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Abstract:

Despite its qualities of robustness, low cost, and good tracking performance, in many situations the LMS

algorithm suffers from slow initial convergence. We propose a method to speed up this convergence rate by varying the
length of the adaptive filter, taking advantage of the larger step-sizes altowed for short filters. The results presented here
show that variable-length adaptive filters have the potential to achieve quite fast convergence rates, with a modest increase

in the computational complexity.

1. INTRODUCTION

The least-mean square algorithm (LMS) is probably the
most widely used adaptive filtering algorithm, due to its
low computational cost, robustness [5], and good tracking
performance (which is comparable to that of the recursive
least-squares algorithm, RLS) [4]. The major drawback
of LMS is surely its slow initial convergence, especially
in situations where there is strong correlation between the
entries of the regressor vector [3, 6].

In order to take better advantage of its qualities, sev-
eral methods to speed up the LMS convergence have been
proposed, most notably the NLMS algorithm (normal-
ized-LMS) [1, 7, 9], and transform-domain algorithms
[6]. These methods achieve faster convergence by reduc-
ing the dispersion of the eigenvalues of R (the autocor-
relation matrix of the input vector sequence, see Sec. 1.1
below). As is well known [3, 6], the best condition for
fast LMS convergence is if R is a multiple of the identity.
When the number of taps used is large, however, even
in this ideal sitation the convergence may be slow: it
is known that the maximum allowable step-size for stable
LMS behavior is inversely proportional to the filter length
{for independent, Gaussian regressors a proof for this can
be found in [10], and for more general regressors, in [2]).
This constraint on the step-size forces slower convergence
as (he filter length s increased.

In this paper we describe a new approach that can sub-
stantially accelerate the initial convergence of the LMS
and even of the NLMS algorithms. Contrary to what is
normally done, we do not attempt to reduce the eigen-
value dispersion of R. Instead, we propose a way of tak-
ing advantage of the superior convergence rates attainable
by short filters, employing variable-length filters.

We present here one pessible strategy, leading to a
simple variable-length LMS algorithm. Other, more com-
plex strategies are possible and are being studied. We
show that our variable-length filter is less sensitive to eigen-
value dispersion, although it is sensitive to the relative val-
ues of the optimum (Wiener) weights, as explained further
on.

The additional cost in using the variable-length strat-

egy described here includes both a larger program mem-
ory and a larger number of operatiens (up (o 2M multi-
plications and M comparisons beyond what is required
by LMS, where M is the filter length, depending on the
how the algorithm is implemented.)

In the remainder of this section, we describe our no-
tation, and remind the reader of expressions relating con-
vergence rate, eigenvalue dispersion, and filter tength. In
the next sections, we describe our variable-length LMS
algorithm, comment on its behavior, and present a few
simulations to illustrate the analysis.

1.1. Definitions and notation

Recall that the LMS algorithm computes approximations
to a desired sequence {y(n) € R}:c;u through linear
combinations of the regressor {column) vector sequence
{zn € RM} , such that §(n) = wla, (the super-
script T denotes vector transposition). Both sequences
are assumed zero-mean. The vector sequence {:cﬂ} is
usually formed from a scalar sequence {z(n) € IR}°°
such that

n=0

&n = [z(n) z{(n-1) zn—M+ 1)]T.
The weight vector w,, is computed iteratively as (the pos-
itive constant i is known as the step-size):

Wnt1 = Wy + pe(n)e,, where

en) = y(n) — wliz,.

[f the desired and regressor sequences are stationary,
and their auto- and cross-correlations are known, it is pos-
sible to compute the filter weights that minimize the ex-
pected value of e{n)? (these optimum weights are known
as the Wiener solution), as follows: define the autocer-
refation of =, and the cross-correlation between @x,, and
y(n)as B & E(zqxl), and p 2 E{y{n)z,), respec-
tively (E(-) represents the expectation operator). Then,
w, = R-1p[3].
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1.2. Convergence rate and filter length

The behavior of LMS is strongly dependent on K — in
particular, it is well known [3, 6] thal the convergence
speed of LMS depends on the dispersion of the eigenval-
ues of R, which can be measured by the rafio

é Amax (R)

K(R) _—/\min(R) .

The convergence speed is fastest when «(R) = 1, and
decreases as k(R) — co.

Even in the best situation, when R is a multiple of
the identity and «(R) = 1, the convergence rate will be
considerably slow if the filter is long. As an example,
consider the case where the regressor sequence { mn} is
independent, identically distributed (iid) and has a normal
distribution, with B = Ex,2T = ¢21. In this idealized
situation, it is possible to exactly evaluate the learning
curve of the algorithm (the graph of the mean-square er-
ror, or MSE, i.e., Ee(n)?) [10, 8], and it can be shown that
the fastest convergence rate (in the mean-square sense) is
achieved by choosing

1
K= 01 s 202 )
The time constant of the algorithm will then be [3]
1 1
= - @

= 1,,(1_ T azag) n (%)

For large M, the time constant is well approximated by
T ms M, while for M = 1, 7 = 2.5. Note that even in this
case, in which the entries of &, are mutually independent,
the step-sizes (and thus the maximum convergence rate)
must be reduced as the filter length is increased.

2. VARIABLE-LENGTH (YL LMS) ALGORITHM

We can achieve a faster convergence rate by splitting a
length-M = 2¥ filter into several sub-filters of smaller
length. These sub-filters are trained independently, and,
since they have smaller lengths, they can be updated us-
ing larger step-sizes, allowing faster convergence rates.
After a few iterations, the sub-filters are merged, with the
training re-starting from a better initial condition than the
original one. Several strategies for splitting, merging, and
passing on the initial conditions to the merged filters are
possible: different specific applications will require dif-
ferent strategies. We describe here a straightforward strat-
egy, in order to demonstrate the potential of the variable-
length approach.

Let us consider then a length-4 LMS filter. We shall
begin (Stage 1) with 4 length-one sub-filters updated in-
dependently (see Fig. 1). After a pre-chosen number N
of iterations, we merge the length-one sub-filters, forming
2 length-2 sub-filters (Stage 2, see Fig. 2). Again, after
N, iterations, we merge these two sub-filters, and obtain
a standard, length-4 LMS filter (Stage 3, see Fig. 3). In
each stage we use a different step-size p, and we should
choose gy > po > fi3.  As seen in Figs. 1-3, sub-filter

x(m -1 -1 i

dm) &n) ?—%m) )
fa f + +
ya)

x(m -1 - i

Fig. 2. Length-two sub-filters (Stage 2).

7 in stage k penerates its own error, e"?? (n). The update
equations for each stage are as follows: define the vectors
el e R, 2 € R?, and €3 € R, where

ep(n)
sl afiey. a-e
ei(n)

Then the update equations for stage | (0 < n < N; - 1}
are (w;(n) is the -th entry of vector wy,)

wi{n+ 1] [wi(n)] [ ei(n)z(n)
wpln+ 1)) fwaln)| | |ex(n)a(n—1)
wy(n+1)| T fws(n)| T |eb(n)z(n - 2|’
wa{n +1) |wa(n) | les(n)z(n - 3)]

and forstage 2(Ny —1<n< N; - 1)

w(n+1)]  [wim)] el (n)z(n) ]
w(n+ D) _Nwo(n)| , - |e(n)e(n 1)
wyln+1)| ~ |wsln)| T2 |e(n)z(n - 2)]°
wa(n+1) | weln) | | e2{(n)z(n — 3) |

For stage 3, we have a standard LMS recursion.
We now describe how to choose the overall output er-

xn) - 7 7

z

o ®

1/ @ &(n)

y(n}

Fig. 3. Lengih-four LMS fiiter (Stage 3).
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ror e(n) in stages 1 and 2. Choose A € (0, 1) and define

(e%(n))i
('32 2, 0<n <y -1,

n))
(63(”))2
)

34 (n)

ol =l +(1-

gl =Aon+(1=1) [(elgn)) ] sy M Sn< Ny -1,

(e3m)”

with o} = 0, and %, given below — sec (4). In stage
k, the overall output error &(n) is chosen as the eﬁ(")(n)

corresponding to the minimum entry of dﬁ. Denoting the
i-thentry of % by o¥(n), e(n) and J{n) are given by

J(n) = arg miin ok(n), e(n) =ek(n). (3

The transition between stages can be acomplished in
several ways. A possibility that gives smooth transitions
is the following: At step N1, zero out all entries of wp;,
except the J{N)-th, before computing w41 In ad-
dition, choose the initial conditions o%;, for stage 2 as
follows:

o2 = a (V)] _ igi.?za"l(N]) @
M ai(Ny)| ‘.insindail(Nl) :

Similarly, at step Na, we zero out the entries wy, corre-
sponding to all sub-filters, except the J(Na )-th sub-filter.
Since in this exampie stage 3 is already the standard LMS
algorithm, o2 is not defined. If a larger number of stages
were being used, one should proceed with the choice of
n:r}‘q2 as done in (4). This procedure may be easily ex-
tended to any filter length of the form M = 2F. Note
that, since the last stage always rcturns 1o a standard LMS
filter, the steady-state, tracking, and robustness properties
of LMS are retained. The only medification occurs during
the initial convergence.

3. SIMULATIONS

In this section, we demonstrate the potential utility of
the algorithm above, and the situations in which it may
not perform well by means of a few examples (in all of
which A = 0.9 was used). We consider first the case
of iid vectors xy,, i.e., the situation for which expres-
sions (1)~(2) hold. Let {=, € IR”} » be a zero-mean
Gaussian iid scquencc, with autocmrelatnon R =1 Let
also y(n) = wlz, + v(n), where {(n) } o 15 zeTO-
mean, Gausstan, iid, independent of {:v,,} and with vari-
ance 1074, The i-th entry of w, equal to e~ 03%(i—1}
1< i< M. Forthis M = 32 filter, we chose first

N; =5, N, =10, Ny =30, N, =60,
N5 = 120, N5 = 200, (5)
m = 1/3, 2 =1/4, 3= 1/6a s = 1/10,
ps =1/18,  pig =1/34.

With these choices, and with initial condition wy = 0, we
obtain the learning curve presented in Fig. 4. The LMS

step-size was jt = ig, and the NLMS step-size, £ = 1.
Note how, since K(R) = 1 in this case, the LMS and
NLMS curves converge with practically the same speed,
although the variable-length algorithm converges much
faster. In Fig. 5, one can see the same example, both with

10°
107"
Ee(n)? LMS
4072
107 NLMS
")-lo 200 400 600 800

n
Fig. 4. MSE (Ee(n)?) computed for LMS, VL LMS, and
NILMS, average of 300 runs.

N; = i - 100, a choice of transition points that should be
avoided in general, but that highlights how the variable-
length algorithm works. Remark that at each stage (6 in
this case), the algorithm is able to decrease a little further
the average error e(ni}. Note also how the convergence
rate decreases as the sub-filter length is increased.

4] 200 400 800 800 1000

Fig. 5. MSE (Ee(n)?) computed for LMS and VL LMS
(300 runs). The transition points were chosen (o explain
how the variable-length algorithm works.

In the next example, w, was changed so that its i-
th entry is e~ 0910~1) for 1 < i < 32. The sequences
{xn} and {v{n)} are the same, and the transition steps
are again given by (3). Now this choice gives poor re-
sults, as one can see in the upper curve of Fig. 6. Never-
theless, if one rotates the vector &,, (multiptying it by an
orthogonal matrix @, @TQ = I} prior to application of
the LMS and variable-length LMS algorithms, the lower
curve is obtained. Note that in both situations, the LMS
learning curve is the same — LMS is not affected by or-
thogonal rotations in this case. The rotation was chosen
s0 that w, has only one non-zero entry (its 15-th). This
example shows that this variable-length strategy is more
affected by the relative values of the entries of w, than by
the eigenvalue dispersion of R.

Nexl, we apply the variable-length algorithm to an
equalization example. Now the (length M = 32) regres-
sor &, is formed from a tapped-delay line: a Gaussian
iid signal s{n} with variance | passes throngh a channel
with z-transform H(z) = 1/(1 -+ 0.7z} and is added
to a Gaussian noise with variance 10~* to form the en-
tries z(n) of &,. We used the variable-length filter as

-
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Fig. 6. MSE (Ee(n)?) computed for LMS and the new
algorithm, with rotated and non-rotated regressor vecior
{300 runs).

an equalizer, with the transition points in (5), and with
y(n) = s(n). The step-sizes used were p; = 1072 x
{09, 4.5, 2.25, 1.125, 0.9375, 0.46875} (Fig. 7).

— LMS
10"
Ee(n)?o LMS
o™
10™
0 1000 2000 3000 4000 5000
n

Fig. 7. MSE (Ee(n)?) computed for LMS and VL LMS
for the first equalizer example (300 runs).

In Fig. 8, we have the same situation, but the channel
is now described by H(z) = (1 + 2! +09272/(1 +
0.7271). This results in a autocorrelation matrix with
larger k(R). and a vector w, with more entries with simi-

lar amptitude. Only after the VL LMS algorithm is switched

2000 4000

n
Fig. 8. MSE (Ee(n)?) computed for LMS and VL LMS,
average of 300 curves for the second equalizer example.

to standard LMS does the convergence slow down. Better
results might be obtained if sub-filter lengths larger than
16 were allowed, or if a smarter merging strategy were
used.

4. CONCLUSIONS

In this paper, variable-length LMS filters were described,
and some of their properties analysed. We showed that
these algorithms have interesting convergence properties,
that they are less affected by the eigenvalue dispersion of
the input autocorrelation matrix than LMS, but are sen-
sitive to the optimum weight vector, w, (the Wiener so-

lution), since the convergence is faster when w, has few
dominating entries.

Many modifications of the variable-length algorithm
may be devised, which may lead to less sensitivity to w,:
different strategies for merging sub-filters, choosing the
overall output error, choosing initial conditions for each
stage. One may start, as we did here, with length-one
sub-filters, and double the sub-filter lengths at each stage,
but it would also be possible to start with larger sub-filters
(which would result in a smaller computational cost). It
is also possible to use sub-filters with lengths larger than
M /2 taps, and use more stages before turning to standard
LMS.

Another interesing possibility is to choose the switch-
ing points between stages dynamically, and even to allow
the filter to return to a previous stage in rapidly-varying
situations, where the error e{n) may increase suddenly.
These possibilities are now being pursued.
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