IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JUI2008 1

Improving the tracking capability of adaptive filters
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Abstract

As is well known, Hessian-based adaptive filters (such asrelearsive-least squares algorithm — RLS, for
supervised adaptive filtering, or the Shalvi-Weinsteinoathm — SWA, for blind equalization) converge much
faster than gradient-based algorithms (such as the leaatHsquares algorithm — LMS, or the constant-modulus
algorithm — CMA). However, when the problem is tracking adivariant filter, the issue is not so clear-cut: there
are environments for which each family presents betterop@dince. Given this, we propose the use of a convex
combination of algorithms of different families to obtain algorithm with superior tracking capability. We show
the potential of this combination and provide a unified tleéioal model for the steady-state excess mean-square
error for convex combinations of gradient- and Hessiarebasgorithms, assuming a random-walk model for the
parameter variations. The proposed model is valid for @lyms of the same or different families, and for supervised

(LMS and RLS) or blind (CMA and SWA) algorithms.

Index Terms

Adaptive filters, adaptive equalizers, convex combinatioacking, least mean square methods, recursive esti-

mation, unsupervised learning.

. INTRODUCTION

HEN choosing an adaptive algorithm for a given applicatiore of the important points to be considered
is the algorithm’s ability to track variations in the stéitis of the signals of interest. This is especially
important in mobile communications [1], and in applicatothat demand long filters, such as acoustic echo

cancellation [2].
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There are two standard approaches to adaptive filtering:gratiased, such as the least-mean-squares algorithm,
LMS; and Hessian-based, such as the recursive least-squgoeishan, RLS. Of these two, the latter, given its use
of estimates of the Hessian of the cost function being miréahj converges at a much faster rate than the former,
as is well-known [3], [4]. However, Eweda showed in [5] that flee tracking of time-variant parameters, LMS may
in fact outperform RLS, depending on the statistics of theasgpr and desired signals. A similar behavior was
observed in blind algorithms for channel equalization: gnadient-based constant-modulus algorithm (CMA) [6],
[7] has a considerably slower convergence than the Hessiaed Shalvi-Weinstein algorithm (SWA) [8]. Again, as
in the case of LMS and RLS, it was shown in [9] that the trackingabdjties of CMA and SWA depend heavily

on the statistics of the input signals, and CMA may outpenf@WA, depending on the environment.

In this paper we use the observations of Eweda and [9], togetitle the convex combination of adaptive filters
proposed in [10] and further extended and analyzed respécin [11] and [12], to take advantage of the different
tracking capabilities of LMS and RLS (resp., CMA and SWA) toarat supervised (resp., blind) algorithms with

superior tracking performance.

The idea of combining the outputs of several different inaelesmtly-run adaptive algorithms to achieve better
performance than that of a single filter is not new. It appdyemas first proposed in [13], and latter improved in
[14], [15]. Similar ideas have also been used in the inforamatheory literature, see, e.g., [16]. The algorithms
proposed in [13]-[15] are based on a Bayesian argument, @mstract an overall (combined) filter through a linear
combination of the outputs of several independent adafitiees. The weights are the posteriori probabilities that
the underlying models used to describe each individualritlgo are “true”. Since the weights add up to one, in a
sense these first papers also proposed “convex” combinatifomigiorithms. The method of [12] is receiving more
attention due to its relative simplicity and the proof tha¢ tombination is universal, i.e., the combined estimate

is at least as good as the best of the component filters in sttathy; for stationary inputs.

Previous works on convex combinations of adaptive filters ipasstricted themselves to combinations of filters
of the same families, i.e, two LMS [11], [12], [17], two RLS [1ai two CMA [18] filters with different step-sizes
or forgetting factors. A combination of two filters based offedtent cost-functions (but both gradient-based) was
proposed in [19], combining normalized LMS and normalizeghdiMS to obtain an algorithm with improved
robustness without the slow convergence behavior of sigisLMsing a different combination rule, combinations
of Kalman or RLS filters were proposed, using the different cioiaion rule proposed in [14], [15] (but the
combination rule also allows for the use of other algorithiausd for the use of filters with a different number
of taps). It should be noted that theoretical models (apprations for the overall filter's steady-state excess
mean-square error) are available in the literature onlytf@ combination of two LMS algorithms [12], [17].

However, the possibility of extension of these models tfedint combinations of algorithms was already indicated
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in [17] and [12]. The proof in [12] that the combination is uaigal also applies to different choices of algorithms.

The present paper extends previous results in four ways:r@poging the combination alpervised algorithms
of different families to take advantage of their differergdking capabilities; (2) extending this result alsdotind
algorithms of different families; (3) providing theoragicmodels (in a unified way) for the steady-state mean-
square error for combinations of filters of the same or difiefamilies, assuming a random-walk model for the
parameter variations; and (4) providing theoretical medel combinations of blind algorithms of the same or
different families. To the best of our knowledge, all these aovel contributions. In particular, the models for
the combinations of two RLS, two CMA or two SWA filters are also n@msults. For combinations of filters of
different families, the results presented here are morerate than those we published as conference papers, in
[20] (supervised filters) and [21] (blind filters). We also exdethese previous results both by providing a unified
analysis, which is valid for combinations of filters of the ®aor of different families, and for supervised or blind
algorithms. In this sense, the analysis provided here @sovers the results for the combination of two LMS
filters, presented in [12]. Unlike this reference, here we thgetraditional analysis method, where one computes
a recursion for the autocorrelation matrix of the weightbewector of a filter, as opposed to the feedback method
of [3]. In passing, we should add that the analysis for bliddive filters using the traditional method that we
present here is also novel, and it gives the same resultgebtasing the feedback method for CMA in [22]-[24]
and for SWA in [9].

In the remainder of this section we provide a few examplesdtvate the combination of filters of two different
families, both for supervised (combination of one RLS witledrMS) and for blind algorithms (combination of

one SWA with one CMA).

A. Introductory simulations

In the supervised case, we simulate the identification of &-trariant channel (Rayleigh fading channel) with
5 coefficients [3, p. 401]. The parameteysy, 1, anda™, which control the adaptive filters and the combination
algorithm, are described in Section Il. Figure 1-(a) showwsesiof one realization of squaredpriori errors for
RLS (A = 0.995), LMS (1 = 0.01), and their convex combination C-RLS-LM${ = 400, o™ = 4). To facilitate
the visualization, the curves were filtered by a moving-ayerfdter with 512 coefficients. The convex combination
performs at least as well as the best of its components, datpeng slightly both of them in some situations. This
behavior can be confirmed by the mixing parameter) shown in Figure 1-(b). When(n) ~ 1, the combination
performs close to RLS, whemn(n) =~ 0, it is close to LMS, and whef < n(n) < 1, the combination tends to be
better than both independent filters.

For the same example, we show in Figure 2 a comparison betwdtnSaLMS, the convex combination of two

LMSs (CLMS), and the robust variable step-size LMS (RVSS-LMS) of [¥#. observe that C-RLS-LMS presents
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better tracking performance than CLMS, and both are better BMASS-LMS. Thus, the convex combination of
one RLS with one LMS can be a better alternative for trackindgperance.

In the blind equalization case, we consider a Rayleigh fadinannel with fast variation (maximum Doppler
spreadfp = 80 Hz) and 3 coefficients [3, p. 401]. Figure 3-(a) shows residaersymbol interference (I1SI) [8]
curves for SWA & = 0.999), CMA (z = 2 x 1073), and their convex combinationu{ = 15, a™ = 4). The
combination usually performs as the best of each comporwrilieer, being slightly better than both of them in
some situations. In this example, the adaptation of thengixiarameter was not fast enough to switch between
filters in a few brief occasions, most notably at the end of tineukation. This happens because the adaptation
rule for the mixing parametef(n) needs some time to identify that a change is necessary. Fg(bgshows the
mixing parameter;(n), which confirms this behavior. Whem(n) ~ 1, the combination performs close to SWA,

whenn(n) ~ 0, it is close to CMA, and whel < n(n) < 1, it can be better than both of its equalizers.

B. Organization of the paper

The paper is organized as follows. In the next section, weritesthe convex combination of two adaptive filters,
for both supervised (RLS and LMS) and blind (SWA and CMA) algarish In Section Ill, the tracking analyses are
presented. Initially, in Section IllI-A, we summarize resutir the tracking analysis of the LMS and RLS algorithms.
Then, in Section 1lI-B, we present the tracking analysis of Cleidd SWA using the traditional method. Finally,
in Section IlI-C, the tracking analysis of the consideredvesncombinations is provided. Comparisons between
analytical and experimental results for the steady-statess mean-square error are shown through simulations in

Section V. Section V provides a summary of the main conclusiointhe paper.

[I. PROBLEM FORMULATION
We focus on the convex combination of two algorithms of thikowaing general class
wi(n) = wi(n — 1) + p; M;(n)u(n)e;(n), 1)
where the subscriptis associated to the first £ 1) or second { = 2) filter of the combinationw;(n) represents
the lengthd/ coefficient vector,p; is a step-sizeM;(n) is a symmetric non-singular matrixy(n) is the input
regressor vector, angl(n) is the estimation error. Many algorithms can be written agliy by proper choices of

pi» M;(n), ande;(n). In this paper, in order to simplify the arguments, we asstimé all quantities are real.

In supervised adaptive filtering,
ei(n) = d(n) —yi(n), ()
wherey;(n) = u”(n)w;(n — 1) is the output of the*® transversal filter and(n) is the desired response. In this

case, a linear regression model holds, that is,

d(n) =u”"(n)we(n — 1) + v(n), (3)
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with w,(n — 1) being the time-variant optimal solution andn) a zero-mean random process with variance
o2 = E{v*(n)}, uncorrelated withu(n) [3, Sec. 6.2.1]. HereE{-} denotes the expectation operation and the
sequences$u(n)} and{v(n)} are assumed stationary. We shall use the common assummior:t) is independent

of u(n) (not only uncorrelated) [3].

In blind equalization, algorithms based on the constantuhwdcost function [6], [7] define;(n) as

ei(n) = [r* =y (n)] yi(n), (4)

wherer® = E{a*(n)}/E{a?(n)} and{a(n)} represents the transmitted sequence. Due to the equieabstween
the constant modulus and Shalvi-Weinstein cost functions/ahn [26], CMA and SWA seek to optimize the same
criterion. Thus, although SWA was originally derived in [8tdligh the minimization of the SW cost function using
empirical cumulants, it can also be interpreted as a cotigtadulus-based algorithm.

The supervised LMS and RLS algorithms and the blind CMA and SWAIeyribe step-sizeg;, the estimation
errorse;(n), and the matriced/!;(n) as in Table I. In this tablel is the M x M identity matrix,0 < \; < 1 is a
forgetting factor, and

7 £ 3E{a*(n)} —r*. ()

For RLS and SWAM;(n) = f{;l(n) is obtained via the matrix inversion lemma [3, Eq. (2.6.4)plagl to
f{i(n), which is an estimate (with forgetting factov;) of the autocorrelation matrix of the input signal, i.e.,
R £ E{u(n)u”(n)}. These matrices are related via

R

E{Ri(n)} = A=

(6)

Although we use the same notation for the LMS and CMA stepssimeTable |, the step-size intervals which
ensure the convergence and stability of such algorithmsliffiexent. For the LMS algorithm, this step-size interval
is well-known in the literature [3], [4], whereas for CMA,dlderivation of this interval remains an open problem.

The convex combination of two adaptive filters proposed in,[[112], and [18] is depicted in Figure 4. Figure 4-
(a) considers supervised filtering and can be used for diffeaapplications, such as system identification, adaptive
equalization, echo or noise cancelation, etc. [3], [4]. Fég-(b) shows a simplified communications system with a
convex combination of two blind equalizers. In this case,gslgnala(n), assumed i.i.d. (independent and identically
distributed) and non Gaussian, is transmitted through &mawn channel, whose model is constituted by an FIR
(finite impulse response) filter and additive white Gaussiaisend-rom the received signaln) and the known
statistical properties of the transmitted signal, thedlkgualizer must mitigate the channel effects and recower th
signala(n) for some delayry.

We also assume that the equalization algorithms are implezden 7'/2-fractionally spaced form, due to its

inherent advantages (see, e.g., [22], [27]-[29] and thereetes therein). This type of implementation is widely
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used in the literature since it ensures perfect equalizdtioa noise-free environment, under certain well-known
conditions. For real data, perfect equalization is acldewben the overall channel-equalizer impulse response is
of the form[o-- 060 -- 0]", whered = £1. In this case, the equalizer reaches the so-called zecfpsolution
andy(n) = da(n — 74). The two possibilities) = 1 or 6 = —1 occur due the fact that constant-modulus-based
algorithms do not solve phase ambiguities introduced bycttenel. Such ambiguities can be corrected by using
differential modulation [1]. Since both solutions give elijugood results, we assume in the next section that the
algorithm is initialized so that it converges to the casé ef 1. Since we are studying its steady-state performance,
this does not imply a restriction in the applicability of a@sults.

In both schemes, the output of the overall filter is givenyty) = n(n)yi(n) + [1 — n(n)]y2(n). The mixing
parametem(n) is modified via an auxiliary variable(n — 1) and a sigmoidal function [11], [12], that is,

1

n(n) = sgmla(n — )] = T——— ey, (7
with a(n) being updated as
a(n) = a(n —1) + paca(n)n(n)[1 —n(n)], (8)
where
ea(n) = e(n)[y1(n) — y2(n)] 9)

ande(n) = n(n)e1(n)+[1—n(n)lez(n). Eg. (8) was obtained in [11], [12] and [18], using a stocltagtadient rule
to minimize the instantaneous MSE cost function for the stiped case and the constant modulus cost function for
the blind case. The auxiliary variabtgn) is used to keep(n) in the interval]0, 1]. A drawback of this scheme is
that a(n) stops updating whenevein) is close to 0 or 1. To avoid this, [12], [18] suggest thét) be restricted
(by simple saturation) to lie inside a symmetric interjyab™, o*]. Thus, a minimum level of adaptation is always
guaranteed [12].
Following [12], in all our simulations we restriet(n) to the above interval, but use a modified mixing variable

nu(n), as described below:

n(n), i la(n)| < ot —e,

Mu(n) =41, if a(n)>at —e,

0, if a(n) < —at +e¢,

wheree is a small constant. This modification tends to improve thegoerénce of the overall algorithm when one

of the component filters performs substantially better thendther [12]. Note that the adaptation rule fefn)

still uses the original, unmodifiegl(n), but the overall output is now given by

Yu(n) = nu(n)y1(n) + [1 = nu(n)]y2(n).
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IIl. TRACKING ANALYSIS

We assume that in a nonstationary environment, the vamiatiahe optimal solutiornw,, follows a random-walk

model [3, p. 359], that is,

Wo(n) = wo(n —1) +q(n). (10)

In this model,q(n) is an i.i.d. vector with positive-definite autocorrelatiomtnix Q = E{q(n)q” (n)}, independent
of the initial conditions{w,(—1),w(—1),a(—1)} and of{u(l)} for all { [3, Sec. 7.4]. In supervised filtering,(n)
is also assumed independent of the desired resppf($g} for all [ < n. In blind equalizationw,(n) represents
the zero-forcing solution and(n) models the channel variation (see assumption A3 below).

One measure of the filter performance is given by the excess-smaare error (EMSE), defined as

¢ £ lim B{eg(n)}, (11)
where
€a(n) = u"(n)w(n —1), (12)
and
wn—1)=ws(n—1)—w(n—1). (13)

Thea priori errore,(n) of the overall scheme can be written as a function oféhgeiori errors of the component

filters, i.e.,

ea(n) = 77u(”)€a,1(n) + [1 - nu(n>]ea,2(n)7 (14)

where e i(n) = u"(n)w;(n — 1) and w;(n — 1) = wo(n — 1) — w;(n — 1), ¢ = 1,2. It is common in the
literature to evaluate the EMSE as

¢ = lim Tr(RS(n—l)), (15)

n—oo

whereTr(A) stands for the trace of matriA and
S(n—1) 2 E{w(n - 1)w"(n —1)}. (16)

This approach is based on the independence assumption betfweesegressor vectar(n) and weight-error vector
w(n —1). This condition is a part of the widely used independenceraptians in adaptive filter theory [4]. It was
shown in [30], for instance, that for LMS-type algorithms awnd $ufficiently small step-sizes, the results obtained
from such independence assumptions tend to match reagonalblthe real filter performance. Furthermore, [31]
argues that it is not necessary f@f(n — 1) to be independent afi(n), but only of u(n)u”(n), which represents

a weaker assumption, since the outer product does not oopitiagise information about(n).
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The main focus of the analysis that follows is the behaviorhaf algorithm in steady-state, i.e., after initial
convergence of the coefficients. Although the optimum weigine time-variant, under the model assumed for their
variation, it is well-known that the EMSE of an adaptive filtepapaches a steady-state value, see, e.g., [3].

It was proved in [12] that the performance of convex combamest of adaptive filters is at least as good as that of
the best of its components in stationary environments.ifwork, we will make the assumption that the adaptation
of n(n) is fast enough, so that, after initial convergence, theallvatgorithm will follow the best component filter
at every instant. The simulations presented in Section I-Avshibat, even when the optimum coefficients change

quite rapidly, this assumption is rarely violated. Notettthee same assumption was implicitly used in [12].

A. Tracking analysis of supervised algorithms

There have been several works in the literature on the ststady-tracking performance of supervised adaptive
algorithms (see, e.g., [3]-[5], [24] and the referenceseing. For sufficiently smallx and (1 — \), analytical
expressions for the EMSE of LMS and RLS algorithms are given mspéy by

(LS _ poyTr(R) ;ru_lTY(Q) (17)
and
(RLS _ op(l = N)M + (; — ) 'Tr(QR) (18)
The ratio between the minimum value Offor these algorithms is given as
Chin _ | MTr(QR) 19)
s =\ THR)TH(Q)

This ratio, obtained in [5], allows us to compare the trackiegformance of LMS and RLS. Clearly, the results of
such comparison depend on the environment, i.e., thereitasigns where RLS has superior tracking capability
compared to LMS, and vice-versa [5]. This is highlighted comsigy three different choices for matr@ [3]-[5]:

() Q is a multiple ofI: the performance of LMS is similar to that of RLS;

(i) Q is a multiple of R: LMS is superior; and
(i) Q is a multiple of R~!: RLS is superior.

B. Tracking analysis of blind equalization algorithms

Analytical expressions for the EMSE of blind equalizationcgithms have been computed in the literature (see,
e.g., [22]-[24], [32], and [9]). Using Lyapunov stabilityn@é averaging analysis, an approximate expression for
the EMSE of CMA was obtained in [32]. Later, [22] and [23] focusad the CMA steady-state performance,
using the feedback analysis. Considering still the feekllmaethod, [9] analyzed the tracking of constant-modulus-

based algorithms (including SWA) in a unified manner. In theuségve present an alternative analysis using the
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traditional method, i.e., we compute the EMSE of CMA and SWA \i&)( In the remainder of this section, we

suppress the subscriptsince we are interested in the analysis of each algorittdivigually.

The steady-state analysis of blind algorithms of the formigl)ased on the following assumptions:

Al.

A2.

A3.

E{a*(n)} =0, k=2m+1, m € N, andy > 0, i.e., a(n) is sub-Gaussian, and the constellation is
symmetric, as is the case for most constellations used itatigpmmunications [3], [8].

The regressor vectan(n) and the weight-error vectow(n — 1) are independent in the steady-state. As
mentioned before, this independence assumption is conymmdd with good results for the analysis of
adaptive algorithms [4].

The signal-to-noise ratio at the input is high, so that — 7;) ~ u”(n)w,(n — 1), i.e., the optimum filter
achieves perfect equalization. However, due to chann&tiam and gradient noise, the equalizer weight vector
w(n — 1) is not equal tow,(n — 1), even in steady-state. Using (13), (12), and the above appation, we

havey(n) = u”(n)w(n — 1) = u”(n)[we(n — 1) — w(n — 1)], that is,
y(n) = a(n —7q) — eq(n). (20)

This approximation was also used in the CMA steady-stateyaealof [22, Sec. IlI-A] and [23]. As in the
cited references, we assume that the filter parameters ail gundition are chosen so that the combined
channel-equalizer response converge$oto o0 - 0]”, with 6 = 1. A similar analysis holds for the other

optimum solution (convergence to a zero-forcing solutidgthw = —1).

Using A3, (4) can be rewritten as

e(n) = y(n)ea(n) + €5(n) — 3eg(n)a(n — 1a) + B(n), (21)
where
v(n) = 3a2(n — 4) — r° (22)
and
B(n) = —a*(n — 74) + a(n — 74)r". (23)

If e2(n) is reasonably small in steady-state, terms depending ohehigrder combinations of,(n) can be

disregarded in (21), which leads to the approximation

e(n) = y(n)eq(n) + B(n). (24)

From (23) and A13(n) is an i.i.d. random variable, which satisfie§3(n)} = 0 and

o7 = B{#*(n)} = E{a’(n) — (r")*a*(n)}. (25)
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To proceed, we also assume that
A4. B(n) and~(n) are independent oW (n — 1) in steady-state. This essentially requires that the weigbr-e
vector be insensitive, in steady-state, to the actuallysirdtted symbolga(n)}.

Subtracting both sides of (1) from,(n), using the model (10) and the approximation (24), we arrive a
w(n) =[I - py(m)M(n)u(n)u’ (n)]w(n — 1)
— pB(n)M(n)u(n) +q(n). (26)

Remark: Note that (26) also holds for supervised filters, only in thasec we would have(n) = 1, and the
measurement noise(n) instead of3(n). In addition, 5(n) is identically zero for constellations which do have
constant modulus, so the variability in the modulus:0f) (as measured bg(n)) plays the role of measurement
noise for the class of blind algorithms considered here.

Multiplying (26) by its transpose, taking the expectatiofi®oth sides, and using the fact thgt:) is independent

of the initial conditions and ofi(n), we obtain

E{%(n)%" (n)} ~ B{®(n—1)%" (n—1)}
ﬁ
— PE{(m)w(n— D)W (n—Lju(n)u’ (n)M(n))
B
— PE{y (M (m)u(n)u’ (n)w(n— L)W’ (n—1)}
C

+ p*B{y*(n)M(n)u(n)u’ (n)w(n—1)

x w'(n—1)u(n)u”(n)M(n)}
D
+ p”E{3*(n)M(n)u(n)u’ (n)M(n)}
g
— PE{B ()W (n— Du () M(n)]
F
— pE{B(n)M(n)u(n)w"(n—1)}
g
+ p*E{y(n)B(n)M(n)u(n)u” (n)w(n—1)u” (n)M(n)}
H
+ PPE{ () Bm)M(n)u(n)w (n— yu(n)u’ (n)M(n)}

+ E{a(n)q"(n)}. (27)

To simplify (27), we remark that:
R1. WhenM(n) = ﬁ—l(n) appears inside the expectations of (27), we simply replabg its mean. Using (6),
we haveE{M(n)} ~ (1 — \)R~L. For \ = 1, this is a reasonable steady-state approximation [3, Se2]6.
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R2. For channels with long impulse response, the followipgraximations are reasonable

E{y(n)u*(n)} ~ 5 E{u?(n)}
and
E{3*(n)u®(n)} = o7E{u*(n)},

with 4 and %2 defined in (5) and (25), respectively.

R3. In steady-state, the weight-error vector has zero meanE{w(n)} = 0.

Remarks R2 and R3 are justified in detail in Appendix A.

Now, using assumptions A1-A4 and remarks R1-R3, we can atalihe terms4-H of (27):

A- Using A2, A4, R1, (28), and (16)A can be approximated by

A= pE{E{ ()% (01— )& (r— Dul)u ()M ub)
~ PE{Y0)E{W (r— D" (1— D yubu” ) }E{M @)}
~p7S(n—1) E{u(n)u’ (n)}E{M(n)}

=p7S(n—1) RE{M(n)}.

B- Analogously, we obtain fol3

~ p7E{M(n)} RS(n—1).
C- For CMA, sincep=p andM(n)=1, C reduces to
CM x p”E{7*(n)u(n)u” (n)S(n—1)u(n)u’(n)}.
Analogously for SWA, replacindi(n) = R~!(n) by its mean ang = (3)~!, we get

CM~(1-2)*(3)E{y*(n)R™ u(n)u’ (n)

x S(n—1)u(n)u”(n)R1}.

11

(28)

(29)

(30)

(31)

(32)

(33)

From (30)-(33), we observe that the four first terms of the rlggntd side of (27) are linear ®(n —1). Thus,

assuming that the CMA step-sizeis sufficiently small and the SWA forgetting-factaris sufficiently close

to 1, the termC for both algorithms can be neglected with respect to theetffirst terms on the right-hand

side of (27).
D- Using R1 and (29), we get

D ~ p’c? E{M(n)} R E{M(n)}.

(34)
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E- The term& can be rewritten as

€ = pE{E{B(n)W(n—1)u" (n)M(n)[u(n)}}
~ pE{B(n)E{W(n—1)}u’ (n)M(n)}. (35)
SinceE{w(n—1)} = 0 in steady-state, the ter# is a null matrix with dimensiond/ x M, i.e.,€ = 0y« -
Using the same arguments, we can show that the t¢fing, and’H are also null matrices in steady-state.
From the previous results, (27) reduces to
S(n)~S(n—1) — pyS(n — 1) RE{M(n)}
—E{M(n)} RS(n —1)
+ p?0? E{M(n)} RE{M(n)} + Q. (36)
Following a similar analysis for LMS [4], it can be shown thaist recursion is stable for sufficiently small
— however, (36) cannot be used to find a rangepdhat guarantees stability, due to the approximations made,

particularly the discarding of (33) (we intend to pursuesthiatter elsewhere). For smal] whenn — oo, we

obtain for CMA
17 [S(00)R +RS(00)] = 1’0} R+ Q. (37)

Taking the trace of both sides of (37), we arrive at

(CMA _ Ty (RS (o)) ~ po; TY(R);;M_ITY(Q). (38)
Analogously for SWA, we have
2(1 = N)S(00) = () %07 (1= AR+ Q. (39)
Multiplying both sides of (39) byR, and taking the trace, we obtain
CSWA _ Ty (RS (o)) ~ ol (1- M N Tr(QR) (40)

272 2(1 =)
These results coincide with those of [23] and [9], obtainethwhe feedback analysis for sufficiently smalland

(1 — A). Furthermore, as shown in [9], the ratio between the minimatoes of ( of SWA and CMA is equal to
(19). This allows a direct extension to the blind context a& tlsults comparing the tracking performance of the
RLS and LMS algorithms.

In Table Il, the analytical expressions for the EMSEs of the stiped and blind algorithms considered here are
summarized for convenient reference. Comparing theseesgjuns, one can observe that the EMSE of LMS and
RLS can also be obtained respectively from the EMSE of CMA and Skvaking U% «— o2 and# « 1. Thus,
there is an evident equivalence between LMS and CMA and betk& and SWA, which reinforces the link

between blind equalization algorithms and classical adafiltering of [33].
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C. Tracking analysis of convex combinations

Using the same arguments of [12, Sec. Ill], it is possible wwsthat the convex combinations of algorithms of
the form (1) are universal in the mean-square error senses, Tonsidering, for example, the convex combination
of one RLS and one LMS, when RLS outperforms LMS in the steady;dtatebehavior of the overall filter will
be close to that of RLS ang ~ (RS, On the other hand, when LMS is superiorx ¢"MS. Moreover, there are

situations where the combination will outperform both ofriih In this case, the EMSE of the overall filter will be

close to
AGAG
~ — 41
¢ <12+AC1+A§2’ (41)
where(, is the cross-EMSE , defined as
Cl2 £ nh—{go E{ea,l(n)ea,2 (n)}v (42)

andA¢ = G — (2, 1 =1,2. Eqg. (41) was obtained in [12, Eq. (33)] for the combinationved LMS filters with
different step-sizes(;-LMS and»-LMS). However, it is also valid for the convex combination ¢fier algorithms
of the form (1), as for the combination of two RLSs with differdargetting factors X;-RLS and\,-RLS), one
RLS and one LMS X;-RLS and us-LMS), two CMAs (u1-CMA and po-CMA), two SWAS (\;-SWA and \,-
SWA), and one SWA and one CMA\(-SWA and 2-CMA). The EMSE of the overall filter is the minimum of
the values calculated by the expressions of each compontentdiid (41).

Thus, the tracking analysis of convex combinations of therdlgms of the form (1) depends on the results of
Table Il, and on the analytical expressions of the cross-EM&3ndJindependence assumptions, such expressions

can be obtained through the evaluation of
(12 = nh_)I?go Tl“(RSlg(n — 1)), (43)

where

Si(n — 1) 2 B{wy(n — 1)Wi(n — 1)}. (44)

Although we are more interested in convex combinations gbrihms with different tracking capabilities as
LMS with RLS or CMA with SWA, we also obtain analytical expressdor (-, considering the combinations of
two RLSs, two CMAs, and two SWAs. Although our method also agpieethe combination of two LMS filters,
this case was already analyzed in [12] using the feedbackadet

Using the linear regression model of (3) for the desiredoespd(n), the errore;(n), i = 1,2 defined in (2)

can be rewritten as a function of tlepriori errore, ;(n) and of the disturbance(n), i.e.,
ei(n) = eqi(n) +v(n). (45)

To make the performance analysis of the supervised conwabioations more tractable, we assume that
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A5. the sequencéu(n)} is independent ofu(l)} for all n and!. This assumption is widely used in the analysis

of adaptive algorithms [3, p. 284], [12, Sec. II].

Comparing (45) to (24), the errors for supervised or blinefdtsatisfy
ei(n) = K(n)eqi(n) + o(n), (46)

wherex(n) = 1 andg(n) = v(n) for a supervised algorithm, or(n) = v(n) andg(n) = (n) for a blind one. In
both casesk{¢(n)} = 0, andp(n) andx(n) are assumed to be independentgfz — 1) in steady-state. Denoting
& =E{r(n)} ando? = E{¢?(n)}, R2 and A5 imply that

E{k(n)u?(n)} ~ RE{u*(n)}, 47)
and
E{¢?(n)u’(n)} ~ o E{u*(n)}. (48)
Subtracting both sides of (1) from,(n), using the model (10) and replacirg(n) by (46), we arrive at
wi(n) =[I — pir(n)M;(n)u(n)u”(n)lwi(n — 1)
— pie(n)M;(n)u(n) + q(n). (49)

In order to obtain(;, we multiply (49) withi = 1 by its transpose withi = 2 and take the expectations of both

sides. Then, assuming thqtn) is independent of the initial conditions and wfn), after some algebra, we get

E{W1 (n) W3 (n)} = B{W1(n — )W} (n — 1)}
— paE{(n) % (n — 1)W} (n — Du(n)u” (n)My(n)}
— pE{A(n)M (n)u(n)u” (n) W1 (n — 1)W3 (n — 1)}
+p1p2E{R(n) M (n)u(n)u” ()% (n — 1)

x W3 (n — Du(n)u’ (n)My(n)}

+p1p2E {0 ()M (n)u(n)u” (n)My(n)}
— paE{p(n) W1 (n—1)u” (n)Ma(n)}
— p1E{p(n) M (n)u(n) W3 (n—1)}
+PPE{ k)0 0) M ()ubiu” ()%, 00— Du” () M)}
T PPE{ k) ()M () u ) W3 0 — Dub)u” () M)}

+E{q(n)qa"(n)}. (50)
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Using the same arguments as in Section 1I-B, i.e., A1-A4/(), (48), R1, and R3, (50) can be simplified to

Slg(n) = 812(71 — 1)
— P2k Slg(n — 1) RE{MQ(TI)}
— plkE{Ml(n)} RSlg(n — 1)

+ p1p20” E{Mi(n)} R E{M3(n)} + Q. (51)
Whenn — oo, for the combination ofs;-LMS with po-LMS or p1-CMA with po-CMA, we obtain
K [Mgslg(OO)R + ,ulRSlQ(OO)] = U2 0'3 R+ Q. (52)

Taking the trace of both sides (52), we arrive at

~ papeTr(R) af + Tr(Q)
B R (p1 + po) '

CIQ = TT(R812(OO)) (53)

Similar expressions were also obtained using the feedbaalysis in [12] for the combination of two LMS filters
and in [21] for the combination of two CMAs.
For the combination oh;-RLS with A2-RLS or A\;-SWA with X\o-SWA, replacingM;(n) = f{;l(n), 1=1,2

by their means, we obtain in the steady-state
[(1 — /\1) + (1 — )\2)] 812(00)
=pip2(L=A)(1 = X)? R+ Q. (54)

Multiplying both sides of (54) byR and taking the trace, we arrive at

(= P12 = M)A~ 20)M o? + Tr(QR)
12 (1—XA1)+(1—X9) '

(55)
Finally, for the combination of\;-RLS with uy-LMS or A\;-SWA with u2-CMA, we have in the steady-state
S12(00)T = p1 p2 (1 — M) 0?1+ Q. (56)

where

I'=(1-M)I+RuR. (57)
Post-multiplying both sides of (56) bY. £ I' 'R and taking the trace, we obtain
12 = prpa(1 — A1)o? T () + Tr(QX). (58)

The results of (53), (55) and (58) are summarized in Table dil dll the convex combinations of adaptive

algorithms considered here.
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IV. SIMULATION RESULTS

To verify the behavior of the proposed scheme and the valwfitthe tracking analysis in the supervised case,
we consider a system identification application. The initiptimal solution is formed with\/ = 5 independent

random values between 0 and 1, and is given by

w2 (0) = 10.5349 0.9527 —0.9620 —0.0158 —0.1254]

The regressom(n) is obtained from a process(n) asu”(n) = [u(n) u(n—1) - u(n—4) |, whereu(n) is generated
with a first-order autoregressive model, whose transfertfonds /1 — 52/(1 — bz~1). This model is fed with an
i.i.d. Gaussian random process, whose variance is suchltfiRt) = 1. Moreover, additive i.i.d. noise(n) with
varianceo? = 0.01 is added to form the desired signal.

Figure 5 shows the EMSE anB{n(n)} estimated from the ensemble-average of 500 independest foun
A1-RLS (\; = 0.92), u2-LMS (u2 = 0.04), and their convex combinationu{ = 100, o™ = 4). To facilitate
the visualization, the EMSE curves were filtered by a movingaye filter with 32 coefficients. At every0®
iterations, the nonstationary environment, represenyeth® matrixQ, is changed. During the firgt0® iterations,

Q = 107 %R, LMS presents better tracking performance than that of RLS thadcombination performs close
to LMS with E{n(n)} ~ 0. When the matrixQ becomes equal ta0~R~!, this behavior changes: although
RLS is slightly better than LMS, the combination performs betten both of them and{n(n)} ~ 0.42. For

Q = 2 x 107°R, the combination switches back to LMS aiif{n(n)} ~ 0. Finally, for Q = 2 x 107°R !,

the performance of RLS is better and the combination behales® ¢o it, with E{n(n)} ~ 0.92. The dashed
lines in Figure 5-(a) show the predicted values(dr the combination, which are in a good agreement with the
experimental results. Note also that the small disagreebetween our model and the simulations for> 3 x 10°

is due to an imprecision in the model for RLS.

Figure 6 shows the EMSE for different values@f considering theoretical and experimental results\fieRLS
(M = 0.92), u2-LMS (2 = 0.04), and their convex combinatiopf = 100, o™ = 4). We assume ensemble-average
of 100 independent runs and three different nonstationary@mentsQ = c’I, Q = ¢’R, andQ = ¢c?R~!. Good
agreement between analysis and simulation can be observatl kinds of considered nonstationary environments.
Note that the small disagreement between our model and inalagions observed in Figure 6 for largé is due
to an imprecision in the model for RLS: this can be seen by coimgpdhe theoretical and simulation curves for
RLS alone.

In Figure 7, we show the EMSE for different values &f considering theoretical and experimental results
for A\{-RLS (\; = 0.92), A\>-RLS (\2 = 0.995), and their convex combinationu{ = 100, a™ = 4). For the
simulations, each point is an ensemble-average of 100 @mdgmt runs withQ = c?R.. Again, we observe good

agreement between theoretical and experimental EMSE. Sucknaginé also occurs for other kinds of nonstationary
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environments, withQ = ¢?I or Q = ¢?R~L.

In the blind equalization case, we assume 4-PAM (pulse ang@imodulation) with statisticE{a%(n)} = 365,
E{a%(n)} = 5, r* = 8.2 and channel coefficients0.1, 0.3, 1, —0.1, 0.5, 0.2] [22]. In the combinations, each
component filter has\/ = 4 coefficients as &’/2-fractionally spaced equalizer and is initialized with ymne

non-null element in the second position.

Figure 8 shows the EMSE for different valuesddf considering theoretical and experimental results\ieSWA
(A1 = 0.99), u2-CMA (uz = 10~%), and their convex combination:{ = 0.1, o™ = 4). Again, each point is an
ensemble-average of 100 independent runs and we preseits reg three different nonstationary environments:
Q = %I, Q = ¢’R, andQ = c’>R~!. Although the agreement between analysis and simulationtigas good as in
the supervised case, the predicted values model reasonablhe overall behavior of the algorithms, independently
of the nonstationary environment. Note that a differencen &w dB is common in models for blind algorithms,

due to the strong assumptions necessary for the analysis.

Figures 9 and 10 show the EMSE for different values%fconsidering respectively theoretical and experimental
results foru;-CMA, 12-CMA, and their convex combination wit®) = c?R, and for \;-SWA, \,-SWA, and their
convex combination, withlQ = c?R~'. We assumeu; = 1073, po = 1074, A\ = 0.99, Xy = 0.999, po = 0.1,
ot = 4, and ensemble-average of 100 independent runs. The agrebetareen analysis and simulation for the
combination of two SWAs is better than that for the combimatibtwo CMAs. This occurs because the steady-state
model of SWA shows a better agreement with experimental tesudn that of CMA, as shown in the figures 9

and 10. This behavior also happens for other kinds of noosiaty environments.

V. CONCLUSION

In this paper we proposed the convex combination of filtersitbéreént families (gradient-based and Hessian-
based) to achieve an overall filter with superior trackingfgrenance. In addition, we presented a unified model
for the convex combination of several different adaptivgoathms, both supervised and unsupervised (blind). Our
models for the combination of two RLSs, two CMAs, two SWAs, one LMith one RLS, and one CMA with

one SWA are novel, and show good agreement with simulations.

1Although we assume channels with long impulse response to justify R2, odelragrees well with simulations even for a rather short

channel such as this one. Good agreement was also observed wién tdramnels.
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APPENDIX A
REMARKS R2 AND R3

Considering an FIR channel with impulse respohkg, 1, ---, hr—1], its output in a noise-free environment

is given by
L—-1
n) = Z hea(n —¥).
(=0
In the analysis, we usB{~(n)u?(n)} ~ yE{u?(n)}. From (5), this approximation reduces to say that
E{a?*(n — 1)u?(n)} = E{a*(n — 74)}E{u?(n)}. (59)

We check the validity of this approximation, evaluatingtbsides of (59). Evaluating the term on the right-hand

side of (59), using the fact thdu(n)} is i.i.d., we arrive at
E{d®(n—r4)E{u*(n)}
L—-1L-1
— E{az(n—rd)}E{ SN hmma(n—e)a(n—m)}

£=0 m=0
L—1
=E{d*(n)}* > hj. (60)
k=0
Analogously for the term on the left-hand side of (59), weaabt

E{a*(n—7a)u’(n)}

L—1L-1
= E{aQ(n—Td) Z Z hghma(n—f)a(n—m)}

=0 m=0

L—1
= 12, E{a’(n)}+E{a’(n)}* ) hi. (61)

kZO, k?éTd

ReplacingE{a%(n)} by (1 + e4)E{a?(n)}* in (61), we get

L-1
E{a*(n—71y)u?(n)} = E{a*(n)}* (84 h2 + Z h%) . (62)
k=0

The value ofey4 is nonnegative and depends on the constellation. For exampl= 0 for the constant-modulus
constellation of 2-PAMg, = 0.64 for 4-PAM, ande, = 0.73 for 6-PAM. Assuming thatl is sufficiently large
such thats hfd < Zﬁ;& h%, (62) can be approximated by (60). In this case, (59) and &8)satisfied.

To show the validity ofE{3%(n)u?(n)} =~ 02E{u?(n)}, we use a similar argument. Recalling tHa{n)} is an

i.i.d. sequence, we get
E{5*(n)u*(n)}=h?,E{a"(n) - 2r“a6(n)+(r“)2a4(n)}
+ E{5%(n)}E{d*(n Z h. (63)

k: 0, k74
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ReplacingE{a*(n)} = (1 + x)E{a*2(n)}E{a?(n)} in (63), we arrive at
E{8%*(n)u?(n)} = hsz{a2 (n)}E{sgaG (n)—e6(2r)a*(n)
+24(°)%a*(n) | + B{B(n) {0 (n }Z 3 (64)

Again, ¢;, i = 4,6,8 are nonnegative and depend on the constellation. If thenghas such that the first term of
the right-hand side of (64) can be disregarded with resmetit¢ second term, (29) of R2 will be satisfied.

To show thatE{w(n)} = 0 in the steady-state, we remark that

E{B(n)u(n)} ZE{ [~a’(n — 7a) +r%a(n — 74)]

L—-1
. Z hea(n — E)}
=0
=h, [-E{a*(n)} + rE{a*(n)}] = 0. (65)

This is an exact relation. F@vI(n) # I, we use R1 to approximate{3(n)M(n)u(n)} = E{M(n)}E{8(n)u(n)}.
Then, taking the expectations of both sides of (26) and usidgwe obtain

E{w(n)} = E{w(n—1)}
— pE{M(n)}E{y(n)u(n)u” (n) }E{w(n—1)}
— pE{M(n)}E{f(n)u(n)} + E{a(n)} =
= [[— pE{M(n)}E{y(n)u(n)u”(n)}] E{w(n—1)}, (66)

from E{q(n)} = 0 and using (65). Sinc&{~(n)u?(n)} # 0, we getE{w(n)} — 0 for sufficiently smallp.
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Fig. 1. Time-variant channel identification. (a) Squamedgriori errors for RLS § = 0.995), LMS (z = 0.01), and their convex
combination C-RLS-LMS /., = 400, a™ = 4); (b) Evolution of the mixing parameter. Input: correlated Gaussianendi®-1 model with

pole at 0.99; measurement noise with = 10~°; Rayleigh fading channel (5 coefficients, symbol peribd= 0.8us, maximum Doppler

spreadfp = 50 Hz).
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Fig. 2. Same example of Fig. 1. Squawegriori errors for C-RLS-LMS, CLMS ;1 = 0.01, 2 = 0.001, 1, = 400, ot = 4), RVSS-LMS

(Hmin = M2, fmax = [1, Linit = (@1 + p2)/2, 6 = 0.97).
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Fig. 3. Blind equalization. Residual intersymbol interference curvesClA (1 = 2 x 1073), SWA (A = 0.999), and their convex

combination fi, = 15, a™ = 4); 2-PAM (pulse amplitude modulation); Rayleigh fading channel (3famefts, symbol period” = 0.8us,

maximum Doppler spreadip = 80 Hz); SNR=30 dB; baud-rate equalizer with 11 coefficients.
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Fig. 4. Adaptive convex combination of two transversal filters for (g)esvised filtering and (b) blind equalization.
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Fig. 5. (a) EMSE forA:-RLS, p2-LMS, and their convex combination; (b) ensemble-average(of); A1 = 0.92, p2 = 0.04, pa = 100,

at”=4,c2=2x1075 ¢3 =2 x107%, b = 0.8; mean of 500 independent runs. In (a), the dashed lines reprgseptedicted values of

¢ for the convex combination.
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Fig. 6. EMSE for different values af® considering theoretical and experimental results for the convex caiitninand theoretical results

for LMS and RLS, with\; = 0.92, € = 12.5, 2 = 0.04, 1o = 100, ™ = 4, b = 0.8; mean of 100 independent runs.
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Fig. 7. EMSE for different values af® considering theoretical and experimental results for the convex caitminand theoretical results

for A2-RLS and\;-RLS, with A\; = 0.92, A2 = 0.995, € = 12.5, uo = 100, o™ =4, b = 0.8; mean of 100 independent runs.
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Fig. 8. EMSE for different values aof?, considering theoretical and experimental results for CMA, SWA, agit ttonvex combination,

with A1 = 0.99, g2 = 1072, o = 0.1, ot = 4; M = 4; 4-PAM; channel0.1, 0.3, 1, —0.1, 0.5, 0.2]; T'/2- fractionally-spaced equalizer;

mean of 100 independent runs.
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Fig. 9. EMSE for different values oé?, considering theoretical and experimental results fgiCMA, p2-CMA, and their convex
combination, withu; = 1073, ue = 107*, e = 0.1, ¥ = 4; M = 4; 4-PAM; channel[0.1, 0.3, 1, —0.1, 0.5, 0.2]; T//2- fractionally-

spaced equalizer; mean of 100 independent runs.
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Fig. 10. EMSE for different values of?, considering theoretical and experimental results XgrSWA, \2-SWA, and their convex
combination, withA; = 0.99, X2 = 0.999, u = 0.1, ot = 4; M = 4; 4-PAM; channel[0.1, 0.3, 1, —0.1, 0.5, 0.2]; T/2- fractionally-

spaced equalizer; mean of 100 independent runs.



TABLES

TABLE |

PARAMETERS OF THE CONSIDERED ALGORITHMS

Alg. | pi ei(n) M; ' (n)

LMS i d(n) — yi(n) 1

CMA | i | [P —yi(n)lyi(n)

RLS | 1| dm =w) | g 23S - taur)
SWA | 1/7 | [r* — yi(n)]yi(n) =1
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ANALYTICAL EXPRESSIONS FOREMSE OF THE CONSIDERED ALGORITHMS

TABLE I

Alg. ¢

LMS poy Tr(R) + p ' Tr(Q)
2

RLS o2(1 = NM + (1 — )" "Tr(QR)
2

CMA po; Tr(R) + p~ ' Tr(Q)
2y

swa | )1 (I-NM +5(1-2)""Tr(QR)
2y

TABLES
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ANALYTICAL EXPRESSIONS FOR CROSEEMSE OF THE CONSIDERED COMBINATIONS

TABLE Il

Combination Cio
11-LMS and p2-LMS uszr(R)g}j +Tr(Q)
M1 A ph2

A1-RLS andX2-RLS

(1—=X1)(1 = A2)Moi + Tr(QR)
(I —=XA1)+(1=2X2)

A1-RLS andp2-LMS

p2(1=X1) o0 Tr(2) + Tr(QX)

11-CMA and pu2-CMA

pp2 Tr(R)oj + Tr(Q)
F(pa + p2)

A1-SWA and \2-SWA

(7 2(1=2)(1=X2) Mo} + Tr(QR)

(IT=X)+(1=X)

A1-SWA and ;J,Q-CMA

() 2 (1= A1) o Tr(2) +Tr (QX)
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