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Abstract

This work studies the mean-square stability of stochastic gradient algorithms

without resorting to slow adaptation approximations or to the widely used, yet

rarely applicable, independence assumptions. This is achieved by reducing the

study of the mean-square convergence of an adaptive filter to the study of the

exponential stability of a linear time-invariant state equation. The size of the

coefficient matrix of the state equation, however, turns out to grow exponentially

fast with the length of the filter so that it becomes computationally infeasible to

manipulate the matrix directly. It is instead shown that the coefficient matrix is

sparse and has structure. By exploiting these two properties, and by applying a

sequence of carefully chosen similarity transformations to the coefficient matrix, an

upper bound on the step-size is found that guarantees stability.

1 Introduction

Consider the following estimation problem. Given a zero-mean scalar sequence
{

y(k)
}

∞

k=0

and another sequence of zero-mean length-M column vectors
{

xk

}

∞

k=0
, we seek a length-

M column vector
{

w∗

}

that solves

min
w

E
(

y(k)− x
T
k w

)2
.

where E is the expectation operator, k is the time index, and T is the transposition
operator. The sequence

{

y(k)
}

is called the desired sequence and
{

xk

}

is the input or
regressor sequence; the sequences {y(k),x(k)} are assumed to be jointly stationary. The
error sequence is defined by v(k) = y(k) − x

T
k w∗ and its variance (also the minimum

cost) is denoted by σ2
v ; we also refer to {v(k)} as the noise sequence.

The optimal solution w∗ can be fully characterized in terms of the second-order statis-
tics of the random processes {y(k),x(k)}. In adaptive implementations of the estimator
w∗, however, these statistics are often replaced by instantaneous approximations. In
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particular, the famed LMS algorithm (e.g., [1, 2, 3]) computes successive approximations,
wk, to w∗ through the recurrence relation

wk+1 = wk + µxk

(

y(k)− x
T
k wk

)

, with initial condition w0 , (1)

where the design parameter µ in (1) is known as the step-size. Two important measures
of performance for the LMS algorithm are the errors

w̃k
∆
= w∗ −wk, e(k)

∆
= y(k)− x

T
k wk. (2)

Ideally, we would like the adaptive algorithm (1) to reduce e(k)2 from its initial value,
and to keep E e(k)2 close to σ2

v in steady-state (or, equivalently, w̃k close to 0).

1.1 Performance with Slow Adaptation

The performance of an adaptive filter is often measured in terms of the variance E e(k)2,
also known as the mean-square error or MSE for short, and by the trace of the covariance
matrix of w̃k, Tr(E w̃kw̃

T
k ), also called the mean-square deviation or MSD. Exact expres-

sions for these measures can be hard to obtain in a general setting, which is in part due
to the fact that adaptive systems are naturally time-variant and nonlinear. Nevertheless,
there is a vast literature on the analysis of the performance of the LMS algorithm and
its variants, which have been motivated by the large range of applications in which these
algorithms have been successful. In most of these analyses, simplifying assumptions on
the data and the model are imposed in order to make the derivation and the results more
tractable.

The most important of these simplifying conditions are known collectively as the
independence assumptions, which appear in many of the earlier works on LMS and in
several recent ones (see, e.g., [1, 4, 5, 6]). Basically, one assumes the following.

I-1. The zero-mean sequences
{

y(k), xk

}

are related via a linear model of the form

y(k) = x
T
k w∗ + v(k) (3)

for some unknown w∗, and where v(k) is zero-mean with variance σ2
v . In addition, it is

assumed that the sequences
{

xk

}

and
{

v(k)
}

are independent and identically distributed,

and that they are also independent of each other.

In applications, the assumption of independent regressor vectors is seldom satisfied.
For example, in channel equalization, the vectors xk are formed from a delay line (see
(6)), thus xn shares all but one of the elements of xn+1 so that {xn,xn+1} are clearly
dependent.

What makes the results obtained with the independence analysis still useful is a result
first obtained in [7], showing that when the step-size is infinitesimally small (µ ≈ 0), the
results obtained using the independence assumptions are good approximations for the
actual performance of the LMS algorithm. The conclusions of [7] were later extended to
more general settings (but still restricted to the LMS algorithm) in [8, 9, 10]. Similar
results for other adaptive algorithms can be obtained using averaging theory and/or the
ODE method (e.g., [11, 12, 13, 14]).



1.2 Performance with Faster Adaptation

The above works give a good understanding of the behavior of the LMS algorithm when
the step-size µ is sufficiently small (without in fact quantifying how small µ should be).
However, from the recursion (1) one can deduce that the rate of convergence of the
algorithm is greatly affected by the choice of the step-size. An infinitesimal step-size
(µ ≈ 0) implies that the weight estimates wk change very slowly at each iteration,
and consequently the convergence rate is small. This can be particularly annoying in
nonstationary environments, where very slow convergence may not allow the algorithm
to properly track time variations in signal statistics. A designer might then wish to
employ larger step-sizes to improve the convergence speed of the algorithm, especially
during the initial convergence phase (before steady-state is achieved).

The following questions are therefore relevant and remain largely unanswered.

(i) How small must the step-size be so that the independence-based approximations
are still reasonable? Also, for a given value of the step-size, what is the order of
magnitude of the error incurred by using these approximations ?

(ii) What is the real performance of the adaptive algorithm when the step-size is not
small ?

(iii) How large the step-size can get without compromising filter (mean-square) stabil-
ity?

(iv) What is the step-size that gives the fastest convergence rate ?

For step-sizes that are not infinitesimally small, there are essentially no results in the
literature that predict or confirm the behavior/stability of the LMS algorithm and its
variants (see, e.g., the statement in [5] regarding this issue).

The purpose of this paper is to propose a method to study the stability of the LMS

algorithm, without relying on the independence assumptions and without assuming be-
forehand that the step-size is vanishingly small. Since an exact expression for the largest
step-size (say, µmax) that addresses point (iii) above is difficult to obtain, we instead
derive an upper bound on how large the step-size µ can be for mean-square stability
(say, µ < µ̄). While the bound µ̄ is not tight (i.e., close to µmax) at this stage of our
analysis, it is, to the authors’ knowledge, the first such bound and is also applicable to a
generic distribution of the input sequence (and in particular, it even allows for a normally
distributed input). The significance of this work is therefore in developing a framework
that studies filter stability for step-sizes that are not necessarily infinitesimally small. We
are currently pursuing extensions of our analysis in order to obtain tighter upper bounds
and to handle larger step-sizes.

Our discussion builds upon an approach originally suggested in [15], and which will
lead naturally to a state-space framework. Basically, the arguments we employ in the
future sections can be summarized as follows. We first find a dynamic state-space model
for the evolution of the covariance matrix E w̃kw̃

T
k ; the states of this model will consist

of the entries of the covariance matrix in addition to several other relevant quantities.
The state equation will be of the form

Γk+1 = ΦΓk + b, (4)

where b is a constant vector, Γk is the state vector, and Φ is a constant matrix. With
this model, the largest step-size (µmax) that guarantees stable performance of the LMS



filter (and therefore answers point (iii) above) will be the largest µ for which Φ is still a
stable matrix, i.e.,

µmax
∆
= sup{µ such that ρ(Φ) < 1} , (5)

where ρ(Φ) denotes the spectral radius of Φ, i.e., ρ(Φ) = maxi

∣

∣λi

(

Φ)
∣

∣.
Unfortunately, determining µmax is not a trivial task for two main reasons. First,

the eigenvalues of the matrix Φ depend nonlinearly on the step size µ and, secondly,
the dimension of Φ grows extremely fast with the filter length (for example, for M = 6
the matrix has size 28, 181× 28, 181). It is therefore computationally infeasible to work
directly with Φ; the approach is feasible only for relatively small filter lengths. For this
reason, reference [15] considered only the case M = 2 (i.e., filter with two taps), while
reference [16] used the same method for orders up to M = 6 coupled with a numerical
procedure (viz., the power method) for the evaluation of the eigenvalues of Φ. For larger
filter lengths, we need to develop an alternative procedure for the estimation of µmax that
does not work directly with the matrix Φ.

The approach we propose in this paper is based on the observation that the matrix
Φ, although of large dimensions, is both sparse and structured. These two properties
combined can be used to derive a bound on the step-size for stable performance. [More-
over, the bound will be such that it is not a function of the maximum value that ‖xk‖
can attain; the result will depend only on the distribution of the input sequence, and on
average quantities.]

2 Structure of the State-Space Model

In the sequel we assume that the regressors
{

xk

}

arise from a tap-delay line, say

xk =
[

a(k −M + 1) a(k −M + 2) . . . a(k)
]T

. (6)

where the input sequence
{

a(k)
}

is assumed iid, with zero mean, and moments σp =
E a(k)p, for p ≥ 1. The assumption of iid

{

a(k)
}

implies that the variable a(k) is
independent of the current weight error vector, w̃k. We also assume that

{

y(k), xk

}

are
related via a linear model of the form (3), with a zero-mean iid noise sequence v(k) of
variance σ2

v and that is independent of the input sequence. Using the LMS update (1)
and the model (3), we find that the error equation for LMS is given by

w̃k+1 = (I − µxkx
T
k )w̃k − µxkv(k) . (7)

We are interested in conditions under which the MSD is bounded (i.e., conditions
under which Tr

(

E w̃kw̃
T
k

)

forms a bounded sequence). This requires that we study the
stability of the matrix Φ in (4) and determine conditions under which its eigenvalues
are strictly inside the unit disc. It turns out that, under the above conditions, the noise
sequence

{

v(k)
}

does not influence the stability of the recursion (4) since it does not
enter Φ and only affects the driving term b. For this reason, in the remainder of the
paper we can assume v(k) ≡ 0.

2.1 Obtaining the Linear Model: An Example

We present briefly the main steps of the derivation of the state-space model (4) for M = 2.
Similar arguments hold for larger values of M .



Recall that our purpose is to determine a recursion that describes the evolution of the
entries of the covariance matrix E w̃kw̃

T
k (whose trace determines the MSD). We denote

these entries by

E w̃kw̃
T
k

∆
=

[

γ1(k) γ3(k)
γ3(k) γ2(k)

]

.

The variables {γi(k)} will be some of the elements in the state vector Γk. This is because
recursions for the {γi(k)} will require that we also propagate other quantities. We do
not show how to find all the variables in Γk here. This example only explains why other
variables are necessary, and shows how to obtain a recursion for one of them. Similar
derivations can be used for the other variables.

Let {w̃k, 1, w̃k, 2} denote the entries of the error w̃k, i.e., w̃k =
[

w̃k, 1 w̃k, 2

]T
. Now using

the error equation (7), and the the assumptions on a(k), we find that

γ1(k + 1) = γ1(k)− 2µ E
(

a(k − 1)2w̃2
k, 1

)

+ µ2 E
(

a(k − 1)4w̃2
k, 1

)

+ µ2σ2 E
(

a(k − 1)2w̃2
k, 2

)

.

The right-hand side of this recursion depends on the additional terms

E
(

a(k − 1)2w̃2
k, 1

)

, E
(

a(k − 1)4w̃2
k, 1

)

, E
(

a(k − 1)2w̃2
k, 2

)

, and E
(

a(k − 1)2w̃k, 1w̃k, 2

)

.

Hence, a complete recursion for γ1(k) requires that we also determine recursions for these
quantities. If we denote the above terms in succession by {γ4(k), γ5(k), γ6(k), γ7(k)}, then,
for example, the recursion that results for γ4(k + 1) will be

γ4(k + 1) = σ2γ1(k)− 2µσ2γ4(k) + σ2γ5(k) + µ2σ4γ6(k).

The state vector in this case will therefore be of dimension 7, Γk = [ γ1(k) ... γ7(k) ]T . This
procedure can in principle be repeated for any filter order M (and, in fact, as shown in
[16], similar state-space models can be obtained even in situations where the a(k) form
a correlated sequence). However, the number of state variables will grow exponentially
fast with the filter order, which makes it infeasible to pursue this line of reasoning for
larger filter lengths (larger than 7 for example). Instead we focus on the structure of the
coefficient matrix Φ.

2.2 Structure of Φ

As we mentioned above, a major drawback of the state-space model (4) is that its order
(the size of Φ) grows exponentially fast with the filter length M . In this section, we
highlight several structural properties of Φ and use them in the next section to study the
stability of the LMS recursion without having to form any large matrices.

Indeed, it can be shown that Φ is highly sparse and has considerable structure. The
sparseness of Φ was used in [16] to obtain approximations for its largest eigenvalue;
however, the exponential growth of Φ limits the use of this technique to filters of smaller
orders (say up to 6 or 7). To work with larger filter lengths, it is necessary to study the
structure of Φ with more detail. It can be shown that Φ has the following properties
(some are evident from the case M = 2 above, others only arise for larger values of M):

1. The number of nonzero elements in each row of Φ does not exceed (M + 1)2.

2. The number of rows of Φ is finite for finite M .



3. It is possible to select a small number of rows of Φ (no more than 16M−12 different
rows) such that all other rows of Φ are permutations of these rows. Consider the
following contrived example,

Φ =

















1 −2µ 0 0 µ2σ4 0 0 0 0
0 0 1 0 µ2σ4 0 0 0 −2µ
σ2 0 −2µσ2 0 µ2σ6 0 0 0 0
0 −2µσ2 0 0 0 0 µ2σ6 σ2 0
0 1 0 −2µ 0 µ2σ4 0 0 0
0 0 0 0 0 1 −2µ µ2σ4 0

















The matrix Φ above has two different classes of rows. Rows numbers 1, 2, 5, and 6
form one class, and rows 3 and 4 form the other. In each class, the entries appearing
in all rows are the same, although the order is different. For example, the nonzero
entries in row 1 are A1 = {1,−2µ, µ2σ4}. The nonzero entries of rows 2, 5, and
6 also belong to A1. Similarly, the elements of rows 3 and 4 belong to the set
A2 = {σ2,−2µσ2, µ

2σ6}. We name the sets A1 and A2 the coefficient sets of Φ, and
we say that any two rows belonging to the same class are p-equivalent (i.e., they
are permutations of each other).

The real matrix Φ has a similar structure; all its rows take their nonzero entries
from one of (at most) 16M − 12 different coefficient sets. The coefficient sets of Φ
are listed below for M > 2 (the integer p lies in the interval 1 ≤ p ≤ 4(M − 1) –
we can also specify the number of times each term will appear on a given row):

A1 =
{

1, −2µ, µ2σ2, 2µ2, µ2, −2µσ1, 2µ2σ1

}

,

A2 =
{

1− 2µσ2 + µ2σ4, −2µ
(

σ1 − µσ3

)

, µ2σ2

}

A3 =
{

1, −µ, µ2, −µσ1, 2µ2σ1, µ2σ2

}

A4 =
{

1− µσ2, −µ(1− 2µσ2), −µσ1, µ2σ1, µ2σ3

}

A1,p =
{

σp, −2µσp, µ2σp+2, 2µ2σp, µ2σp, −2µσp+1, 2µ2σp+1

}

A2,p =
{

σp − 2µσp+2 + µ2σp+4, −2µ(σp+1 − σp+3), µ2σp+2

}

A3,p =
{

σp, −µσp, µ2σp, −µσp+1, 2µ2σp+1, µ2σp+2

}

A4,p =
{

σp − µσp+2, −µ(σp − 2µσp+2), −µσp+1, µ2σp+1, µ2σp+3

}

.

4. Those rows of Φ that have unity entries can in fact have only a single unity entry.
Moreover, some of the rows of Φ have ones on the main diagonal and these are
generated only by the coefficient sets {A1,A3}. For each such row with a unity
entry on the main diagonal, there exists a single row from either sets {A1,2,A3,2}
(i.e., with p = 2) with entries in the same column positions and which can be
obtained from it by the following substitutions (compare the elements in the sets
A1 and A1,p, as well as A3 and A3,p):

1← σ2 , σ1 ← σ3 , σ2 ← σ4 .

5. Pick a row with unity on its main diagonal and the corresponding row with the
σ2 entry in the same column position as the one on the diagonal. We can always



associate with these two rows, by means of suitable permutations, a square block
whose size can vary from 2 up to M and which has the following generic form
(shown here for sizes 4 and 3, and denoted by B4 and B3, respectively):

B4
∆
=









1 −2µ 0 0
0 0 1 0
0 0 0 1
σ2 −2µσ2 0 0









, B3
∆
=





1 −2µ 0
0 0 1
σ2 −2µσ2 0



 . (8)

The relevant characteristic of each block is the position of the 1’s: one is on the
main diagonal while the others are on the upper diagonal.

3 Stability of the LMS Filter

Now that several properties of Φ have been highlighted, we return to the problem of
deriving a bound for the step-size that guarantees a uniformly bounded covariance matrix
E w̃kw̃

T
k (cf. (5)).

As mentioned before, the eigenvalues of Φ depend nonlinearly on µ and, hence, it is
mathematically intractable to derive an expression for the spectral radius of Φ in terms
of µ. For this reason, we shall proceed via an alternative route. For any M ×M square
matrix A, it holds that its spectral radius is upper bounded by its ∞-norm [18], i.e.,
ρ(A) ≤ ‖A‖∞, where ‖A‖∞ is the maximum absolute row sum of A. Therefore, if we can
find a µ that guarantees ‖Φ(µ)‖∞ < 1, then it also guarantees ρ

(

Φ(µ)
)

< 1.
We mentioned in the previous section that the rows of Φ belong to 16M − 12 classes

of p-equivalent rows, and that each row has only O(M 2) nonzero entries. Hence, in
principle, ‖Φ‖∞ can be evaluated with little effort. Unfortunately, however, several rows
of Φ contain the element

{

1
}

, which makes ‖Φ‖∞ always larger than 1 regardless of µ.
To overcome this difficulty, we propose to work with a modified matrix Φ that has the

same spectral radius as the original Φ but smaller ∞-norm. We achieve this by showing
how to construct a similarity transformation T such that there exists a µ̄ > 0 satisfying

‖T−1Φ(µ)T‖∞ < 1 for all µ < µ̄. (9)

This is useful because, in view of the fact that similarity transformations preserve eigen-
values, the above µ̄ will also guarantee ρ

(

Φ(µ)
)

< 1 for all µ < µ̄.
Special care must be taken while constructing the similarity transformation in order

to preserve as much structure as possible and in order to keep the∞-norm of T−1ΦM(µ)T
easily computable. We cannot reproduce here all the details involved in the construction
procedure. We only highlight the main steps.

We construct T as a sequence of elementary similarity transformations Tk. Each one
is defined once the special blocks Bk that we mentioned in (8) above have been identified.
So consider a generic block Bk, which we regard as the leading block in a submatrix with
k rows and multiple columns, say (for a block of size 4)









1 −2µ 0 0 −2µ 0 0 0 0 0 . . .

0 0 1 0 0 −2µ −2µ 0 0 0 . . .

0 0 0 1 0 0 0 0 −2µ −2µ . . .
σ2 −2µσ2 0 0 −2µσ2 0 0 0 0 0 . . .









Recall that each block Bk has a row with a 1 on the main diagonal and k − 2 rows with
a 1 in the upper diagonal. Our task is to replace all the 1’s with smaller terms. This can
be achieved by a similarity transformation Tk that is defined as follows:



1) Rows that have a 1 on the main diagonal are replaced by rows that have 1− 2µσ2

on the diagonal. All other elements are O(µ2).

2) Rows that have a 1 in off-diagonal positions are replaced by rows that have O(µ1/3)
on these positions. All other elements will be O(µ2/3).

For example, the above matrix will become after the transformation Tk,












1− 2µσ2 0 0 0 −4µ2σ2 0 0 0 0 0 . . .

0 0 µ1/3 0 0 −2µ2/3 −2µ2/3 0 0 0 . . .

0 0 0 µ1/3 0 0 0 0 −2µ −2µ . . .

µ−1/3σ2 0 2µ2/3σ2 0 0 0 0 0 0 . . .













Once all such transformations are carried out, the absolute row sum of each row will be
strictly less than one. It then becomes possible to compute an upper bound µ̄ ≤ µmax

by seeking the largest value of µ that results in an ∞−norm for the transformed matrix
‖T−1Φ(µ̄)T‖∞ that is less than one. This step leads to the following optimization problem
(with 1 ≤ p ≤ 4(M − 1)),

µ̄ = max (µaµf ) (10)

subject to the scalars {µf , µa} satisfying the inequalities (11) to (16) below:
∣

∣1− 2µfµaσ2

∣

∣ + (M − 1)2µ2
f

∣

∣1− 2µfµaσ2

∣

∣ + µ2
f

∣

∣µaσ2 − 2µfµ
2
aσ4

∣

∣ +

+2(M − 2)(M − 1)2µ2
f + 2(M − 2)(M + 1)µ2

fµaσ2 + (M − 2)(M − 1)3µ3
f +

+5(M − 2)(M − 1)µ3
fµaσ2 + 2(M − 2)µ3

fµ
3/2
a σ3 < 1,

(11)

∣

∣1− 2µfµaσ2

∣

∣ + 2(M − 1)(M 2 − 3M + 1)µ2
f +

+2(M 2 −M − 3)µ2
fµaσ2 + (M − 1)2(M2 − 3M + 1)µ3

f +

+(5M 2 − 15M + 9)µ3
fµaσ2 + 2(M − 2)µ3

fµ
3/2
a σ3 < 1.

(12)

µ
1

3(M−2)

f + 2(M − 1)µ
2
3
f + (M − 1)2µ

5
6
f + µ

5
6
f µaσ2 < 1, (13)

∣

∣1− 2µfµaσ2 + µ2
fµ

2
aσ4

∣

∣ + (M − 1)2µ2
fµaσ2 + 2(M − 1)µ2

fµ
3/2
a σ3 < 1, (14)

µp/2
a σp + (M 2 − 3M + 2)µfµ

p/2
a σp + (M − 1)2µ2

fµ
p/2
a σp +

+2µfµ
(p+1)/2
a σp+1 + 2(M − 1)µ2

fµ
(p+1)/2
a σp+1 + µ2

fµ
(p+2)/2
a σp+2 < µ

1
3
f ,

(15)

∣

∣µp/2
a σp − 2µfµ

(p+2)/2
a σp+2 + µ2

fµ
(p+4)/2
a σp+4

∣

∣ + (M − 1)2µ2
fµ

(p+2)/2
a σp+2 +

+2(M − 1)µ2
fµ

(p+3)/2
a σp+3 < 1

(16)

The solid curve in Figure 1 shows a plot of the solution µ̄ of (10) for a sequence
{a(k)} that is normally distributed with σ2 = 0.01. The rate of decay of µ̄ is dependent
on the signal distribution and is proportional to 1/M 5 in this example, as indicated by
the broken line.

While a tighter bound for µ̄ that decays slower with M can be obtained by careful
selection of more specialized similarity transformations Tk, the purpose of this work has
been to suggest a framework for the derivation of such bounds and for the stability
analysis of adaptive schemes without prior assumption of vanishingly small step-sizes.
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Figure 1: A plot of µ̄ versus filter size M for a Gaussian distribution.

4 Some Concluding Remarks

There are still several issues that remain to be addressed. These include weakening the
assumptions on {a(k)} (such as allowing for correlated input sequence), obtaining a more
relaxed bound on the step-size (one that decreases slower with M), and weakening the
condition on the noise {v(k)}. These issues are currently under investigation.

Another issue of interest and which is discussed in the companion article [17] is the
following. Once an analysis is performed on the expected behavior of an adaptive scheme
(as we did above), it is common in practice to confirm the results by means of simula-
tions by generating so-called ensemble-average learning curves. These curves are usually
obtained by averaging over no more than 100-200 repeated experiments and they provide
approximations for the evolution of the error measures E e(k)2 or E ‖w̃k‖

2 as a function
of time. It has been observed in practice that these averaged curves tend to match the-
oretical results reasonably well for sufficiently small step-sizes and that, therefore, they
tend to provide a good approximation for the expected performance of an adaptive filter.

For larger step-sizes, however, we observed that care must be taken in trying to
validate or predict the performance of an adaptive scheme by means of ensemble-average
learning curves. It can be shown that, for larger µ, the number of simulations that
must be performed in order to obtain a good approximation to E e(k)2 or E ‖w̃k‖

2 can
be of the order of tens or hundreds of thousands, depending on the distribution of the
input sequence. A smaller number of simulations can lead to erroneous or deceptive
conclusions. An analytical explanation and more details on this effect are given in [17].
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