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Abstract—We extend the analysis presented in [1] for the affine
combination of two least mean-square (LMS) filters to allow for colored
inputs and nonstationary environments. Our theoretical model deals, in
a unified way, with any combinations based on the following algorithms:
LMS, normalized LMS (NLMS), and recursive-least squares (RLS).
Through the analysis, we observe that the affine combinationof two
algorithms of the same family with close adaptation parameters (step-
sizes or forgetting factors) provides a 3 dB gain in relationto its best
component filter. We study this behavior in stationary and nonstationary
environments. Good agreement between analytical and simulation results
is always observed. Furthermore, a simple geometrical interpretation of
the affine combination is investigated. A model for the transient and
steady-state behavior of two possible algorithms for estimation of the
mixing parameter is proposed. The model explains situations in which
adaptive combination algorithms may achieve good performance.

Index Terms—Adaptive filters, affine combination, steady-state analy-
sis, transient analysis, LMS algorithm.

I. I NTRODUCTION

Recently, an affine combination of two least mean-square (LMS)
adaptive filters was proposed and its transient performance analyzed
[1]. This method combines linearly the outputs of two LMS filters
operating in parallel with different step-sizes. The purpose of the
combination is to obtain an adaptive filter with fast convergence and
reduced steady-state excess mean-square error (EMSE). Since the
mixing parameter is not restricted to the interval[0, 1], this method
can be interpreted as a generalization of the convex combination of
two LMS filters of [2], [3].

In this paper, we extend the results of [1] by providing a unified
analysis, which is valid for colored inputs, nonstationary environ-
ments, and combinations based on LMS, NLMS, and RLS algorithms.
To explain the behavior of the affine combination of two algorithms,
we present a simple geometrical interpretation. Furthermore, we
also explain why fast-adaptation of the mixing parameter in general
leads to a quite large variance around the optimum value. Then,
we find a model for the transient and steady-state behavior of two
possible algorithms for estimation of the mixing parameter. In order
to simplify the arguments, we assume that all quantities are real.

II. PROBLEM FORMULATION

A combination of two adaptive filters is depicted in Figure 1. In
this scheme, the output of the overall filter is given by

y(n) = η(n)y1(n) + [1 − η(n)]y2(n), (1)

whereη(n) is the mixing parameter,yi(n), i = 1, 2 are the outputs
of the transversal filters, i.e.,yi(n) = uT (n)wi(n−1), u(n) ∈ R

M

is the common regressor vector, andwi(n−1) ∈ R
M are the weight

vectors of each length-M component filter.
We focus on the affine combination of two adaptive algorithms of

the following general class

wi(n) = wi(n − 1) + ρi(n)Mi(n)u(n)ei(n), i = 1, 2, (2)
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where ρi(n) is a step-size,Mi(n) is a symmetric non-singular
matrix, ei(n) = d(n)−yi(n) is the estimation error, andd(n) is the
desired response. The LMS, NLMS, and RLS algorithms employ the
step-sizesρi(n) and the matricesMi(n) as in Table I. In this table,
µi, µ̃i and ǫ are positive constants,‖ · ‖ is the Euclidian norm,I is
the M × M identity matrix, and0 ≪ λi < 1 is a forgetting factor.
For RLS, Mi(n) = R̂−1

i (n) is obtained via the matrix inversion
lemma [4, Eq.(2.6.4)] applied tôRi(n), which is an estimate (with
forgetting factorλi) of the autocorrelation matrix of the input signal,
i.e., R , E{u(n)uT (n)}, whereE{·} is the expectation operator.

We assume thatd(n) andu(n) are related via a linear regression
model, that is,d(n) = uT (n)wo(n − 1) + v(n), wherewo(n − 1)
is the time-variant optimal solution andv(n) is an i.i.d. (independent
and identically distributed) and zero mean random process with
varianceσ2

v = E{v2(n)}, which plays the role of a disturbance
independent ofu(n) [4, Sec. 6.2.1]. Furthermore, the sequences
{u(n)} and{v(n)} are assumed stationary.

In the affine combination, the mixing parameterη(n) is not
restricted to the interval[0, 1] and can be adapted via

η(n + 1) = η(n) + µηe(n)[y1(n) − y2(n)], (3)

whereµη is a step-size, ande(n) = d(n) − y(n) is the estimation
error of the overall filter. The recursion (3) was obtained in [1], using
a stochastic gradient search to minimize the instantaneous mean-
square error (MSE) cost function. In [1],η(n) was constrained to
be less than or equal to 1 for alln, to ensure stability of (3). In
this paper, we applied this constraint when using (3). The constraint
was not necessary when the normalized version of (3) was used (see
Sec. V).
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Fig. 1. Affine combination of two transversal adaptive filters.

III. STEADY-STATE PERFORMANCE OF ADAPTIVE FILTERS

We assume that in a nonstationary environment, the variation in the
optimal solutionwo follows a random-walk model [4, p. 359], that is,
wo(n) = wo(n − 1) + q(n). In this model,q(n) is an i.i.d. vector



TABLE I
PARAMETERS OF THE CONSIDERED ALGORITHMS.

Alg. ρi(n) M
−1
i (n)

LMS µi
I

NLMS µ̃i/
(
ǫ + ‖u(n)‖2

)

RLS 1 R̂i(n) =
n∑

l=1

λn−l
i u(l)uT (l)

with positive-definite autocorrelation matrixQ = E{q(n)qT (n)},
independent of the initial conditions{wo(−1),w(−1), η(−1)} and
of {u(l), d(l)} for all l [4, Sec. 7.4].

One measure of the performance of each component filter is given
by the excess MSE (EMSE), defined as

ζi(n) , E{e2
a,i(n)}, ζi , lim

n→∞

ζi(n),

whereζi is the steady-state value ofζi(n), ea,i(n) = uT (n)w̃i(n−
1), and w̃i(n − 1) = wo(n − 1) − wi(n − 1). On the other hand,
the overall filter performance can be measured by

ζ(n) , E{e2
a(n)}, ζ , lim

n→∞

ζ(n),

where
ea(n) = η(n)ea,1(n) + [1 − η(n)]ea,2(n). (4)

To obtain analytical expressions forζ, we need expressions forζi,
i = 1, 2 and for the cross-EMSE [3], [5]

ζ12(n) , E{ea,1(n)ea,2(n)}, ζ12 , lim
n→∞

ζ12(n).

There have been several works in the literature on the tracking
performance of adaptive algorithms (see, e.g., [4], [6]–[10] and their
references). Analytical expressions for the EMSE of LMS [4], [9],
NLMS [4], [7], and RLS [6] algorithms can be obtained from the
first three lines in Table II, usingµ2 = µ1, µ̃2 = µ̃1 or λ̃2 = λ̃1 ,

(1 − λ1), where Tr(A) stands for the trace of matrixA, αu ,

E
{
‖u(n)‖−2

}
, γ = var{u2(n)}/(var{u(n)})2, andvar{·} is the

variance. For gaussian inputs,γ = 2 and αu can be approximated
by 1/[var{u(n)}(M−2)] [11].

The cross-EMSE for the combination of two LMS filters was
estimated in [3] using energy conservation arguments. Using the
traditional analysis method1, analytical expressions forζ12 for the
combinations of two RLS filters and of one RLS with one LMS
were obtained in [5]. For the combination of two RLS filters, another
expression forζ12 can be obtained using similar assumptions to those
of [6]. Since the resulting expression is more accurate than that of
[5], mainly for smaller forgetting factors, we use it here. Analytical
expressions forζ12 considering the combination of two NLMS filters
are given, for white regressors, in [12]. We give here a straightforward
extension for correlated inputs. All these results are summarized in
Table II, whereΣ , [λ̃1I + µ2R]−1R.

IV. A STEADY-STATE ANALYSIS OF AFFINE COMBINATIONS

To obtain an analytical expression for the optimum mixing param-
eterηo(n) at the steady-state2, we differentiate the mean-square error
cost functionE{e2(n)} with respect toη(n) and set the derivative
equal to zero, i.e.,

E{e(n) [e1(n) − e2(n)]} = 0. (5)

1In the traditional method, one computes a recursion for the autocorrelation
matrix of the weight-error vector of a filter.

2Note that we use the subscript “o” in ηo(n) to denote the optimum mixing
parameter. It is optimum in the mean-square error sense.

TABLE II
ANALYTICAL EXPRESSIONS FOR CROSS-EMSE OF THE CONSIDERED

COMBINATIONS.

Combination ζ12

µ1-LMS andµ2-LMS
µ1µ2σ2

vTr(R) + Tr(Q)

µ1 + µ2 − µ1µ2Tr(R)

µ̃1-NLMS and µ̃2-NLMS
Tr(R)

[
µ̃1µ̃2σ2

vαu +Tr(Q)
]

µ̃1+µ̃2−µ̃1µ̃2

λ1-RLS andλ2-RLS

λ̃1λ̃2

[
1+

λ̃1λ̃2

1−λ1λ2
γ

]
Mσ2

v+Tr(QR)

λ̃1 + λ̃2 − λ̃1λ̃2

λ1-RLS andµ2-LMS µ2λ̃1 σ2
v Tr

(
Σ

)
+ Tr

(
QΣ

)

Using the linear regression model ford(n), the estimation errors
ei(n), i = 1, 2 are related to thea priori errorsea,i(n) via

ei(n) = ea,i(n) + v(n). (6)

Then, using (1) and (6), (5) can be rewritten as

E{ηo(n)[ea,1(n)−ea,2(n)]2}=E{ea,2(n)[ea,2(n)−ea,1(n)]}. (7)

To proceed, we assume that

A1. ηo(n) is independent ofea,i(n), i = 1, 2 at the steady-state.
This assumption requires the optimum mixing parameter to be
independent of thea priori errors whenn → ∞.

Thus, using A1 and taking the limit forn → ∞ of both sides of
(7), we arrive at

η̄o(∞) , lim
n→∞

E{ηo(n)} ≈ ∆ζ2

∆ζ1 + ∆ζ2
, (8)

where∆ζi = ζi − ζ12, i = 1, 2. The accuracy of (8) depends on the
the accuracy of the analytical expressions ofζi, i = 1, 2 andζ12. A
similar expression was also obtained in [3, Eq.(29)] for the convex
combination of two LMS filters. The difference is that in the convex
combination,η(n) and consequentlȳηo(∞) are restricted to the
interval [0, 1]. The expressions of Table II were obtained without the
assumption of white inputs. Thus, (8) is an extension of [1, Eq. (26)]
since it allows for colored inputs, nonstationary environments, and
holds for combinations of algorithms of the form (2).

Now we obtain an analytical expression for the steady-state EMSE
of an affine combination. By squaring both sides of (4) withη(n) =
ηo(n), taking expectations, and using A1, we arrive at

E{e2
a(n)}=E{η2

o(n)}E{e2
a,1(n)} + E{[1 − ηo(n)]2}E{e2

a,2(n)}
+ 2E{ηo(n)[1−ηo(n)]}E{ea,1(n)ea,2(n)}. (9)

To proceed, we assume for now that

A2. the variance ofηo(n) is sufficiently small at the steady-state
such thatlimn→∞ E{η2

o(n)} ≈ η̄o
2(∞).

Using A2 and taking the limit of both sides of (9) forn → ∞, we
arrive at

ζ ≈ ζ12 +
∆ζ1∆ζ2

∆ζ1 + ∆ζ2
. (10)

This expression was obtained in [3, Eq. (33)] for the convex
combination of two LMS filters, but also holds for different affine
combinations of algorithms of the form (2).



A. Stationary environments

In an stationary environment (Q = 0), the expressions (8) and (10)
for the combinations of two LMS or two NLMS filters are shown
in Table III, whereδ , µ2/µ1 with 0 < δ < 1, and δ̃ , µ̃2/µ̃1

with 0 < δ̃ < 1. The expressions of Table III show two interesting
properties:

i) η̄o(∞) for both combinations is negative, since to ensure the
stability of the µ1-LMS and µ̃1-NLMS, the step-sizes are
chosen respectively in the following ranges0 < µ1 < 2/Tr(R)
and0 < µ̃1 < 2;

ii) δ≈1 (resp.,δ̃≈1) yields ζ≈ζ2/2 for the combination of two
LMS filters (resp., NLMS). Sinceζ2 < ζ1 for both combina-
tions, the affine combination provides a 3dB gain in relation to
the best component filter. In this case,ηo(∞)→−∞.

Property i) was observed in [1] for the combination of two LMS
filters, assuming gaussian, white inputs, and the LMS step-size for
maximum convergence speed. Note that, if we also consider the LMS
step-size for maximum speed, i.e.,µ1 = 1/Tr(R) in the expression
of Table III, the steady-state optimum mixing parameter for the
combination of two LMS filters will reduce tōηo(∞) = δ/[2(δ−1)],
which coincides to the result of [1, Eq.(26)]. Although we exemplify
these properties for the combinations of two LMS or two NLMS
algorithms, they also hold for all the combinations considered here.
For the combinations of two RLS or one RLS with one LMS, (8)
and (10) do not reduce to simple expressions as those of Table III
even for stationary environments, and are not presented here for lack
of space.

TABLE III
ANALYTICAL EXPRESSIONS FORη̄o(∞) AND ζ IN THE STATIONARY CASE.

Combination η̄o(∞) ζ

µ1-LMS andµ2-LMS
δ[2 − µ1Tr(R)]

2(δ − 1)

1

2

[
µ2σ2

vTr(R)

δ+1−µ2Tr(R)

]

µ̃1-NLMS and µ̃2-NLMS
δ̃[2 − µ̃1]

2(δ̃ − 1)

1

2

[
Tr(R)µ̃2σ2

vαu

δ̃ + 1 − µ̃2

]

In order to explain the behavior of the affine combination when the
adaptation parameters are close (e.g.,µ1 ≈ µ2), the overall steady-
state error is written as

e(n)=ea,2(n) + v(n)︸ ︷︷ ︸
d(n)

+η(n) [w2(n)−w1(n)]T u(n)︸ ︷︷ ︸
−x(n)

. (11)

From the point of view of the computation ofη(n), d(n) represents
the signal which has to be estimated, andx(n) plays the role of input
signal. Assuming thatwi, i = 1, 2 vary slowly compared toη, (11)
has a simple geometric interpretation as shown in Fig. 2. The affine
combination seeks the best weight vector in the linew2+η(w1−w2).
In Fig. 2-(a), the best linear combination ofw1 andw2 is w. In the
case of close adaptation parameters (e.g.,µ1 ≈ µ2 or λ1 ≈ λ2), we
also havew1 ≈ w2 (Fig. 2-(b)), andη has to assume a large value
to take the combined vector close tow, since the input signalx(n)
depends on the difference betweenw1 andw2. Thus, if(w1−w2) →
0, |η| → ∞.

B. Nonstationary environments

In a nonstationary environment, the largest EMSE reduction of
the affine combination in relation to its components occurs when
ζ1 ≈ ζ2. This can happen in two situations: (i) whenTr(Q) = q12

 1w

2w

w

ow

(a) 

1w2
w

w

ow

(b) 

Fig. 2. Geometric interpretation of the affine combination.

or when (ii) the component filters have close adaptation parameters.
In Table IV, we show the analytical expressions forq12 andζ for the
combinations of two LMSs or two NLMSs3. From these expressions,
we can observe that the EMSE reduction in both cases is limited by
3 dB. A reduction close to 3 dB will occur whenδ → 0 (or δ̃ → 0) in
case (i) or when the environment tends to be stationary (Tr(Q) ≈ 0)
in case (ii).

TABLE IV
ANALYTICAL EXPRESSIONS FORq12 AND ζ FOR THE CASES(i) AND (ii) IN

A NONSTATIONARY ENVIRONMENT.

Combination (i) (ii)

q12 ζ ζ

µ1-LMS µ1µ2σ2
v ζ2/2 ζ2/2

andµ2-LMS ×Tr(R) +
2δζ2

(1 + δ)2
+

σ2
vTr(R)Tr(Q)

2ζ2

µ̃1-NLMS µ̃1µ̃2σ2
v ζ2/2 ζ2/2

and µ̃2-NLMS ×αu +
2δ̃ζ2

(1 + δ̃)2
+

σ2
v [Tr(R)]2Tr(Q)αu

2ζ2

V. TRANSIENT ANALYSIS

At each instant, the combination parameterη is adapted based
on the projectionsy1 and y2 of w1 andw2 in the direction of the
regressoru. If one tries to adaptη quickly, e.g., using the normalized
LMS algorithm instead of (3), a problem arises whenu is close to
orthogonal to(w1 −w2), as shown in Fig. 3. We show in the figure
the situation for two possible values of the optimum solution,wo

andw′

o. Note that for both values of the optimum solution, the best
value ofη is 1/2. However, looking at the projections onu, in one
case one would chooseη ≈ 0 and for the other case,η ≈ −ρ, where
ρ is a positive number. This example explains why fast-adaptation of
the combination parameter in general leads to a quite large variance
aroundηo.
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Fig. 3. Updating ofη(n) when the regressoru is close to orthogonal to
(w1 − w2).

We now find a model for the transient behavior of the combination.
Assuming thatη(n) is independent of thea priori errors, we can show

3Again, expressions for combinations which involve the RLS algorithm are
not shown due to space reasons.



that (10) still holds, andE{η(n)} = η̄o(n) and

E{e2(n)} = σ2
o(n) + σ2

η(n)[ζ1(n) + ζ2(n) − 2ζ12(n)], (12)

where we have defined

σ2
o(n) = E{e2(n)|η(n)=η̄o(n)} = σ2

v + ζ(n), and (13)

σ2
η(n) = E{η2(n)} − η̄2

o
(n). (14)

To simplify the notation, we sometimes omit the time indexn in the
following discussion.

Note that the largest MSE reduction will occur whenE{e2(n)} →
σ2

o(n). This happens, for example, when the adaptation parameters
are close (e.g.,µ1 ≈ µ2 or λ1 ≈ λ2), since in this caseζ1 ≈ ζ12 ≈
ζ2, and the effect of a possibly largeσ2

η is reduced. On the other
hand, ifζ1 ≫ ζ12 ≫ ζ2 (or vice-versa), the second term of the r.h.s.
of (12) will be approximately proportional to the largest ofζ1, ζ2,
and σ2

η will have to be smaller thanmin{ζ1, ζ2}/ max{ζ1, ζ2} to
make the combination competitive with the best filter.

A recursion forσ2
η can be found by subtractingηo from both sides

of (3), and squaring the result. In the following, we assume thatwo

is constant. Definingδη(n) = η̄o(n) − η(n), we obtain

δη(n + 1) =
[
1 − µη(ea,2(n) − ea,1(n))2

]
δη(n)

+ µη η̄o(n)(ea,2(n) − ea,1(n))2 − µηea,2(n)(ea,2(n) − ea,1(n))

− µηv(n)(ea,2(n) − ea,1(n)). (15)

Taking the expected value of (15), it can be shown thatE{δη(n)} →
0. On the other hand, squaring (15) and taking expected values we
obtain, assuming thatea,1(n) andea,2(n) are Gaussian,

σ2
η(n + 1) =

[
1 − 2µη (∆ζ1(n) + ∆ζ2(n)) (16)

+ 3µ2
η (∆ζ1(n) + ∆ζ2(n))2

]
σ2

η(n) + µ2
ησ2

v (∆ζ1(n) + ∆ζ2(n))

+ µ2
η

[
3ζ12(n) (∆ζ1(n) + ∆ζ2(n)) − 2

(
ζ1(n)ζ2(n) − ζ2

12(n)
)]

.

For stability, we need

µη <
2

3[∆ζ1(n) + ∆ζ2(n)]
, (17)

and the steady-state variance is

lim
n→∞

σ2
η =µη

3ζ12 (∆ζ1 + ∆ζ2) − 2
(
ζ1ζ2 − ζ2

12

)
+σ2

v (∆ζ1+∆ζ2)

2 (∆ζ1+∆ζ2)−3µη (∆ζ1+∆ζ2)
2 .

The adaptation law (3) is usually not fast enough to follow the
necessary quick variations onη, and at the same time avoid a large
excess mean-square error. As Fig. 3 shows, using an instantaneous
normalization, i.e., replacing the step-size byµη(n) = µ̃η/[ea,2(n)−
ea,1(n)]2, will lead to a very largeσ2

η, or even divergence (see
[13]). On the other hand, some form of normalization is necessary,
otherwise (3) will either be too slow when both component filters
have converged (andea,2(n) − ea,1(n) is small), or will converge
too fast (and diverge) whenea,2(n)−ea,1(n) is large (e.g., when the
fast filter has already converged, but the slow filter has still a large
misadjustment). One possible solution is to normalize the filter using
an estimate ofE

{
[ea,2(n) − ea,1(n)]2

}
, as in [14].

Another possibility is to employ a partial instantaneous normal-
ization, usingµη(n) = µ̃η/|y1(n) − y2(n)| as step-size (note that
y1(n) − y2(n) = ea,2(n) − ea,1(n)). With this choice, the update
rule (3) reduces to

η(n + 1) = η(n) + µ̃ηe(n) sign |y1(n) − y2(n)|. (18)

It can be shown that this recursion also leads to an unbiased estimate
of the optimumηo, with variance

σ2
η(n+1)=

[
1−2µ̃η

√
2/π

√
∆ζ1+∆ζ2+µ̃2

η (∆ζ1+∆ζ2)
]

× σ2
η(n)+µ̃2

η

ζ1ζ2−ζ2
12

∆ζ1+∆ζ2
+ µ̃2

ησ2
v. (19)

For large step-sizes, (18) leads to smallerσ2
η than (3). The situation

reverses for small step-sizes. Through simulations, we noticed that
recursion (18) is less sensitive to variations in the input power and
the value of the step-size.

In order to further improve the convergence speed of the algo-
rithms, we estimated

p(n + 1) = λpp(n) + (1 − λp)[y1(n) − y2(n)]2,

where 0 ≪ λp < 1 is a forgetting factor, and used as step-sizes
µ̄η = µ̃η/(ε+p(n)) for (3), whereε > 0 is a regularization constant,
and ¯̄µη = µ̃η/(ε+

√
p(n)) for (18). The algorithm (3) withµη = µ̄η

is called power-normalized LMS (PN) and the algorithm (18) with
µ̃η = ¯̄µη is called normalized signed regressor LMS (NSR).

VI. SIMULATIONS

We consider a system identification application with the initial
optimal solution formed withM = 7 independent random values
between 0 and 1, and given by

w
T

o (0)=[+0.90 −0.54 +0.21 −0.03 +0.78 +0.52 −0.09] .

The input signalu(n) is generated with a first-order autoregressive
model, whose transfer function is

√
1 − α2/(1 − αz−1), with α =

0.8. This model is fed with an i.i.d. Gaussian random process, whose
variance is such thatTr(R) = 1. Moreover, additive i.i.d. noisev(n)
with varianceσ2

v = 0.01 is added to form the desired signal. To
obtain the results shown in Figs. 4 and 5, the algorithm (3) is used
to update the mixing parameterη(n).

Fig. 4 shows the EMSE and mixing parameter along the iterations
for the combination of two RLS filters in the stationary case. The
curves were estimated from the ensemble-average of 500 independent
runs and filtered by a moving-average filter with 512 coefficients. The
dashed lines in the figure show the steady-state predicted values ofζ
for each algorithm and their combination. Since the component filters
are adapted with close forgetting factors, i.e.,(1−λ2) = 0.9(1−λ1),
the affine combination provides an EMSE reduction of approximately
3 dB as predicted by the analysis. In this case, the mixing parameter
tends to -7.55, which also agrees with the analysis.
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Fig. 4. (a) Theoretical and experimental EMSE for the combination of two
RLS filters withλ1 = 0.9, λ2 = 0.91, andµη = 1 (b) Ensemble-average of
η(n), and theoretical value of̄ηo(∞); ensemble-average of 500 independent
runs; the theoretical values are indicated by dashed lines.



To illustrate the accuracy of the analysis in a nonstationary
environment, we show in Fig. 5 the theoretical and experimental
values of the ratioζ/min{ζ1, ζ2}, as a function ofδ = µ2/µ1 with
fixed µ1 = 0.1, considering the combination of two LMS filters
and Q = σ2

qI. As predicted by the expressions of Table IV, the
largest EMSE reduction occurs whenTr(Q) = µ1µ2σ

2
vTr(R) or

when δ ≈ 1, and is limited in both cases by 3 dB. Moreover, for
each curve of Fig. 5, there is a value ofδ for which ζ = min{ζ1, ζ2}.
At this point, the combination performs as its best component, which
is adapted with the optimum step-sizeµo [4, p. 369]. Although the
affine combination can provide an EMSE reduction in relation to
its components, its minimum EMSE coincides with that of LMS
with the optimum step-sizeµo. These properties can be exploited
to improve the tracking capability of adaptive filters, extending the
convex combination of variable step LMS algorithms (CVS-LMS)
proposed in [3] to the affine combinations considered here (we intend
to pursue this matter elsewhere).
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Fig. 5. Theoretical and experimental values ofζ/min{ζi}, i = 1, 2 for
the combination of two LMS filters withµ1 = 0.1, µ2 = δµ1, µη = 1,
and Q = σ2

qI. The experimental values are indicated by©, �, and ▽;
ensemble-average of 50 independent runs.

Fig. 6 shows the EMSE and mixing parameter for the combination
of two LMS filters. We consider a system identification application
with the initial optimal solution formed withM = 10 independent
Gaussian random values with zero mean and unit variance. The
optimum solution is kept constant, except for a change atn = 75000
(by adding a vector of random Gaussian variables with variance 0.01).
The input signalu(n) is generated as before (again withα = 0.8).
The experimental curves were estimated from the ensemble-average
of 100 independent runs. The mixing parameter is adapted with
the PN and NSR algorithms. Both algorithms provide an adequate
behavior for the combination, withE{η(n)} following η̄o(n) closely.
As predicted by the analysis, the combined scheme attains the lower
stationary EMSE of theµ2-LMS and presents the faster convergence
of the µ1-LMS. The variance of the mixing parameter is usually
larger for NSR than for PN. However, the mixing parameter adapted
with PN may exhibit peaks at the beginning and when the optimum
solution changes. This effect is less pronounced when NSR is used.
In addition, NSR is less sensitive to variations in the simulation
parameters (such as input and noise power, step-sizes, regularization).

VII. C ONCLUSION

We extended the analysis of [1] and [12] to allow for colored
inputs and nonstationary environments, considering affine combina-
tions based on LMS, NLMS, and RLS algorithms. Good agreement
between analytical and simulation results is always observed. A
simple geometrical interpretation of the affine combination allowed
us to explain its behavior in different situations, including when
the component filters are adapted with close step-sizes or forgetting
factors. Furthermore, we proposed and analysed two new normalized
algorithms for updating the mixing parameter. The theoretical model
explains situations in which the adaptive combination algorithms may
achieve good performance.
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Fig. 6. (a) Experimental and theoretical EMSE for the combination of
two LMS filters with µ1 = 10−2, µ2 = 10−3, using PN (̃µη = 0.01,
ε = 6 × 10−4, λp = 0.99) or NSR (̃µη = 0.0125, ε = 0.1, λp = 0.99);
(b) Ensemble-average ofη(n) and η̄o(n); M = 10, σ2

v = 10−3, correlated
regressor withvar{u(n)} = 1 and α = 0.8, ensemble-average of 100
independent runs.
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[3] J. Arenas-Garćıa, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean-square
performance of a convex combination of two adaptive filters,”IEEE
Trans. Signal Processing, vol. 54, pp. 1078–1090, Mar. 2006.

[4] A. H. Sayed,Fundamentals of Adaptive Filtering. John Wiley & Sons,
NJ, 2003.

[5] M. T. M. Silva and V. H. Nascimento, “Improving the trackingcapa-
bility of adaptive filters via convex combination,”IEEE Trans. Signal
Processing, vol. 56, pp. 3137–3149, Jul. 2008.

[6] E. Eleftheriou and D. D. Falconer, “Tracking propertiesand steady-state
performance of RLS adaptive filter algorithms,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 1097–1110, Oct. 1986.

[7] D. T. M. Slock, “On the convergence behavior of the LMS andthe
normalized LMS algorithms,”IEEE Trans. Signal Processing, vol. 41,
pp. 2811–2825, Sep. 1993.

[8] E. Eweda, “Comparison of RLS, LMS and sign algorithms for track-
ing randomly time-varying channels,”IEEE Trans. Signal Processing,
vol. 42, pp. 2937–2944, Nov. 1994.

[9] S. Haykin,Adaptive Filter Theory, 4th ed. Prentice Hall, Upper Saddle
River, 2001.

[10] N. R. Yousef and A. H. Sayed, “A unified approach to the steady-state
and tracking analyses of adaptive filters,”IEEE Trans. Signal Processing,
vol. 49, pp. 314–324, Feb. 2001.

[11] M. C. Costa and J. C. M. Bermudez, “An improved model for the
normalized LMS algorithm with gaussian inputs and large number of
coefficients,” inProc. of ICASSP’2002, vol. II. IEEE, 2002, pp. 1385–
1388.

[12] J. C. M. Bermudez, N. J. Bershad, and J.-Y. Tourneret, “Anaffine
combination of two NLMS adaptive filters - transient mean-square
analysis,” in Proc. of 42th Asilomar Conf. on Signals, Systems &
Computers, 2008.

[13] N. J. Bershad, “Analysis of the normalized LMS algorithmwith Gaussian
inputs,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34,
pp. 793–806, 1986.

[14] L. Azpicueta-Ruiz, A. Figueiras-Vidal, and J. Arenas-Garcia, “A nor-
malized adaptation scheme for the convex combination of two adaptive
filters,” in Proc. of ICASSP’2008. IEEE, 2008, pp. 3301–3304.


