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Abstract

Two variable step-size adaptive algorithms using fractionally lower-order moment minimization are proposed

for system identification in non-Gaussian interference environment. The two algorithms automatically adjust their

step-sizes and adapt the weight vector by minimizing the p-th moment of the a posteriori error, where p is the order

with 1 ≤ p ≤ 2, thus they are named as variable step-size normalized least mean p-th norm (VSS-NLMP) algorithms.

The proposed adaptive VSS-NLMP algorithms are applied to both real- and complex-valued systems using low-

complexity time-averaging estimation of the lower-order moments. Simulation results show that the misalignment

of the proposed VSS-NLMP algorithms with a smaller p converges faster and achieves lower steady-state error

in impulsive interference and/or colored input environment. The adaptive VSS-NLMP algorithms also perform

better than the adaptive Fixed Step-Size (FSS) NLMP in both Gaussian and impulsive interference environment.

A theoretical model for the steady-state excess mean-square error is also provided for convergence rate in both

Gaussian and Bernoulli-Gaussian interference.
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I. INTRODUCTION

Adaptive filters have been commonly used in various applications of system identification, such as channel estima-

tion [1], noise cancelation [2], echo cancelation [3], image restoration [4], [5], and seismic system identification [6],

[7]. The most popular adaptive filtering algorithms are the least mean square (LMS) algorithm and normalized LMS

(NLMS) algorithm, which have the advantage of simplicity. However, their major drawbacks are slow convergence

[8] and performance degradation in colored input or non-Gaussian interference [9], and a compromise set by the

step-size between low steady-state error and convergence and tracking rates.

Over the past two decades, many variants of LMS have been proposed to overcome these problems [5], [9]–[19].

Most of these algorithms take one or a combination of four approaches: 1) using variable step size to achieve

both fast convergence and low steady-state errors [10]–[16]; 2) using a small-order affine projection [16], [17]

to reach a better compromise between fast convergence and low computational complexity for colored inputs; 3)

using nonlinear filtering such as median filtering, least mean p-norm (LMP), least mean absolute deviation (LMAD),

higher order moment algorithms to combat non-Gaussian interference [5], [9], [18]–[25]; and 4) using combinations

of multiple adaptive algorithms with different properties [26], [27].

Impulsive, non-Gaussian interference often occurs in practical applications and the LMS algorithm, as a method

optimized for Gaussian models, suffers performance degradation in non-Gaussian environments. Interfering signals

with heavy-tailed distributions produce more outliers than those assumed by Gaussian models. The characterization

of a non-Gaussian signal by its second order moment is no longer optimal and many studies have shown that higher

or lower order statistics can lead to improved convergence or improved robustness against non-Gaussian interference.

One solution is based on Huber robust statistics, which leads to filters based on a saturation non-linearity, which

can be approximated by a least-mean p-norm filter with 1 ≤ p < 2 [28]–[30]. The approach using higher or lower

order statistics yields several families of algorithms including the normalized sign algorithms (NSA) or least mean

absolute deviation (LMAD) algorithms [5], [31], [32], fractional lower-order moment/statistic (FLOM or FLOS)
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algorithms [9], [20], and least mean fourth-moment (LMF) algorithms [33]. These algorithms are based on the

norms L1, Lp with 1 < p < 2, and L4, respectively, rather than the L2 norm. We refer this class of algorithms as

the least mean p-norm (LMP) algorithms, where p = 2 leads to the conventional LMS algorithm and p = 1 leads

to the LMAD algorithm.

In particular, the adaptive FLOM algorithms (or LMP with 1 ≤ p < 2) have been developed for impulsive

models. They were first proposed for systems with alpha-stable distributed inputs [9], and later for continuous-time

filters in the context of Huber robust statistics [28]. More recently, they were reformulated to the normalized NLMP

algorithm [19]. It has been shown [4], [5], [34] that the adaptive NLMP algorithms perform better than the NLMS in

heavy-tailed non-Gaussian interference, but slightly worse in Gaussian interference environment. When the order p

is smaller, the adaptive NLMP algorithm achieves faster convergence but higher steady-state errors than the NLMS

algorithm. The conflicting goals of fast convergence and low steady-state error are caused by the inherent limitation

of the fixed step size in both the NLMS and NLMP algorithms. A large step size results in fast convergence but

large steady-state errors; whilst a small step size achieves small steady-state errors but with slow convergence.

Several variable step-size NLMS algorithms have been proposed in the literature [10]–[16], [35]. The basic idea is

to use a time-varying step size to achieve a compromise between fast convergence and small steady-state error. The

step size is automatically adjusted according to a criterion. For example, the step size is selected in [10] based on

the correlation between the a priori error and the a posteriori error, or in [16], [35] by minimizing the mean-square

deviation. In [14] and references therein, the proportionate NLMS algorithms control the step size at each filter tap

individually based on the difference between the current value of the coefficient and the averaged, past values. In

[11], the step size is chosen by matching the a posteriori mean-square error (MSE) to the power of the background

white noise rather than simply minimizing the MSE. This matching of powers leads to a quadratic function of the

step size and an approximate solution to the quadratic function results in a nonparametric VSS-NLMS algorithm.

In [12] and [13], a mixed-norm and a switched-norm algorithm are proposed, respectively, combining the NLMS

with the NSA according to the error dynamics. In [26], [27] two different algorithms are run in parallel, and their

outputs combined in a convex manner. While the resulting filter has excellent convergence and tracking properties,

its complexity is double that of a conventional filter.
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This paper proposes two variable step-size (VSS) adaptive algorithms for NLMP filters, thus combining the

benefits of variable step sizes with the robustness of the lower order statistics algorithms against finite-variance

impulsive interference. The weight vector is adapted by minimizing the p-th moment of the a posteriori error where

1 ≤ p ≤ 2. The step-size is automatically controlled by approximating the power of the a posteriori error to that

of the background white noise as in [11]. Although the The proposed adaptive VSS-NLMP algorithms extend the

VSS-NLMS method [11] in two aspects: first, we extend the nonparametric variable step size approach to the lower

order moment algorithms where the derivation using a lower-order moment 1 ≤ p < 2 is non-trivial; second, a

different approximation is also derived to solve the quadratic equation of the step size along with the approximation

used in [11], thus leading to two VSS-NLMP algorithms. In contrast, the exact solution to the quadratic equation

does not lead to a good adaptive VSS algorithm.

The steady-state performance of excess mean square error (EMSE) of the proposed algorithms is analyzed using

the energy conservation method [36, Chapter 15], for both Gaussian and Bernoulli-Gaussian noise models. The

analysis results also apply to the VSS-NLMS method of [11], for which, to the best of our knowledge, no theoretical

method currently exists. The proposed adaptive VSS-NLMP algorithms are also evaluated extensively by computer

simulations under different interference and input signals, and for real- and complex-coefficient systems. The

results indicate that the proposed VSS-NLMP algorithms achieve faster or comparable convergence rate and smaller

steady-state error than the fixed step-size NLMP (FSS-NLMP) algorithms in all signal scenarios. The VSS-NLMP

algorithms with p = 1 achieve the best performance among all scenarios and for both real- and complex-coefficient

systems. The tracking performance and stability of the proposed algorithms are also investigated.

II. THE PROPOSED VSS-NLMP ALGORITHM

Consider a system identification problem where the output signal from an unknown system described by a

complex coefficient vector wo is

y(k) = w
H
o x(k) + v(k) (1)

where x(k) is the input signal vector of length L and v(k) is the background noise plus interference signal. The

superscript ()H denotes conjugate transpose (Hermitian). Let ŵ(k) be an estimate for wo at iteration k and define
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the a priori and a posteriori errors as

ek = y(k)− ŵ
H(k − 1)x(k) = [wo − ŵ(k − 1)]H x(k) + v(k), (2)

εk = y(k)− ŵ
H(k)x(k) = [wo − ŵ(k)]H x(k) + v(k), (3)

respectively. The adaptive filter must minimize the cost function selected as the p-th order moment of εk

J(ŵ(k)) = E
{

|y(k) − ŵ
H(k)x(k)|p

}

, (4)

where E{·} is the expectation operator.

The adaptive FLOM algorithm [9] provides an approach similar to the LMS algorithm for updating the filter

coefficients along the steepest descent of the cost function (4). Using the stochastic gradient approach, the filter

coefficients are solved iteratively by [9]

ŵ(k) = ŵ(k − 1) + µ(k)g(ek)x(k) (5)

where µ(k) is the step size, and g(ek) = e∗k|ek|p−2 is a function with odd symmetry, the superscript ∗ denotes the

conjugate and | · | the absolute value.

In the absence of noise and interference, a reasonable method for selecting a variable step size is to set εk equal

to 0. However, in the presence of noise and interference, a better criterion [11] is to set [wo − ŵ(k)]Hx(k) equal

to 0 for all k. This implies, based on (3), that the variable step size is selected to satisfy

Sε(k) = E{εkε∗k} ≈ E{v(k)v∗(k)} = Sv. (6)

where Sv is the noise-plus-interference power which is often estimated during the absence of the input signal (for

example, during periods of silence in speech). Subtracting (2) from (3) and substituting (5), the a posteriori error

in terms of µ(k) can be expressed as,

εk = ek + [ŵ(k − 1)− ŵ(k)]Hx(k),

= ek − µ(k)g∗(ek)x
H(k)x(k). (7)

Substituting (7) in (6) yields

Sε(k) = E
[

|ek|2
]

− 2µ(k)E
[

|ek|pxH(k)x(k)
]

+ µ2(k)E
[

|ek|2p−2|xH(k)x(k)|2
]

(8)
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Equating (8) to Sv gives a quadratic equation in µ(k):

1− 2
b(k)

Se(k)
µ(k) +

a(k)

Se(k)
µ2(k) ≈ Sv

Se(k)
. (9)

where Se(k) = E
[

|ek|2
]

and

b(k) := E
[

|ek|pxH(k)x(k)
]

, (10)

a(k) := E
[

|ek|2p−2(xH(k)x(k))2
]

. (11)

We also noticed that in some situations the following approximations lead to better filter performance:

b(k) ≈ Lp(ek)Sxx(k), (12)

a(k) ≈ L2p−2(ek)Pxx(k)). (13)

where Lp(ek) := E[|ek|p], L2p−2(ek) := E[|ek|2p−2], Sxx(k) := E[xH(k)x(k)], and Pxx(k) := E[|xH(k)x(k)|2].

These approximations are equivalent to assuming that ek and x(k) are independent. This is approximately true only

after the filter converged; however, as our simulations will show, the alternative filters also show good performance

in the transient.

The quadratic function (9) can be easily solved using time-averaged estimates of a(k), b(k) and Se(k). However,

the exact roots of the quadratic equation are often complex or out of the stability range of µ(k). Even if one or both

roots of (9) are real and valid at some instant k, using those exact roots for µ(k) can cause large jumps in the step size

and does not lead to a good variable step size algorithm. We show in the Appendix that the ratio b2(k)/[a(k)Se(k)]

is very close to one for p = 2 and large filter length L, thus the approximation b(k)/Se(k) ≈
√

a(k)/Se(k) yields

a good VSS adaptive algorithm, as shown in [11]. This approximation, as can be seen from the discussion below,

does not suffer from these problems listed above. For small L and p≪ 2, however, the ratio b2(k)/[a(k)Se(k)] is

significantly smaller than one. In this case, we use two approximate solutions to (9) to derive two variable step-size

algorithms that have low computational complexity and stable µ(k). We name them the adaptive VSS-NLMPa and

VSS-NLMPb algorithms, as will be presented next.

First, replacing b(k)/Se(k) by
√

a(k)/Se(k) in (9) yields the adaptive VSS-NLMPa algorithm
[

1−

√

a(k)

Se(k)
µ(k)

]2

≈ Sv

Se(k)
. (14)
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The variable step size is then formulated as

µ(k) =

√

Se(k)

a(k)

[

1−

√

Sv

Se(k)

]

, if Sv ≤ Se(k) (15)

where Se(k) and a(k) can be estimated by time averaging using a forgetting factor λ

Ŝe(k) = λŜe(k − 1) + (1− λ)|ek|2, (16)

â(k) = λâ(k − 1) + (1− λ)|ek|2p−2
(

x
H(k)x(k)

)2
. (17)

Similarly, Sv must be estimated off-line or during periods of absence of the input signal. We denote the estimated

noise-plus-interference power as Ŝv.

A variant of VSS-NLMPa uses (13) instead of (11) and the variable step size becomes

µ(k) =

√

Se(k)

L2p−2(ek)Pxx(k)

[

1−

√

Sv

Se(k)

]

, if Sv ≤ Se(k) (18)

using time-averaging estimates L2p−2(ek) and Pxx(k) instead of â(k).

P̂xx(k) = λP̂xx(k − 1) + (1− λ)|xH(k)x(k)|2, (19)

L̂2p−2(ek) = λL̂2p−2(ek−1) + (1− λ)|ek|2p−2. (20)

Next, an alternative approximation to (14) is to replace a(k)/Se(k) by [b(k)/Se(k)]2, then we have
[

1− b(k)

Se(k)
µ(k)

]2

≈ Sv

Se(k)
(21)

This results in the adaptive VSS-NLMPb algorithm with variable step size as

µ(k) =
Se(k)

b(k)

[

1−

√

Sv

Se(k)

]

if Sv ≤ Se(k) (22)

Again, a variant of the VSS-NLMPb using (12) instead of (10) yields

µ(k) =
Se(k)

Lp(ek)Sxx(k)

[

1−

√

Sv

Se(k)

]

, if Sv ≤ Se(k) (23)

In practical implementations, the expectation Sxx(k) = E[xH(k)x(k)] can be replaced by the instantaneous signal

energy xH(k)x(k). This is the approach taken by [11] for VSS-NLMS. It is interesting to notice that the step-size

µ(k) in (23) is inversely proportional to E
[

xH(k)x(k)
]

, so that the filter includes normalization. All other variants

of VSS-NLMP, (15), (18), (22) also include some form of normalization, in the sense that the denominator for

µ(k) includes a term that is related to ∥x(k)∥2.
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TABLE I

THE VSS-NLMP ALGORITHMS

Parameters λ = 1− 1/(ηL), forgetting factor, with 2 ≤ η ≤ 10

Ŝv= estimated variance of background noise and interference

δ = CLσ2
x, C = constant, σ2

x = power of input signal

ϵ > 0, small constant to avoid division by zero; µ0= step size multiplier

Initialization ŵ(0) = 0, Ŝe(0) = 0

Init (original) original â(0) = 0 b̂(0) = 0

Init. (variant) L̂2p−2(e0) = 0, P̂xx(0) = 0 L̂p(e0) = 0, Ŝxx(0) = 0

Error ek = y(k)− ŵ
H(k − 1)x(k)

Estimates Ŝe(k) = λŜe(k − 1) + (1− λ)|ek|2, γ(k) =
[

1−
√

Ŝv

Ŝe(k)+ϵ

]

, Lx(k) = x
H(k)x(k)

Est. (original) â(k) = λâ(k − 1) + (1− λ)|ek|2p−2L2
x(k) b̂(k) = λb̂(k − 1) + (1− λ)|ek|pLx(k)

Est. (variant) P̂xx(k) = λP̂xx(k − 1) + (1− λ)L2
x(k) Ŝxx(k) = λŜxx(k − 1) + (1− λ)Lx(k)

L̂2p−2(ek) = λL̂2p−2(ek−1) + (1− λ)|ek|2p−2 L̂p(ek) = λL̂p(ek−1) + (1− λ)|ek|p

Update (original) α(k) =
√

Ŝe(k)
â(k)+δ2

β(k) = Ŝe(k)

b̂(k)+δ

Update (variant) α(k) =

√

Ŝe(k)

L̂2p−2(ek)P̂xx(k)+δ2
β(k) = Ŝe(k)

L̂p(ek)Ŝxx(k)+δ

Step-size µ(k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

µ0α(k)γ(k), if Ŝv ≤ Ŝe(k)

0, otherwise
µ(k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

µ0β(k)γ(k), if Ŝv ≤ Ŝe(k)

0, otherwise

Weight vector ŵ(k) = ŵ(k − 1) + µ(k)x(k)e<p−1>(k)

The proposed two adaptive VSS-NLMP algorithms and their variants are summarized in Table I, where δ and

ϵ are small positive constants to avoid division by zero, and µ0 is a step size multiplier often selected as µ0 ≤ 1.

The left column gives the VSS-NLMPa algorithms and the right column shows the VSS-NLMPb.

III. PERFORMANCE EVALUATION VIA SIMULATION

The proposed VSS-NLMP algorithms were evaluated through computer simulations for two system identification

applications. One was a real-coefficient system with real-valued signals and coefficients often used in speech or

image processing applications, such as acoustic echo cancelation and watermark detection. Another was a complex-

coefficient system, often found in communications and radar signal processing, such as channel estimation and

adaptive beamforming [1]. In both cases, the adaptive filter had a length of L = 128 taps and the input was chosen

to be a white or colored Gaussian process. The colored input, denoted as AR(1) signal, was generated by filtering a
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white Gaussian noise through a first order system with a pole at 0.8 for the real-coefficient system and a pole at 0.5

for the complex-coefficient system. An independent white Gaussian noise was added to the system background and

the signal-to-noise ratio (SNR) was 30 dB. In addition, a strong interference signal was also added to the system

output y(k) with an interference-to-noise ratio (INR) of 20 dB.

In the real system, two types of distributions, a Gaussian and an impulsive Bernoulli-Gaussian [18], were

considered for the interference signals. The Bernoulli-Gaussian interference was generated as the product of a

Bernoulli process and a Gaussian process

v(k) = ω(k)N(k) (24)

where N(k) was a white Gaussian random sequence with zero mean and variance σ2
N , and ω(k) was a Bernoulli

process with the probability mass function given as

P (ω) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1− Pr, ω = 0

Pr, ω = 1

(25)

The average power of the BG process was Pr · σ2
N . In general, a BG process is spikier when Pr is smaller and it

reduces to a Gaussian process when Pr = 1. BG interference is often seen in seismic system identification [6], [7]

and can also model double talk in network echo cancellation [12], [37], [38].

In the complex system, the input, noise, and interference signals were all assumed complex. The real and

imaginary parts of the input and noise were generated independently as white or filtered Gaussian and the complex

interference signal was either complex Gaussian or compound K distributed [39]. The compound K distributed

signal was generated as the product of two random processes: Zc(k) =
√

G(k) ·N(k), where G(k) was a Gamma-

distributed texture and N(k) was a complex Gaussian speckle. The envelope of Zc(k), denoted as r(k), exhibited

compound K distribution as [39]

fR(r) =
4

√
ρΓ(ν)

(

r
√
ρ

)ν

Kν−1

(

2r
√
ρ

)

, r ≥ 0 (26)

where Kν(·) is the modified Bessel function of the second kind and with order ν, and ν and ρ are the shape and

scale parameters, respectively. The average power of the compound K process is (ρ ·ν). With a fixed average power,

the compound K distribution with a smaller ν has a higher envelope tail. When ν →∞, it reduces to the Rayleigh
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distribution, which is the envelope distribution of a complex Gaussian random variable. Compound K distribution

is often found in radar array applications and underwater acoustic communications [39]–[41].

For all simulation studies in both the real and complex systems, the VSS-NLMP algorithms used a forgetting

factor λ = 1 − 1/(ηL), where η = 2 for white input signal, and η = 6 for AR(1) input signal, unless specified

otherwise. The small constants were selected as δ = 0.04Lσ2
x and ϵ = 10−3. The step size multiplier for VSS-

NLMP was µ0 = 1 and the step size for FSS-NLMP was µ = 0.1. The multipliers were chosen so that the initial

rate of convergence of all filters is the same.

The convergence performance was evaluated by the normalized misalignment M(k) defined as [1]

M(k) = 20 log10
||ŵ(k)−wo||

||wo||
(27)

An ensemble average of 100 trials was used for the evaluation of M(k).

A. Comparison of VSS-NLMP algorithms and variants

The performance of the proposed two VSS-NLMP algorithms and their variants were compared with the FSS-

NLMP algorithms using the example of L = 128 real-coefficient system. With white input and Gaussian interference,

all VSS-NLMP algorithms performed better than the FSS-NLMP, as shown in Fig. 1(a). The two VSS-NLMP

algorithms had convergence rates very similar to their variants for all values of p. Their steady-state errors were

slightly different, but the differences were less than 2 dB. With AR(1) input, BG interference and p = 2, both

VSS-NLMP algorithms and their variants performed similarly, as shown in Fig. 1(b). Their convergence rate was

slightly inferior to the FSS-NLMP, but the steady-state errors were slightly lower than that of the FSS-NLMP. For

p = 1, the VSS-NLMPa performed better than the VSS-NLMPb with more than 5 dB lower steady-state error. Both

VSS-NLMP algorithms performed better than the FSS-NLMP. The variant of the VSS-NLMPb algorithm exhibited

2 dB lower steady-state error than the original VSS-NLMPb algorithm; while the original VSS-NLMPa converged

slightly faster than its variant but achieved the same steady-state error.

The final misalignments after convergence are compared in Table II for Gaussian and Bernoulli-Gaussian in-

terference cases. It is clear that the proposed algorithms with p = 1.5 provide good tradeoff between Gaussian

and non-Gaussian interference cases, while p = 2 only performs well in Gaussian interference. It is interesting



ZHENG AND NASCIMENTO REVISION3 TO ELSEVIER DSP 11

0 1 2 3 4 5
x 104

−30

−25

−20

−15

−10

−5

0

5

Samples

M
isa

lig
nm

en
t (

dB
)

White input, SNR=30dB
Gau Interf, SIR=10 dB

blue solid −− original VSS−NLMPa
blue dash−dot −− original VSS−NLMPb
green dot − variant VSS−NLMPb
green dash − variant VSS−NLMPa
red solid− FSS−LMP

FSS−NLMP, p=1

VSS−NLMP, p=2

FSS−NLMP, p=2 VSS−NLMP, p=1

(a) White input, Gaussian interference

0 1 2 3 4 5
x 104

−25

−20

−15

−10

−5

0

5

Samples

M
is

al
ig

nm
en

t (
dB

) FSS−NLMP, p=1

VSS−NLMP, p=2

VSS−NLMPb, p=1, original

VSS−NLMPa, p=1, original

VSS−NLMPa, p=1, variant VSS−NLMPb, p=1, variant

FSS−NLMP, p=2

AR(1) input, SNR=30 dB,
BG interf, SIR=10 dB

blue solid −− original VSS−NLMPa
blue dash−dot −− original VSS−NLMPb
green dot −− variant VSS−NLMPb
green dash −− variant VSS−NLMPa
red solid −− FSS−NLMP

(b) AR(1) input, BG interference

Fig. 1. Misalignment of VSS-NLMP algorithms in a real-coefficient system. SNR=30 dB. SIR=10 dB. δ = 0.04Lσ2
x, η = 4. The two

VSS-NLMP algorithms had very similar performance as their variants for all orders of p. The results were the average of 100 simulations

trials.

TABLE II

MISALIGNMENTS OF VSS-NLMP ALGORITHMS IN GAUSSIAN AND BG INTERFERENCE (DB)

Gaussian interference BG interference

p = 1 p = 1.5 p = 2 p = 1 p = 1.5 p = 2

VSS-NLMPa −27.2 −28.0 −28.7 −22.5 −19.8 −15.0

VSS-NLMPa variant −26.4 −26.4 −29.3 −22.5 −19.3 −14.9

VSS-NLMPb −25.7 −26.6 −27.9 −16.2 −18.1 −12.7

VSS-NLMPb variant −27.0 −27.9 −28.4 −18.3 −18.7 −13.0

to note that, although the usual application of the NLMP algorithms is the case where the second order moment

of the signal does not exist, the NLMP algorithms still perform better in the case of heavy-tailed finite-variance

signals than the NLMS algorithms. The VSS-NLMS (p = 2) performed worse than the VSS-NLMP with p < 2 in

Bernoulli-Gaussian interference because the BG distribution, albeit having a finite variance, has a heavier tail than

the Gaussian distribution.

Due to their small differences between the original VSS algorithms and their variants, we only present detailed

performance evaluation for the original VSS-NLMP algorithms and omit those of the variants in the following

subsections.
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B. Convergence of Real-Coefficient Systems

The misalignment of the VSS-NLMP algorithms for real-coefficient system was compared with the FSS-NLMP

algorithm under white or colored inputs and Gaussian or BG interference scenarios, as shown in Fig. 2. In white

input and Gaussian interference, the two VSS-NLMP algorithms achieved faster convergence and lower steady-

state error than the FSS-NLMP for all orders of p, as shown in Figs. 2(a), 2(c), and 2(e). For AR(1) input

and Gaussian interference, the VSS-NLMP algorithms exhibited similar initial convergence but slightly slower

secondary convergence than the FSS-NLMP. On the other hand, they converged to much lower steady state error

than the FSS-NLMP. Both VSS-NLMP algorithms behaved similarly in their misalignment curves, and the same

was observed in their excess MSE curves (not shown). The VSS-NLMP algorithms achieved similar steady-state

error and convergence rate for all p. In contrast, the FSS-NLMP with a larger order p converged more slowly but

to a lower steady-state error than that of a smaller order. This means that the selection of order for the VSS-NLMP

algorithms has low importance to the performance in Gaussian interference.

In the BG interference cases as shown in Figs. 2(b), 2(d), and 2(f), the VSS-NLMP algorithms converged faster

and achieved lower steady-state error than the corresponding FSS-NLMP for all orders when the input was white.

The two VSS-NLMP algorithms behaved similarly when p is large, but quite differently when p = 1, with the

VSS-NLMPa achieving lower steady-state error than the VSS-NLMPb. With the AR(1) input, the two VSS-NLMP

algorithms with a smaller order performed much better than their corresponding FSS-NLMP, while the VSS-NLMP

algorithms with a larger order performed comparably to the corresponding FSS-NLMP. Among all algorithms, the

VSS-NLMPa with p = 1 had the best performance in all signal and interference scenarios achieving both fast

convergence and low steady state error.

Comparing the two VSS-NLMP algorithms, the VSS-NLMPa and VSS-NLMPb have similar behavior when p

is large, but different behavior when p→ 1, especially in impulsive interference. The VSS-NLMPa (p = 1) greatly

outperformed the VSS-NLMPb in terms of steady-state error in BG interference, as shown in Fig. 2(f). These results

may be explained by the analysis of the coefficient ratio b2(k)/[Se(k)a(k)] in the Appendix. When p = 2, the ratio

is close to 1 for large filters length, which results in similar performance of the VSS-NLMPa and VSS-NLMPb.

When p→ 1, or L is small, or interference is impulsive, the ratio drops dramatically and the VSS-NLMPa is shown
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to perform better than the VSS-NLMPb.

C. Convergence of Complex-Coefficient Systems

The performance of the VSS-NLMP algorithm for the complex system was also compared with the FSS-NLMP

algorithm, as shown in Fig. 3. The complex-coefficient system was generated as a sum of sinusoids [42] for

each of the 128 taps. Compound K interference with shape parameter of ν = 0.7 was generated using [43]. The

misalignment of the VSS-NLMP algorithms performed similarly for all orders, achieving faster convergence and

smaller steady-state error than the corresponding FSS-NLMP algorithm. We also verified that the excess mean

square error (MSE) curves (not shown here) of the VSS-NLMP algorithms exhibited similar performance gains

over the FSS-NLMP.

D. Tracking Performance

The tracking performance of the VSS-NLMP algorithms was evaluated with a real-coefficient system. The ideal

system impulse response was modified at iteration 2.5 × 104 by multiplying the weight coefficients by −1. The

tracking performance of both VSS-NLMP algorithms was compared in BG interference with white or colored

inputs, as shown in Fig 4. Both VSS-NLMP algorithms with all values of p were able to track the sudden

change and converged quickly to the new system response. In other input and interference scenarios, the tracking

performance was similar to those in Fig. 4 with slightly different convergence rate and steady-state errors. The

tracking performance of the FSS-NLMP algorithm also behaved similarly to the VSS-NLMP algorithms.

E. Discussion on Stability

For normalized LMS, it is well known that the step size multiplier has to satisfy 0 < µ0 < 2 to ensure stability

[1]. This applies to the selection of variable step sizes in the VSS-NLMP algorithms with p = 2. The variable

step size selected in (18) and (23) with µ0 ≤ 1 ensures that the two VSS-NLMP algorithms satisfy the stability

condition when p = 2, thus ensuring the stability of the VSS-NLMP algorithms. In practice we noted that the filters

remain stable even for p < 2 with the choice µ0 ≤ 1.

For p = 1, the LMP algorithm becomes a member of the L1-norm (or sign algorithm, SA) family. For fixed step

size sign algorithms, limited studies are devoted on the convergence analysis of the sign algorithm and its variants
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Fig. 2. Misalignment of the VSS-NLMP and FSS-NLMP algorithms for a real system with L = 128 taps. Solid lines – FSS-NLMP, Dash-

dotted lines – VSS-NLMPa, Dashed lines –VSS-NLMPb. All VSS-NLMP algorithms performed better than FSS-NLMP, and VSS-NLMPa

performed significantly better than VSS-NLMPb for p = 1. The results were the average of 100 simulations trials.
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[31], [32], [44]–[48]. Attempts to finding a stability bound for the SA family have been reported in [32], [44],

[45] using a second order stochastic model similar to that in the analysis of the L2-norm algorithms. However,

this approach is proven to be incorrect for the L1-norm algorithms [31]. Instead, an interesting result for L1-norm

algorithms is that the sign algorithm is asymptotically bounded for any step-size greater than zero [31], [47], [48].

This property is not present in the L2-norm algorithms and it proves to be a significant advantage of the sign

algorithm family in terms of robustness. Upper bounds for the time-averaged mean absolute deviation (weight

misalignment) and time-averaged mean square error at steady state are derived as functions of the step size in [31],

[47], which give guidelines for choosing the step size in practical applications. As a variant of the sign algorithm,

the FSS-NLMP with p = 1 also exhibits the asymptotic convergence property for step sizes greater than zero. This

is verified by simulation for the asymptotic misalignment, as shown in Fig. 5. The steady-state misalignment was

bounded for all step sizes µ > 0 and p = 1.

To the best of our knowledge, a rigorous analysis for the stability of FSS-NLMP algorithms with fractional order

does not exist in the literature. Our simulation results show that the FSS-NLMP with p = 1.5 also guaranteed

asymptotic convergence for any step size greater than zero, as shown in Fig. 5. In contrast, the misalignment of

the FSS-NLMP with p = 2 was bounded only when µ < 2 for both Gaussian and BG interference scenarios.

Comparing the steady-state misalignment of the three orders, the misalignment of p = 2 remained nearly the same

for the two interference scenarios, while the FSS-NLMP with p < 2 performed better in BG interference when the

step size was small. The FSS-NLMP with p = 1.5 achieved smaller steady-state misalignment than that of p = 1

when step size µ < 3, and the FSS-NLMP with p = 1 performed better than that of p = 1.5 when µ > 3. For

practical applications, a small µ≪ 2 is suggested for all orders of p in the FSS-NLMP to ensure small steady state

errors.

It is worth noting that the guaranteed stability of the FSS-NLMP with p < 2 and µ > 0 does not mean that

the VSS-NLMP algorithms are also guaranteed to be stable with the step size multiplier µ0 > 0 for p < 2. The

stability analysis for the fractional-order VSS-NLMP algorithms is even more difficult than that of p = 1 or p = 2.

We resort to simulation results to show that µ0 = 1 guarantees the stability of the VSS-NLMP algorithms for

1 ≤ p ≤ 2. However, µ0 > 1 may cause the VSS-NLMP to diverge for all 1 ≤ p ≤ 2, as illustrated in Fig. 6,
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Fig. 5. Steady-state misalignment of fixed step-size LMP algorithms as a function of the step-size µ. The input was a real-coefficient white

Gaussian signal with SNR= 30 dB. The interference was Gaussian or BG. The results were the average of 100 simulations trials.

where the step size multiplier used was µ0 = 2. The two VSS-NLMP algorithms with p = 1 and the VSS-NLMPa

with p = 2 diverged in both white and AR(1) input scenarios with BG interference.
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Fig. 6. Diverging misalignment curves for VSS-NLMP with the step size multiplier µ0 = 2. Other parameters were the same as Fig. 2.

Misalignment was averaged over 100 trials.

IV. STEADY-STATE ANALYSIS OF EXCESS MEAN SQUARE ERROR

In this section, a theoretical model is derived for the steady-state excess mean-square error (EMSE) performance

of the VSS-NLMP algorithms using the energy conservation method of [36] for an adaptive filter with recursion
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in (5). First we define the weight error vector

w̃(k) = wo − ŵ(k), (28)

where wo is the optimum weight vector from the model (1). Define also the a priori and a posteriori excess errors

ea(k) = w̃
H(k − 1)x(k), ep(k) = w̃

H(k)x(k). (29)

Denote the steady-state EMSE by ζ:

ζ
∆
= lim

k→∞

E
{

|ea(k)|2
}

. (30)

Assuming that the recursion (5) converges, the energy conservation method [36] shows that

lim
k→∞

2Re {E {µ(k)ea(k)g(ek)}} =

lim
k→∞

E
{

µ2(k)∥x(k)∥2 |g(ek)|2
}

, (31)

where Re{·} denotes the real part of a complex quantity.

Assuming that the noise plus interference signal v(k) is independent and identically distributed (iid) and is

independent of x(k), the EMSE ζ is related with the MSE E{|ek|2} as [36]:

Se ! lim
k→∞

E
{

|ek|2
}

= ζ + Sv. (32)

We can use (31) and (32) to find an approximation for ζ . The model described below is based on (15), but the

same analysis may be modified for the other VSS-NLMP algorithms without difficulty.

A. Model for Gaussian noise

For the Gaussian noise model, we first make some assumptions and approximations:

1) The signals v(k) and x(k) are circular Gaussian, jointly stationary, with zero mean. The variance of v(k) is

Sv, and the autocorrelation matrix of x(k) is Rxx = E{x(k)xH (k)}. The restriction of Gaussian v(k) will

be relaxed in Section IV-B.

2) The value of the forgetting factor λ is close to one, so that quantities depending on it (such as â(k) and

P̂xx(k)) may be approximated by their mean values in the expressions for µ(k). Under these conditions, the

step-size µ(k) is approximately independent of x(k), v(k) and the errors ea(k) and ep(k). For Ŝe(k) a more

precise model using a Taylor series is used.
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3) The estimate of noise plus interference variance Ŝv does not change during the period of analysis. This

assumption is consistent with the fact that Ŝv is computed either off-line, or in periods in which the filter is

not adapting, thus we can assume that its rate of change is much slower than that of the other variables.

4) We disregard the mechanism for zeroing µ(k) when Ŝe(k) < Ŝv.

5) The a priori excess error ea(k) is approximately Gaussian in steady-state. This is a common assumption

widely used in theoretical analysis of adaptive filters [36].

6) In steady-state, x(k) is approximately independent of ea(k) and consequently, also of ek due to the previous

assumptions. This is the so-called separation principle invoked in [36].

7) It follows from Assumptions 1 and 5 that the a priori error ek is approximately circular Gaussian in steady-

state. This will no longer be true in non-Gaussian noise as shown in Section IV-B.

This last assumption follows directly from the first, which does not hold for impulsive noise. However, it allows

us to evaluate some higher-order moments that arise in the analysis of the VSS-NLMP algorithms and it leads to

models that correctly depict the dependence of the algorithms on its several parameters.

Under these assumptions, the expected values in (31) can be approximated by

lim
k→∞

2Re {E {µ(k)ea(k)g(ek)}} ≈

lim
k→∞

2E{µ(k)}Re {E {ea(k)g(ek)}} (33)

lim
k→∞

E
{

µ2(k)∥x(k)∥2 |g(ek)|2
}

≈

lim
k→∞

E
{

µ2(k)
}

E
{

∥x(k)∥2
}

E
{

|g(ek)|2
}

. (34)

We now must evaluate the expectations E{µ(k)}, E{µ2(k)}, E {ea(k)g(ek)} and E
{

|g(ek)|2
}

. Starting with

the first two terms, we are to obtain E{µ(k)} and E{µ2(k)} for the VSS-NLMPa algorithm. Taking the expectation

of µ(k) in (15), we have

E{µ(k)} = E

⎧

⎨

⎩

√

Ŝe(k)

â(k)

[

1−

√

Ŝv

Ŝe(k)

]

⎫

⎬

⎭

, (35)

where we assume that the estimated parameters Ŝv, Ŝe(k), and â(k) are used. From (35) and Assumption 2, we

have

E{µ(k)} ≈

√

1

E{â(k)}E
{

√

Ŝe(k)−
√

Ŝv

}

(36)

E{µ2(k)} ≈ 1

E{â(k)}E
{

[

√

Ŝe(k)−
√

Ŝv

]2
}

, (37)
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Now, approximations for all the expected values in (36) and (37) are to be evaluated at the limit of k →∞.

For E{â(k)}: Taking expectations on both sides of (17), we obtain,

E{â(k)} = λE{â(k − 1}+ (1− λ)E{|ek |2p−2
∣

∣x
H(k)x(k)

∣

∣

2}.

At the limit of k →∞, we have, using Assumption 6

lim
k→∞

E{â(k)} = lim
k→∞

E{|ek|2p−2
∣

∣x
H(k)x(k)

∣

∣

2}

≈ lim
k→∞

E{|ek|2p−2}E{
∣

∣x
H(k)x(k)

∣

∣

2}. (38)

Under Assumption 7, ek is a zero-mean Gaussian variable with variance Se for large k. This means that the limit

of E{|ek|2p−2} reduces to the (2p − 2)-th moment of a circular complex Gaussian variable.

Let z be a zero-mean circularly complex Gaussian variable with variance σ2
z . Since z is circular, the variances of

its real and imaginary parts zr and zi are equal to σ2
z/2. Therefore, t = 2|z|2/σ2

z = 2(z2r + z2i )/σ
2
z is a χ2 variable

with two degrees of freedom, which reduces to an exponential probability density function

ft(t) =
1

2
e−t/2, t ≥ 0.

Since E{|z|2p} = σ2p
z E{tp}/(2p), we obtain by direct computation

lim
k→∞

E{|ek|2p−2} = Γ(p)Sp−1
e , (39)

where Γ(·) is the gamma function.

On the other hand, under Assumption 1, E{|xH(k)x(k)|2} is the trace of E{x(k)xH (k)x(k)xH (k)}. This can

be evaluated as described for example in [36], resulting

E{|xH (k)x(k)|2} = Tr(R2
xx) + Tr2(Rxx), (40)

where Tr(Rxx) is the trace of Rxx.

For E

{

√

Ŝe(k)−
√

Ŝv

}

and E

{

[

√

Ŝe(k)−
√

Ŝv

]2
}

: Since we are interested in the steady-state, we simplify the

notation, writing Ŝe instead of Ŝe(k) and define h(Ŝe)
∆
=

√

Ŝe −
√

Ŝv. To evaluate E{h(Ŝe)} and E{h2(Ŝe)} in

(36) and (37), we expand h(Ŝe) and h2(Ŝe) in Taylor series around their means. From the recursion for Ŝe(k) in
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(16), we have

E{Ŝe(k)} = λE{Ŝe(k − 1)}+ (1− λ)E{|ek|2},

therefore, E{Ŝe} = limk→∞E{Ŝe(k)} = Se.

Letting then Ŝe = E{Ŝe}+∆ = Se +∆, we obtain

h(Se +∆) ≈ h(Se) +
dh

d∆
∆+

1

2

d2h

d∆2
∆2, (41)

h2(Se +∆) ≈ h2(Se) +
d(h2)

dδ
∆+

1

2

d2(h2)

d∆2
∆2. (42)

The derivatives are easily computed, resulting in

dh

d∆

∣

∣

∣

∣

∆=0

=
1

2
√
Se

,
d2h

d∆2

∣

∣

∣

∣

∆=0

= − 1

4
√

S3
e

, (43)

d(h2)

d∆

∣

∣

∣

∣

∆=0

= 1−

√

Ŝv

Se
,

d2(h2)

d∆2

∣

∣

∣

∣

∆=0

=
1

2

√

Ŝv

S3
e
. (44)

In the steady-state, ∆ is a zero-mean random variable. Its variance σ2
∆ may be obtained by squaring both sides of

(16):

E{Ŝ2
e (k)} =λ2E{Ŝ2

e (k − 1)}+ 2λ(1 − λ)E{Ŝe(k − 1)|ek |2}

+ (1− λ)2E{|ek|4}.

Since Ŝe(k) varies much more slowly than ek for λ ≈ 1, we can approximate E{Ŝe(k − 1)|ek|2} ≈ E2{Ŝe}. For

circular complex variables under Assumption 7 we have E{|ek|4} = 2S2
e , and thus

lim
k→∞

E{Ŝ2
e (k)} =

2

1 + λ
S2
e . (45)

Subtracting S2
e from (45), we obtain the variance of ∆:

σ2
∆ =

1− λ

1 + λ
S2
e , (46)

If we ignore the mechanism to zero µ(k) when Ŝe(k) < Ŝv, then E{∆} = 0. Letting C = (1− λ)/(8(1 + λ)),

we have

E{h(Ŝe)} ≈
√

Se −
√

Ŝv −C
√

Se, (47)

E{h2(Ŝe)} ≈
[

√

Se−
√

Ŝv

]2

+ 2C

√

ŜvSe. (48)
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Substituting these expectations in (36) and (37), we obtain

lim
k→∞

E{µ(k)} ≈
√
Se −

√

Ŝv − C
√
Se

√

Γ(p)Sp−1
e

(

Tr(R2
xx) + Tr2(Rxx)

)

, (49)

lim
k→∞

E{µ2(k)} ≈

[√
Se−

√

Ŝv

]2

+ 2C
√

ŜvSe

Γ(p)Sp−1
e

(

Tr(R2
xx) + Tr2(Rxx)

) . (50)

Next, we evaluate the remaining expectations E{|g(ek)|2} and E{ea(k)g(ek)} in (33) and (34) in the limit of

k →∞. Recalling g(ek) = e∗k|ek|p−2, we have, as in (39),

lim
k→∞

E{|g(ek)|2} = lim
k→∞

E{|ek|2p−2} = Γ(p)Sp−1
e (51)

To evaluate limk→∞E{ea(k)g(ek)}, we have

E{ea(k)g(ek)} = E{ea(k)g(ea(k) + v(k))}

= E{ea(k) (ea(k) + v(k))∗ |ea(k) + v(k)|p−2}. (52)

This expected value can be computed using the complex form of Price’s Theorem [49]. For two circularly complex

variables z1 and z2, it can be shown from Price’s theorem that [36]

E{z1g(z2)} =
E{z1z∗2}
E{|z2|2}

E{z2g(z2)}.

In our case, we use z1 ← ea(k), z2 ← ek = ea(k) + v(k), and g(z2) = z∗2 |z2|p−2 so that

lim
k→∞

E{ea(k)g(ek)}

= lim
k→∞

E{ea(k)(e∗a(k) + v∗(k))|ea(k) + v(k)|p−2}

= lim
k→∞

E{ea(k)(e∗a(k) + v∗(k))}
E{|ea(k) + v(k)|2}

E{|ea(k) + v(k)|p}

= ζΓ
(p

2
+ 1

)

Sp/2−1
e . (53)

Finally, substituting (49), (50), (51), and (53) into (31), we obtain

2ζ

{

(1− C)
√

Se −
√

Ŝv

}

=

√

Γ(p)

Γ
(p
2 + 1

)

√
Se

{

[√
Se−

√

Ŝv

]2
+ 2C

√

ŜvSe

}

√

Tr(R2
xx) + Tr2(Rxx)/Tr(Rxx)

. (54)
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Fig. 7. Theoretical and experimental EMSE for white Gaussian inputs with λ = 0.99, σ2
x = 1, Sv = 10−3, and ratio = Ŝv/Sv . The

simulation results were obtained as an average of 100 trials. The dark dashed lines are the solutions of the theoretical steady-state EMSE

model (54).

Recalling that Se = ζ + Sv, the solution of ζ to (54) approximates well the steady-state EMSE, especially for

Ŝv < Sv, a situation in which the probability of Ŝe < Ŝv is small, and therefore Assumption 4 is closer to reality.

The model (54) was verified by simulations with three cases: ratio = Ŝv/Sv = 0.5, 1.0, and 1.5, with results

shown in Fig. 7. The simulation was run with white Gaussian complex inputs and noise and with parameters

λ = 0.99, σ2
x = 1, and Sv = 10−3. The simulated steady-state EMSE was an average of 100 trials. Figure 7(a)

shows the case of p = 1.0, where the time average EMSE of the last 1.5 × 104 iterations in steady-state was

ζ = −36.15,−46.30, and −40.18 dB for ratio =0.5, 1.0, and 1.5 respectively; while the solution of (54) was

−36.20,−45.50, and −33.35 dB for the three ratios, respectively. For other orders, similar results were obtained,

as shown in Fig. 7(b) and 7(c). The model matches the simulation very well when the estimate Ŝv ≤ Sv. As

expected, the theoretical approximations become worse as the probability of Ŝe < Ŝv increases, which happens as

Ŝv is increased.

B. Model for Bernoulli-Gaussian noise

The derivation in the previous section relied in the assumption of Gaussian noise. Although it is difficult to

extend the model to general non-Gaussian noise, the extension to Bernoulli-Gaussian noise is achieved with a few

changes in the derivation. First, we modify Assumptions 1 and 7 as follows:

1’) The noise {v(k)} sequence is iid and independent of the regressor sequence {x(n)}. The regressor follows
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a Gaussian distribution, whereas the noise follows a complex-valued Bernoulli-Gaussian distribution, that is,

v(k) = ω(k)N(k), where now N(k) is a zero-mean circular Gaussian variable with variance σ2
N , and ω(k)

is Bernoulli process with probability P (ω(k) = 1) = Pr .

7’) The a priori error ek = ea(k) + v(k) is now the sum of a Gaussian and a Bernoulli-Gaussian variables,

independent of each other.

We must re-evaluate all expected values related to v(k) to take into account the new distribution. Note that now,

conditioned on ω(k) = 1, v(k) is Gaussian with variance σ2
N . The expected value of |ek|p can be evaluated as

follows.

E{|ek|r} =PrE{|ea(k) + v(k)|r |ω(k) = 1}

+ (1− Pr)E{|ea(k) + v(k)|r|ω(k) = 0}. (55)

Given that ω(k) = 1, ea(k) + v(k) is a Gaussian variable with zero mean and variance ζ(k) + σ2
N . Therefore, by

(39), at steady-state we have

E{|ek|r|ω(k) = 1} = Γ(r/2 + 1)(ζ + σ2
N )r/2.

Similarly, if ω(k) = 0, ek = ea(k) follows a Gaussian distribution with variance ζ , so

E{|ek|r|ω(k) = 0} = Γ(r/2 + 1)ζr/2.

We conclude that

lim
k→∞

E{|ek|r} = Γ(
r

2
+ 1)

(

Pr(ζ + σ2
N )

r
2 + (1− Pr)ζ

r
2

)

. (56)

In particular, for r = 2, we have limk→∞E{|ek|2} = 2Se. Applying (56) with r = 4 we can evaluate E{Ŝ2
e (k)},

so (45) and (46) become

lim
k→∞

E{Ŝ2
e (k)} =

2

1 + λ
S2
e + 2

1− λ

1 + λ
Pr(1− Pr)σ

4
N ,

σ2
∆ =

1− λ

1 + λ
S2
e + 2

1− λ

1 + λ
Pr(1− Pr)σ

4
N . (57)
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Denoting D = Pr(1− Pr)σ4
N , we can update the expressions (49) and (50) for E{µ(k)} and E{µ2(k)}, resulting

lim
k→∞

E{µ(k)} ≈
(1− C)

√
Se −

√

Ŝv − 2CD

S
3/2
e

√

Γ(p)Sp−1
e

(

Tr(R2
xx) + Tr2(Rxx)

)

, (58)

lim
k→∞

E{µ2(k)} ≈

[√
Se−

√

Ŝv

]2

+ 2C
√

ŜvSe +
4CD
√

Ŝv

S
3/2
e

Γ(p)Sp−1
e

(

Tr(R2
xx) + Tr2(Rxx)

) . (59)

Using again (56) and conditional expectation, (51) and (53) become

lim
k→∞

E{|g(ek)|2} = Γ(p)
[

Pr

(

ζ + σ2
N

)p−1
+ (1− Pr)ζ

p−1

]

, (60)

lim
k→∞

E{ea(k)g(ek)} = Γ
(p

2
+ 1

) [

PrζS
p
2
−1

e + (1− Pr)ζ
p
2

]

. (61)

Substituting (58)–(61) into (31), we obtain a modified version of (54):

2Γ
(p

2
+ 1

)

[

(1− C)
√

Se −
√

Ŝv −
2CD

S3/2
e

]

×
[

PrζSp/2−1
e + (1− Pr)ζ

p/2
]

≈ Γ1/2(p)Tr(Rxx)
√

Sp−1
e

(

Tr(R2
xx) + Tr2(Rxx)

)

×
{

[

√

Se−
√

Ŝv

]2

+ 2C

√

ŜvSe +
4CD

√

Ŝv

S3/2
e

}

×
[

Pr

(

ζ + σ2
N

)p−1
+ (1− Pr)ζ

p−1
]

(62)

As in the Gaussian case, the solution ζ to (62) approximates well the steady-state EMSE when Ŝv < Sv, since in

this case the probability of Ŝe < Ŝv is small, and Assumption 4 is approximately true. For larger values of Ŝv, the

theoretical predictions are farther from simulation results than in the Gaussian case. We repeated the simulations

presented in the previous section for Bernoulli-Gaussian noise, always keeping Sv = 10−3, but in two conditions:

Pr = 0.1 and σ2
N = 10−2, and Pr = 10−2 and σ2

N = 0.1. The other parameters are as in Figure ??, except that the

experimental EMSE was computed with the average of 100 curves. The results are given in Table III. The table

also includes the previous results for Gaussian noise, in the rows with Pr = 1.

V. CONCLUSION

Two variable step-size (VSS) adaptive algorithms have been proposed using normalized fractionally lower-

order moment minimization for system identification applications. The proposed adaptive VSS-NLMP algorithms
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TABLE III

SIMULATION AND THEORETICAL RESULTS FOR BERNOULLI-GAUSSIAN NOISE.

Ŝv/Sv Pr σ2
N ζ (simulations) ζth from (62)

0.5 1 10−3 2.17× 10−4 2.14 × 10−4

1 1 10−3 2.04× 10−5 4.23 × 10−5

1.5 1 10−3 7.60× 10−5 5.16 × 10−4

0.5 0.1 0.01 9.5× 10−5 8.4 × 10−5

1 0.1 0.01 2.4× 10−5 1.2 × 10−4

1.5 0.1 0.01 1.8× 10−5 5.5 × 10−4

0.5 0.01 0.1 2.3× 10−4 2.5 × 10−4

1 0.01 0.1 1.2× 10−4 4.7 × 10−4

1.5 0.01 0.1 7.5× 10−5 8.4 × 10−4

automatically adjust the step size by approximating the power of the a posteriori error to that of the background

noise. Variants of implementation using time-averaged estimates of error and signal statistics are also developed

for each adaptive VSS-NLMP algorithm. The proposed VSS-NLMP algorithms have been evaluated extensively by

computer simulations under Gaussian or heavy-tailed non-Gaussian interference signals with white or colored inputs,

and for real- and complex-coefficient systems. The results have shown that the new VSS-NLMP algorithms combine

the benefits of variable step sizes with the robustness of the NLMP algorithms against impulsive interference, thus

achieving better tradeoff between fast convergence and small steady-state error than the FSS-NLMP. In heavy-tailed

interference scenarios, the proposed VSS-NLMP algorithms with p < 2 also achieve better steady-state performance

and faster convergence than the VSS-NLMS [11]. The proposed VSS-NLMP algorithms with order p = 1 exhibit

best performance in both Gaussian and impulsive interference environments and its asymptotic convergence is

guaranteed for all step sizes µ(k) > 0 when the step size multiplier satisfies 0 < µ0 ≤ 1. The steady-state excess

mean square error (EMSE) of the proposed algorithm has also been analyzed via the energy conservation method

for Gaussian and Bernoulli-Gaussian noise.
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APPENDIX

We show the relationship between the coefficients of the quadratic equation (9) under the assumption that the a

priori error is independent from the input signal. First let us consider the statistics of xH(k)x(k) and assume that

the input signal x(k) is white or colored (real/complex) Gaussian with zero mean and average power σ2
x. Denote

the correlation matrix of the input vector x(k) as Rxx(k) = E[x(k)xH (k)] whose eigenvalue decomposition is

Rxx(k) = UΣU
∗, where U is a unitary matrix and Σ is a diagonal matrix of nonnegative eigenvalues, σ(l), l =

1, · · · , L. The input vector can be linearly transformed from L independent, identically distributed Gaussian variables

h(l) ∼ N (0, 1), l = 1, · · · , L. Therefore, the distribution of xH(k)x(k) is the same as the distribution of Z =

∑L
l=1 σ(l)|h(l)|2. The statistics of Z are

Sxx(k) = E[Z] =
L
∑

l=1

σ(l)E[|h(l)|2] =
L
∑

l=1

σ(l); (63)

Pxx(k) = E[|Z|2] = E

[

L
∑

l1=1

σ(l1)|h(l1)|2
L
∑

l2=1

σ(l2)|h(l2)|2
]

=
L
∑

l=1

σ2(l)E
[

|h(l)|4
]

+ 2
L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2)E
[

|h(l2)|2|h(l2)|2
]

= 3
L
∑

l=1

σ2(l) + 2
L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2) (64)

The last equality uses the 4-th moment of a zero-mean Gaussian distribution. If the input signal is white, then

the singular values σ(l) are all equal to one and Z is Chi-square distributed with E[Z] = Lσ(1) and E[|Z|2] =

(L2 + 2L)σ(1). If the input is colored Gaussian, then Sxx(k) remains the same as that of white Gaussian input

because
∑L

l=1 σ(l) = trace[Rxx(k)] = Lσ2
x, but Pxx(k) is usually different from that of the white input.

Next, consider the statistics of the a priori error. Based on (1) and (2), we have

ek = [wo − ŵ(k − 1)]H x(k) + v(k). (65)
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In the steady state, the first term on the right-hand side becomes very small and the statistics of ek are dominated

by v(k). Analytical results for the p-th moment of the error can be obtained for ek being Gaussian; while numerical

evaluation of the error statistics is used for non-Gaussian distributions.

For a zero-mean Gaussian distribution, the p-th moment is [9]

E[|N (0,σ2
e )|p] =

2p/2Γ(p+1
2 )

√
π

σp
e , p > 0, (66)

where σ2
e is the second order moment (which is double the dispersion parameter γ in [9]), and the Gamma function

is defined as Γ(x) =
∫

∞

0 tx−1e−tdt.

Using (63), (64), and (66), we have for Gaussian inputs and Gaussian interference

b(k)

Se(k)
=

Lp(ek)

Se(k)
Sxx(k) =

2p/2Γ(p+1
2 )

√
π

σp−2
e

L
∑

l=1

σ(l) (67)

a(k)

Se(k)
=

L2p−2(ek)

Se(k)
Pxx(k) =

2(2p−2)/2Γ(2p−1
2 )

√
π

σ2p−4
e

[

L
∑

l=1

3σ2(l) + 2
L−1
∑

l1=1

L
∑

l2=l1+1

σ(l1)σ(l2)

]

, p > 1. (68)

The ratios of the two coefficients, b2(k)Se(k)/a(k), for different order, p, were computed based on the theoretical

analysis for Gaussian interference, as shown in Fig. 8, with both white and colored input signals. When the tap

length was large (L = 512), the two curves for white or AR(1) inputs were very close, ranging from 0.631 (for

p = 1) to 0.996 (for p = 2) with white input, and from 0.625 (for p = 1) to 0.985 (for p = 2) with AR(1) inputs.

When the tap length was small (L = 32), the distance between curves with white and AR(1) inputs became large.

In all cases, the ratio was greater than 0.5 for Gaussian interference.

The analysis for other types of interference is more involved and it is difficult to exhaust all types. We use

simulated signals to compute the ratios and results are shown in Fig. 9. The BG interference with Pr = 1 corresponds

to Gaussian interference and the curves based on simulated signals matched the theoretical analysis. The ratios for

small p were reduced significantly for more impulsive BG interference, as shown in Fig. 9(a), with the smallest

ratio being 0.167 for p = 1. The ratios for compound K interference exhibited a similar trend, with the smallest

ratio being 0.22 for the most impulsive interference and p = 1. This implies that the two VSS-NLMP algorithms

are similar for p large, but they are quite different for p small.
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