimize the cost function. In [8], [11], it was demonstrated
that dichotomous CD (DCD) iterations, though belonging to
inexact line search methods, provide an even lower complexity
solution to sparse problems with similar convergence rate
to that of the exact CD search. The features that differenti-
ate DCD from CD iterations are: (a) no multiplication and
division operations, which is highly beneficial in real-time
systems [11], and (b) existence of a large proportion of no-
update iterations possessing especially low complexity. Our
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TABLE I
MP ALGORITHM

Step Equation

Initialization: c = AHy, R = AHA, x = 0, I = ∅
1 Repeat until termination conditions met:
2 q = argmaxn |cn|2

3 xq ← xq + cq , I ← I ∪ q

4 c← c− cqR(q)

modification to OMP possesses a performance close to that of
OMP, whereas it requires fewer operations than even the MP
algorithm. Moreover, most of the operations in the proposed
algorithm are additions, which makes it especially attractive
for real-time implementation, e.g. on FPGAs.

Notations: We use capital and small bold fonts to denote
matrices and vectors, respectively; e.g. A is a matrix and x a
vector. Elements of the matrix and vector are denoted as An,p

and xn, respectively. We use I to denote a support (indexes
of non-zero elements); the cardinality of I is denoted as |I|.
We also denote: A(q) the qth column of A; AH Hermitian
transpose of A; AI a matrix obtained from A keeping only
columns corresponding to support I; RI,I a |I| × |I| matrix
obtained from R extracting elements from rows and columns
with indexes in the support I; xI the subset of x that contains
non-zero entries from x corresponding to the support I; ℜ{·}
and ℑ{·} are the real and imaginary part of a complex number,
respectively; tr[·] the trace operator.

II. SIGNAL MODEL, MP, OMP AND GP ALGORITHMS

We deal with the complex-valued linear model

y = Ax+ n (1)

where A ∈ CM×N is the measurement matrix, n, y ∈ CM×1,
and x ∈ CN×1 are the noise, observation, and unknown
vectors, respectively. We are interested in the case M < N .
It is assumed that only K < M elements of x are non-zeros,
i.e. the vector x is sparse, and the support is unknown.

Applications of sparse recovery algorithms differ in the pos-
sibility of precomputing the matrix R = AHA. If R cannot
be precomputed, the complexity of algorithms presented below
will be dominated by the on-line computation of R or its
submatrixes, and thus all the algorithms will have comparable
complexity. In other applications, R can be precomputed
or updated in real-time with low complexity as in adaptive
filters [12], [13]. Here we are interested in applications where
R is available.
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TABLE II
OMP ALGORITHM

Step Equation

Initialization: c = AHy, x = 0, R = AHA, I = ∅
1 Repeat until termination conditions met:
2 q = argmaxn |cn|2, I ← I ∪ q

3 Solve RI,IxI = fI , where RI,I = AH
I AI and fI = AH

I y

4 c← c−RIxI

1) MP algorithm: MP uses greedy iterations as shown in
Table I. At each iteration, one element in x is selected for
updating, based on the maximum magnitude of elements of the
residual vector c. The MP complexity in terms of real-valued
operations is then given by PMP ≈ 8MN+12NL+4L3

g . Note
that for simplicity we count one addition, one multiplication,
one comparison or one division as a single operation. This is
more adequate for DSPs, which perform multiplications in a
single clock cycle. The complexity of FPGA implementation
also depends on the operation; e.g. additions and compar-
isons are significantly less complicated than multiplications
or divisions. Since our proposed algorithm is mostly based on
additions and comparisons, this complexity measure will in a
sense be the worst-case complexity.

The first term of the MP complexity is for computing
c = AHy at the initialization stage. The second term is the
complexity of steps 2 and 4, where L is the number of greedy
iterations. The third term is the complexity of a debiasing
stage (described below) after the support of size Lg is found.
Note that usually L is larger than Lg since in MP the same
element can be selected multiple times and the final support
identification for the debiasing, described by (3) below, can
further remove some elements from the support.

We are interested in applications where the objective is
a low mean squared error (MSE), e.g. such as estimation
of multipath sparse channels [14]–[17]. Therefore, after a
sparse recovery algorithm terminates and the final support is
identified, a debiasing on the support should be done. This
stage computes the minimum MSE (MMSE) estimate of the
vector x using the finally estimated support I as a solution to
the equation:

(RI,I + ηI)xI = AIy (2)

where η = σ2|I|/tr[RI,I ], σ2 is the noise variance and I is
the identity matrix. The final support I is identified as a set
of elements in the solution x found by the greedy algorithm,
satisfying the condition

|xk| > µmax
n
{|xn|} (3)

where µ (0 ≤ µ < 1) is a predefined parameter.
In the MP algorithm, it is assumed that A is normalized so

that Rq,q = 1, q = 1, . . . , N . If this is not the case, cq at steps
2 and 3 should be replaced by cq/Rq,q .

Different stopping criteria can be incorporated in MP and
other algorithms. Here, we will use a limit Lmax to the number
of greedy iterations and a lower limit cmin to the maximum
magnitude of the residual vector c: maxn |cn| < cmin.

2) OMP algorithm: MP does not provide high recovery
performance when the percentage of non-zero elements in-
creases. In this case, the OMP algorithm presented in Table II
can be used, which at the kth greedy iteration solves a k-size
LS problem (step 3); this results in an increase in complexity
compared to MP. Complexity of the OMP algorithm is given
by POMP ≈ 8MN + 4NL + PLS + 4NL(L + 1) + 4L3

g. The
first term is for computing c = AHy. The second term is the
complexity of selecting a new element into the support (step
2). The third term is for solving the LS problems (step 3). The
LS problem can be solved using a direct approach that would
result in a complexity of O(L4

g). This can be reduced using
the Cholesky factorization as suggested in [18]. A smaller
complexity can be achieved using a recursive inversion of
RI,I ; in this case, we have PLS ≈ 4L3

g . The fourth term is
for updating the residual c at step 4. The last term is the
complexity of the debiasing after the support is fixed.

3) GP algorithm: The GP algorithm uses a number (Nu)
of gradient descent iterations per greedy iteration to solve
the LS problem in the OMP [6]. If R is unavailable, the
GP complexity is dominated by computation of matrix-vector
products (such as AHy) [6] at every greedy iteration. Thus, for
the complex-valued case, the GP complexity is PGP ≈ 8MNL
real-valued operations. The complexity can be reduced if R
is available [6]. In this case, the main contributions into the
complexity are from initialization of c similarly to that in
Table I (8MN operations), computation of the step size and
update of c in every gradient descent iteration (4NNuL

2

operations) and debiasing (4L3
g operations), thus resulting in

the total complexity PGP ≈ 8MN + 4NNuL
2 + 4L3

g.

III. OMP-DCD ALGORITHM

For solving the LS problem, i.e. minimizing the cost func-
tion J(x) = ||Ax − y||22 on I at the kth greedy iteration,
we can use line search methods, e.g. conjugate-gradient,
gradient-descent or other iterations [6]. The complexity of such
iterations is typically O(k2) operations. CD iterations is the
simplest line search method, with a complexity of O(k). This
happens since a CD direction vector has only one non-zero
entry, thus leading to significant reduction in the complexity
of matrix-vector multiplications required by the line search.

Suppose that the current solution to the LS problem is given
by a vector x. Updating the single t-th element (t ∈ I) of the
vector as x̃t = xt + α results in a new solution x̃, and the
decrement of the cost function ∆J = J(x̃)−J(x) is given by
∆J = |α|2Rt,t − 2ℜ{α∗ct} = |α|2Rt,t − 2|α|ℜ{e−jarg(α)ct},
where we use the representation: α = |α|ejarg(α). The min-
imum of ∆J over arg(α) is achieved at arg(α) = arg(ct).
In this case, ∆J = |α|2Rt,t − 2|α||ct|, and this function is
minimized if |α| = |ct|/Rt,t. Thus, for a fixed t, α = ct/Rt,t

provides the largest decrement of the cost function; in this
case, ∆J = −|ct|2/Rt,t. If A is normalized so that Rt,t = 1,
we have α = ct and ∆J = −|ct|2, and therefore it is useful
to chose t maximizing |ct|.

It is seen that the MP algorithm is a modification to the
OMP algorithm where, for solving the LS problems in greedy
iterations, the CD line search is used with one CD iteration
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TABLE III
OMP-DCD ALGORITHM

Step Equation

Initialization: c = AHy, R = AHA, I = ∅
1 Repeat until termination conditions met:
2 q = argmaxn |cn|2, I ← I∪q, δ = H

3 for m = 1 to Mb repeat:
4 δ = δ/2, α = [δ, −δ, jδ,−jδ], Flag = 0
5 for n = 1 to |I| repeat: p = I(n)

6 for t = 1 to 4 repeat:
7 ifℜ{αtc∗p} > Rp,pδ2/2 do:
8 xp ← xp+αt, c← c−αtR(p), Flag = 1
9 if Flag = 1, go to step 5

per greedy iteration (Nu = 1). With an increase in Nu, the
performance of the algorithm would approach the performance
of the OMP algorithm as, with Nu →∞, the CD line search
solves precisely the LS problem; the latter is also true for
DCD iterations. Although CD iterations have low complexity
comparing to other line search techniques, the complexity can
be further reduced when using DCD iterations.

With DCD iterations, elements of x are fixed-point num-
bers with Mb bits within an amplitude interval [−H,H]. In
DCD iterations, first the most significant bits and then less
significant bits of the solution are updated. This is controlled
by a step-size δ > 0 that starts with δ = H and then is
reduced as δ ← δ/2 for a less significant bit. The OMP-
DCD algorithm is presented in Table III. For the complex-
valued DCD search, four directions of possible updates of
xt on the complex plane are to be considered, defined by
the vector α = [δ,−δ, jδ,−jδ], where j =

√
−1. Note

that the step size values need not be recalculated for each
DCD iteration (as required in exact line search methods),
they are predefined. Avoiding this computation significantly
reduces the complexity. With a choice of H as a power-of-
two number, the algorithm is well suited to implementation on
hardware platforms, e.g. FPGAs, as all its multiplications and
divisions are replaced by bit-shifts. Moreover, there are many
exceptionally simple DCD iterations (no-update or unsuccess-
ful iterations), requiring only one comparison (step 7), when
the solution is not updated. In the OMP-DCD algorithm, we
use Nu to define the maximum number of successful DCD
iterations; it should be chosen as Nu ≪ N as, due to the
accurate initialization of the LS solution within every greedy
iteration, a few DCD iterations are enough to achieve high
accuracy.

Complexity of the OMP-DCD algorithm is given by
POMP-DCD ≈ 8MN + 4NL + 2CuN + Ci + 2NdebL. The
first term is for computing c at the initialization stage. The
second term is for selection of elements in the support (step
2). The term 2CuN is for updating c in the total number Cu of
successful DCD iterations (step 8); each update requires only
2N real-valued additions, as multiplications by α are bit-shift
operations. The next term takes into account Ci (total number
of DCD iterations) tests at step 7 to decide if the DCD iteration
is successful. The debiasing (last term) is now done by using
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Fig. 1. MSE performance of the sparse recovery algorithms.

extra Ndeb DCD iterations at the finally fixed support.
Note that the OMP-DCD algorithm can deal with arbitrary

(not only normalized) matrices A, whereas the MP algorithm
as described above requires the normalization. This is not a
high difference in complexity in terms of the total number
of operations. However, the normalization involves a division
operation, which is difficult for implementation on real-time
design platforms (such as FPGAs). The OMP-DCD algorithm
does not involve division operations. Moreover, DCD iter-
ations, which comprise the largest part of the OMP-DCD
complexity, are multiplication-free and division-free.

IV. NUMERICAL RESULTS

For simulation, we use matrices A of size 128×256 with en-
tries generated as follows. In each simulation trial, we generate
a binary vector of length N + M with independent random
entries ±1/

√
M each with probability 1/2; this vector may

represent a pilot signal in a communication system. The n-th
column of A is then obtained from the pilot signal by taking
its entries from n to n+M − 1; the columns of A have unit
energy. Positions of the K non-zero elements of x are chosen
randomly, the non-zero elements are generated as independent
complex-valued Gaussian zero-mean random numbers of unit
variance and then x is normalized to the energy K. The noise
vector n contains complex-valued random Gaussian entries
of variance σ2. For each fixed K, we run 1000 simulation
trials and average the MSEs obtained in the trials. In all the
algorithms, we set the maximum number of greedy iterations
Lmax = 100, the threshold for debiasing µ = 0.035, and cmin
in each trial is computed as cmin = 0.02maxn |cn| at the first
greedy iteration. In the OMP-DCD algorithm, we set Nu =
32, and, for the debiasing, we use extra Ndeb = 512 DCD
iterations. We also set Mb = 6 and H = 4 for DCD iterations
within the greedy iterations and Mb = 13 and H = 4 in the
debiasing stage. On the plots below, we also show the MSE
performance of an oracle algorithm that, in each simulation
trial, knows the true support; it is used for comparison as the
lower bound of MSE performance. We also present simulation
results for the gradient pursuit (GP) algorithm, which is the
simplest line search algorithm proposed in [6].
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Fig. 2. Complexity of the sparse recovery algorithms in terms of real-valued
operations.

Fig.1 shows the MSE performance and Fig.2 shows the
complexity of the algorithms in terms of real-valued opera-
tions. It is seen that OMP, GP, and OMP-DCD algorithms
significantly outperform the MP algorithm in the number of
non-zero elements that can be recovered. The MSE perfor-
mance of the OMP-DCD algorithm is close to that of OMP; it
is also close to the oracle MSE up to the number of non-zeros
K = 54, which is as high as about 40% of the number of
measurements M = 128.

The OMP-DCD complexity is lower than that of the other
algorithms, including the MP complexity, for all values of K.
For example, for K = 50, where MP produces an MSE of
-16 dB, the OMP-DCD complexity is about 2 times lower
than that of MP and 3 times lower than that of OMP. At
K = 70, with an MSE performance of approximately -11 dB,
still acceptable for channel estimates in some communications
scenarios, the OMP-DCD algorithm requires about 6 times less
operations than OMP. What, in addition, is very important
is the fact that most of the operations in the OMP-DCD
algorithm are additions, that are much easier for real-time
implementation than multiplications. E.g., for K = 50, almost
85% of operations in the OMP-DCD algorithm are additions.

From Fig. 2, it is seen that, if R is unavailable, the GP com-
plexity is significantly higher than that of the other algorithms.
However, even if R is available and only one gradient descent
iteration is used (Nu = 1), the GP complexity is close to the
OMP (implemented using the recursive inversion) complexity
and significantly higher than the OMP-DCD complexity. Note
that although with Nu = 1 the MSE performance of the GP
algorithm is close to the OMP performance, it is still inferior
to the OMP-DCD performance.

At low K, the complexity of all the algorithms is dominated
by the term 8MN for computing the residual vector c = AHy
at the initialization stage. In some applications, this can be
efficiently computed with a much lower complexity; e.g. this
is the case in transversal adaptive filtering where efficient
recursive procedures exist for such computations [12], [13].
In this case, the majority of computations in the OMP-DCD
algorithm becomes multiplication-free. E.g., for K = 50,

almost 96% of operations in the OMP-DCD algorithm are
additions, and only 4% are for the squaring operations at step
2 in Table III.

V. CONCLUSIONS

In this paper, we proposed a modification to orthogonal
matching pursuit. The purpose of the modification is to reduce
the complexity whereas having an MSE performance close to
that of OMP. We have shown by simulation that the proposed
OMP-DCD algorithm has an MSE performance close to that of
OMP and complexity lower than the MP complexity. Besides,
most operations in the OMP-DCD algorithm are additions,
thus it is well suited to real-time implementation, e.g. on
FPGA platforms.
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