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Abstract

As is well known, Hessian-based adaptive filters (such as therecursive-least squares algorithm – RLS, for

supervised adaptive filtering, or the Shalvi-Weinstein algorithm – SWA, for blind equalization) converge much

faster than gradient-based algorithms (such as the least-mean-squares algorithm – LMS, or the constant-modulus

algorithm – CMA). However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there

are environments for which each family presents better performance. Given this, we propose the use of a convex

combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show

the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square

error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the

parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised

(LMS and RLS) or blind (CMA and SWA) algorithms.

Index Terms

Adaptive filters, adaptive equalizers, convex combination, tracking, least mean square methods, recursive esti-

mation, unsupervised learning.

I. I NTRODUCTION

W HEN choosing an adaptive algorithm for a given application, one of the important points to be considered

is the algorithm’s ability to track variations in the statistics of the signals of interest. This is especially

important in mobile communications [1], and in applications that demand long filters, such as acoustic echo

cancellation [2].
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There are two standard approaches to adaptive filtering: gradient-based, such as the least-mean-squares algorithm,

LMS; and Hessian-based, such as the recursive least-squares algorithm, RLS. Of these two, the latter, given its use

of estimates of the Hessian of the cost function being minimized, converges at a much faster rate than the former,

as is well-known [3], [4]. However, Eweda showed in [5] that for the tracking of time-variant parameters, LMS may

in fact outperform RLS, depending on the statistics of the regressor and desired signals. A similar behavior was

observed in blind algorithms for channel equalization: thegradient-based constant-modulus algorithm (CMA) [6],

[7] has a considerably slower convergence than the Hessian-based Shalvi-Weinstein algorithm (SWA) [8]. Again, as

in the case of LMS and RLS, it was shown in [9] that the tracking capabilities of CMA and SWA depend heavily

on the statistics of the input signals, and CMA may outperform SWA, depending on the environment.

In this paper we use the observations of Eweda and [9], together with the convex combination of adaptive filters

proposed in [10] and further extended and analyzed respectively in [11] and [12], to take advantage of the different

tracking capabilities of LMS and RLS (resp., CMA and SWA) to arrive at supervised (resp., blind) algorithms with

superior tracking performance.

The idea of combining the outputs of several different independently-run adaptive algorithms to achieve better

performance than that of a single filter is not new. It apparently was first proposed in [13], and latter improved in

[14], [15]. Similar ideas have also been used in the information theory literature, see, e.g., [16]. The algorithms

proposed in [13]–[15] are based on a Bayesian argument, and construct an overall (combined) filter through a linear

combination of the outputs of several independent adaptivefilters. The weights are thea posteriori probabilities that

the underlying models used to describe each individual algorithm are “true”. Since the weights add up to one, in a

sense these first papers also proposed “convex” combinationsof algorithms. The method of [12] is receiving more

attention due to its relative simplicity and the proof that the combination is universal, i.e., the combined estimate

is at least as good as the best of the component filters in steady-state, for stationary inputs.

Previous works on convex combinations of adaptive filters mostly restricted themselves to combinations of filters

of the same families, i.e, two LMS [11], [12], [17], two RLS [11]or two CMA [18] filters with different step-sizes

or forgetting factors. A combination of two filters based on different cost-functions (but both gradient-based) was

proposed in [19], combining normalized LMS and normalized sign-LMS to obtain an algorithm with improved

robustness without the slow convergence behavior of sign-LMS. Using a different combination rule, combinations

of Kalman or RLS filters were proposed, using the different combination rule proposed in [14], [15] (but the

combination rule also allows for the use of other algorithms, and for the use of filters with a different number

of taps). It should be noted that theoretical models (approximations for the overall filter’s steady-state excess

mean-square error) are available in the literature only forthe combination of two LMS algorithms [12], [17].

However, the possibility of extension of these models to different combinations of algorithms was already indicated
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in [17] and [12]. The proof in [12] that the combination is universal also applies to different choices of algorithms.

The present paper extends previous results in four ways: (1) proposing the combination ofsupervised algorithms

of different families to take advantage of their different tracking capabilities; (2) extending this result also toblind

algorithms of different families; (3) providing theoretical models (in a unified way) for the steady-state mean-

square error for combinations of filters of the same or different families, assuming a random-walk model for the

parameter variations; and (4) providing theoretical models for combinations of blind algorithms of the same or

different families. To the best of our knowledge, all these are novel contributions. In particular, the models for

the combinations of two RLS, two CMA or two SWA filters are also new results. For combinations of filters of

different families, the results presented here are more accurate than those we published as conference papers, in

[20] (supervised filters) and [21] (blind filters). We also extend these previous results both by providing a unified

analysis, which is valid for combinations of filters of the same or of different families, and for supervised or blind

algorithms. In this sense, the analysis provided here also recovers the results for the combination of two LMS

filters, presented in [12]. Unlike this reference, here we usethe traditional analysis method, where one computes

a recursion for the autocorrelation matrix of the weight-error vector of a filter, as opposed to the feedback method

of [3]. In passing, we should add that the analysis for blind adaptive filters using the traditional method that we

present here is also novel, and it gives the same results obtained using the feedback method for CMA in [22]–[24]

and for SWA in [9].

In the remainder of this section we provide a few examples to motivate the combination of filters of two different

families, both for supervised (combination of one RLS with one LMS) and for blind algorithms (combination of

one SWA with one CMA).

A. Introductory simulations

In the supervised case, we simulate the identification of a time-variant channel (Rayleigh fading channel) with

5 coefficients [3, p. 401]. The parametersλ, µ, µα andα+, which control the adaptive filters and the combination

algorithm, are described in Section II. Figure 1-(a) shows curves of one realization of squareda priori errors for

RLS (λ = 0.995), LMS (µ = 0.01), and their convex combination C-RLS-LMS (µα = 400, α+ = 4). To facilitate

the visualization, the curves were filtered by a moving-average filter with 512 coefficients. The convex combination

performs at least as well as the best of its components, outperforming slightly both of them in some situations. This

behavior can be confirmed by the mixing parameterη(n) shown in Figure 1-(b). Whenη(n) ≈ 1, the combination

performs close to RLS, whenη(n) ≈ 0, it is close to LMS, and when0 < η(n) < 1, the combination tends to be

better than both independent filters.

For the same example, we show in Figure 2 a comparison between C-RLS-LMS, the convex combination of two

LMSs (CLMS), and the robust variable step-size LMS (RVSS-LMS) of [25].We observe that C-RLS-LMS presents
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better tracking performance than CLMS, and both are better than RVSS-LMS. Thus, the convex combination of

one RLS with one LMS can be a better alternative for tracking performance.

In the blind equalization case, we consider a Rayleigh fading channel with fast variation (maximum Doppler

spreadfD = 80 Hz) and 3 coefficients [3, p. 401]. Figure 3-(a) shows residual intersymbol interference (ISI) [8]

curves for SWA (λ = 0.999), CMA (µ = 2 × 10−3), and their convex combination (µα = 15, α+ = 4). The

combination usually performs as the best of each component equalizer, being slightly better than both of them in

some situations. In this example, the adaptation of the mixing parameter was not fast enough to switch between

filters in a few brief occasions, most notably at the end of the simulation. This happens because the adaptation

rule for the mixing parameterη(n) needs some time to identify that a change is necessary. Figure3-(b) shows the

mixing parameterη(n), which confirms this behavior. Whenη(n) ≈ 1, the combination performs close to SWA,

whenη(n) ≈ 0, it is close to CMA, and when0 < η(n) < 1, it can be better than both of its equalizers.

B. Organization of the paper

The paper is organized as follows. In the next section, we describe the convex combination of two adaptive filters,

for both supervised (RLS and LMS) and blind (SWA and CMA) algorithms. In Section III, the tracking analyses are

presented. Initially, in Section III-A, we summarize results for the tracking analysis of the LMS and RLS algorithms.

Then, in Section III-B, we present the tracking analysis of CMAand SWA using the traditional method. Finally,

in Section III-C, the tracking analysis of the considered convex combinations is provided. Comparisons between

analytical and experimental results for the steady-state excess mean-square error are shown through simulations in

Section IV. Section V provides a summary of the main conclusions of the paper.

II. PROBLEM FORMULATION

We focus on the convex combination of two algorithms of the following general class

wi(n) = wi(n− 1) + ρi Mi(n)u(n)ei(n), (1)

where the subscripti is associated to the first (i = 1) or second (i = 2) filter of the combination,wi(n) represents

the length-M coefficient vector,ρi is a step-size,Mi(n) is a symmetric non-singular matrix,u(n) is the input

regressor vector, andei(n) is the estimation error. Many algorithms can be written as in(1), by proper choices of

ρi, Mi(n), andei(n). In this paper, in order to simplify the arguments, we assumethat all quantities are real.

In supervised adaptive filtering,

ei(n) = d(n)− yi(n), (2)

whereyi(n) = uT (n)wi(n− 1) is the output of theith transversal filter andd(n) is the desired response. In this

case, a linear regression model holds, that is,

d(n) = uT (n)wo(n− 1) + v(n), (3)
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with wo(n − 1) being the time-variant optimal solution andv(n) a zero-mean random process with variance

σ2
v = E{v2(n)}, uncorrelated withu(n) [3, Sec. 6.2.1]. Here,E{·} denotes the expectation operation and the

sequences{u(n)} and{v(n)} are assumed stationary. We shall use the common assumption thatv(n) is independent

of u(n) (not only uncorrelated) [3].

In blind equalization, algorithms based on the constant modulus cost function [6], [7] defineei(n) as

ei(n) =
[
ra − y2

i (n)
]
yi(n), (4)

wherera = E{a4(n)}/E{a2(n)} and{a(n)} represents the transmitted sequence. Due to the equivalence between

the constant modulus and Shalvi-Weinstein cost functions shown in [26], CMA and SWA seek to optimize the same

criterion. Thus, although SWA was originally derived in [8] through the minimization of the SW cost function using

empirical cumulants, it can also be interpreted as a constant-modulus-based algorithm.

The supervised LMS and RLS algorithms and the blind CMA and SWA employ the step-sizesρi, the estimation

errorsei(n), and the matricesMi(n) as in Table I. In this table,I is theM ×M identity matrix,0≪ λi < 1 is a

forgetting factor, and

γ̄ , 3E{a2(n)} − ra. (5)

For RLS and SWA,Mi(n) = R̂−1
i (n) is obtained via the matrix inversion lemma [3, Eq. (2.6.4)] applied to

R̂i(n), which is an estimate (with forgetting factorλi) of the autocorrelation matrix of the input signal, i.e.,

R , E{u(n)uT (n)}. These matrices are related via

E
{
R̂i(n)

}
=

R

(1− λi)
. (6)

Although we use the same notation for the LMS and CMA step-sizes in Table I, the step-size intervals which

ensure the convergence and stability of such algorithms aredifferent. For the LMS algorithm, this step-size interval

is well-known in the literature [3], [4], whereas for CMA, the derivation of this interval remains an open problem.

The convex combination of two adaptive filters proposed in [11], [12], and [18] is depicted in Figure 4. Figure 4-

(a) considers supervised filtering and can be used for different applications, such as system identification, adaptive

equalization, echo or noise cancelation, etc. [3], [4]. Figure 4-(b) shows a simplified communications system with a

convex combination of two blind equalizers. In this case, the signala(n), assumed i.i.d. (independent and identically

distributed) and non Gaussian, is transmitted through an unknown channel, whose model is constituted by an FIR

(finite impulse response) filter and additive white Gaussian noise. From the received signalu(n) and the known

statistical properties of the transmitted signal, the blind equalizer must mitigate the channel effects and recover the

signala(n) for some delayτd.

We also assume that the equalization algorithms are implemented in T/2-fractionally spaced form, due to its

inherent advantages (see, e.g., [22], [27]–[29] and the references therein). This type of implementation is widely
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used in the literature since it ensures perfect equalization in a noise-free environment, under certain well-known

conditions. For real data, perfect equalization is achieved when the overall channel-equalizer impulse response is

of the form [ 0 ··· 0 δ 0 ··· 0 ]T , whereδ = ±1. In this case, the equalizer reaches the so-called zero-forcing solution

and y(n) = δa(n − τd). The two possibilitiesδ = 1 or δ = −1 occur due the fact that constant-modulus-based

algorithms do not solve phase ambiguities introduced by thechannel. Such ambiguities can be corrected by using

differential modulation [1]. Since both solutions give equally good results, we assume in the next section that the

algorithm is initialized so that it converges to the case ofδ = 1. Since we are studying its steady-state performance,

this does not imply a restriction in the applicability of ourresults.

In both schemes, the output of the overall filter is given byy(n) = η(n)y1(n) + [1 − η(n)]y2(n). The mixing

parameterη(n) is modified via an auxiliary variableα(n− 1) and a sigmoidal function [11], [12], that is,

η(n) = sgm[α(n− 1)] =
1

1 + e−α(n−1)
, (7)

with α(n) being updated as

α(n) = α(n− 1) + µαeα(n)η(n)[1− η(n)], (8)

where

eα(n) = e(n)[y1(n)− y2(n)] (9)

ande(n) = η(n)e1(n)+[1−η(n)]e2(n). Eq. (8) was obtained in [11], [12] and [18], using a stochastic gradient rule

to minimize the instantaneous MSE cost function for the supervised case and the constant modulus cost function for

the blind case. The auxiliary variableα(n) is used to keepη(n) in the interval[0, 1]. A drawback of this scheme is

that α(n) stops updating wheneverη(n) is close to 0 or 1. To avoid this, [12], [18] suggest thatα(n) be restricted

(by simple saturation) to lie inside a symmetric interval[−α+, α+]. Thus, a minimum level of adaptation is always

guaranteed [12].

Following [12], in all our simulations we restrictα(n) to the above interval, but use a modified mixing variable

ηu(n), as described below:

ηu(n) =





η(n), if |α(n)| < α+ − ǫ,

1, if α(n) ≥ α+ − ǫ,

0, if α(n) ≤ −α+ + ǫ,

whereǫ is a small constant. This modification tends to improve the performance of the overall algorithm when one

of the component filters performs substantially better than the other [12]. Note that the adaptation rule forα(n)

still uses the original, unmodifiedη(n), but the overall output is now given by

yu(n) = ηu(n)y1(n) + [1− ηu(n)]y2(n).
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III. T RACKING ANALYSIS

We assume that in a nonstationary environment, the variation in the optimal solutionwo follows a random-walk

model [3, p. 359], that is,

wo(n) = wo(n− 1) + q(n). (10)

In this model,q(n) is an i.i.d. vector with positive-definite autocorrelation matrix Q = E{q(n)qT (n)}, independent

of the initial conditions{wo(−1),w(−1), α(−1)} and of{u(l)} for all l [3, Sec. 7.4]. In supervised filtering,q(n)

is also assumed independent of the desired response{d(l)} for all l < n. In blind equalization,wo(n) represents

the zero-forcing solution andq(n) models the channel variation (see assumption A3 below).

One measure of the filter performance is given by the excess mean-square error (EMSE), defined as

ζ , lim
n→∞

E{e2
a(n)}, (11)

where

ea(n) = uT (n)w̃(n− 1), (12)

and

w̃(n− 1) = wo(n− 1)−w(n− 1). (13)

The a priori error ea(n) of the overall scheme can be written as a function of thea priori errors of the component

filters, i.e.,

ea(n) = ηu(n)ea,1(n) + [1− ηu(n)]ea,2(n), (14)

where ea,i(n) = uT (n)w̃i(n − 1) and w̃i(n − 1) = wo(n − 1) − wi(n − 1), i = 1, 2. It is common in the

literature to evaluate the EMSE as

ζ = lim
n→∞

Tr
(
RS(n−1)

)
, (15)

whereTr(A) stands for the trace of matrixA and

S(n− 1) , E{w̃(n− 1)w̃T (n− 1)}. (16)

This approach is based on the independence assumption between the regressor vectoru(n) and weight-error vector

w̃(n−1). This condition is a part of the widely used independence assumptions in adaptive filter theory [4]. It was

shown in [30], for instance, that for LMS-type algorithms and for sufficiently small step-sizes, the results obtained

from such independence assumptions tend to match reasonably well the real filter performance. Furthermore, [31]

argues that it is not necessary forw̃(n− 1) to be independent ofu(n), but only ofu(n)uT (n), which represents

a weaker assumption, since the outer product does not contain phase information aboutu(n).
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The main focus of the analysis that follows is the behavior of the algorithm in steady-state, i.e., after initial

convergence of the coefficients. Although the optimum weights are time-variant, under the model assumed for their

variation, it is well-known that the EMSE of an adaptive filter approaches a steady-state value, see, e.g., [3].

It was proved in [12] that the performance of convex combinations of adaptive filters is at least as good as that of

the best of its components in stationary environments. In this work, we will make the assumption that the adaptation

of η(n) is fast enough, so that, after initial convergence, the overall algorithm will follow the best component filter

at every instant. The simulations presented in Section I-A shows that, even when the optimum coefficients change

quite rapidly, this assumption is rarely violated. Note that the same assumption was implicitly used in [12].

A. Tracking analysis of supervised algorithms

There have been several works in the literature on the steady-state tracking performance of supervised adaptive

algorithms (see, e.g., [3]–[5], [24] and the references therein). For sufficiently smallµ and (1 − λ), analytical

expressions for the EMSE of LMS and RLS algorithms are given respectively by

ζLMS =
µσ2

vTr(R) + µ−1Tr(Q)

2
(17)

and

ζRLS =
σ2

v(1− λ)M + (1− λ)−1Tr(QR)

2
. (18)

The ratio between the minimum value ofζ for these algorithms is given as

ζRLS
min

ζLMS
min

=

√
MTr(QR)

Tr(R)Tr(Q)
. (19)

This ratio, obtained in [5], allows us to compare the trackingperformance of LMS and RLS. Clearly, the results of

such comparison depend on the environment, i.e., there are situations where RLS has superior tracking capability

compared to LMS, and vice-versa [5]. This is highlighted considering three different choices for matrixQ [3]–[5]:

(i) Q is a multiple ofI: the performance of LMS is similar to that of RLS;

(ii) Q is a multiple ofR: LMS is superior; and

(iii) Q is a multiple ofR−1: RLS is superior.

B. Tracking analysis of blind equalization algorithms

Analytical expressions for the EMSE of blind equalization algorithms have been computed in the literature (see,

e.g., [22]–[24], [32], and [9]). Using Lyapunov stability and averaging analysis, an approximate expression for

the EMSE of CMA was obtained in [32]. Later, [22] and [23] focusedon the CMA steady-state performance,

using the feedback analysis. Considering still the feedback method, [9] analyzed the tracking of constant-modulus-

based algorithms (including SWA) in a unified manner. In the sequel, we present an alternative analysis using the
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traditional method, i.e., we compute the EMSE of CMA and SWA via (15). In the remainder of this section, we

suppress the subscripti, since we are interested in the analysis of each algorithm individually.

The steady-state analysis of blind algorithms of the form (1)is based on the following assumptions:

A1. E{ak(n)} = 0, k = 2m + 1, m ∈ N, and γ̄ > 0, i.e., a(n) is sub-Gaussian, and the constellation is

symmetric, as is the case for most constellations used in digital communications [3], [8].

A2. The regressor vectoru(n) and the weight-error vector̃w(n − 1) are independent in the steady-state. As

mentioned before, this independence assumption is commonly used with good results for the analysis of

adaptive algorithms [4].

A3. The signal-to-noise ratio at the input is high, so thata(n − τd) ≈ uT (n)wo(n − 1), i.e., the optimum filter

achieves perfect equalization. However, due to channel variation and gradient noise, the equalizer weight vector

w(n− 1) is not equal towo(n− 1), even in steady-state. Using (13), (12), and the above approximation, we

havey(n) = uT (n)w(n− 1) = uT (n)[wo(n− 1)− w̃(n− 1)], that is,

y(n) ≈ a(n− τd)− ea(n). (20)

This approximation was also used in the CMA steady-state analyses of [22, Sec. III-A] and [23]. As in the

cited references, we assume that the filter parameters and initial condition are chosen so that the combined

channel-equalizer response converges to[ 0 ··· 0 δ 0 ··· 0 ]T , with δ = 1. A similar analysis holds for the other

optimum solution (convergence to a zero-forcing solution with δ = −1).

Using A3, (4) can be rewritten as

e(n) = γ(n)ea(n) + e3
a(n)− 3e2

a(n)a(n− τd) + β(n), (21)

where

γ(n) = 3a2(n− τd)− ra (22)

and

β(n) = −a3(n− τd) + a(n− τd)r
a. (23)

If e2
a(n) is reasonably small in steady-state, terms depending on higher-order combinations ofea(n) can be

disregarded in (21), which leads to the approximation

e(n) ≈ γ(n)ea(n) + β(n). (24)

From (23) and A1,β(n) is an i.i.d. random variable, which satisfiesE{β(n)} = 0 and

σ2
β

= E{β2(n)} = E{a6(n)− (ra)2a2(n)}. (25)
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To proceed, we also assume that

A4. β(n) and γ(n) are independent of̃w(n − 1) in steady-state. This essentially requires that the weigh-error

vector be insensitive, in steady-state, to the actually transmitted symbols{a(n)}.

Subtracting both sides of (1) fromwo(n), using the model (10) and the approximation (24), we arrive at

w̃(n) =[I− ργ(n)M(n)u(n)uT (n)]w̃(n− 1)

− ρβ(n)M(n)u(n) + q(n). (26)

Remark: Note that (26) also holds for supervised filters, only in that case we would haveγ(n) ≡ 1, and the

measurement noisev(n) instead ofβ(n). In addition,β(n) is identically zero for constellations which do have

constant modulus, so the variability in the modulus ofa(n) (as measured byβ(n)) plays the role of measurement

noise for the class of blind algorithms considered here.

Multiplying (26) by its transpose, taking the expectationsof both sides, and using the fact thatq(n) is independent

of the initial conditions and ofu(n), we obtain

E{w̃(n)w̃T (n)} ≈ E{w̃(n−1)w̃T (n−1)}

−
A︷ ︸︸ ︷

ρE{γ(n)w̃(n−1)w̃T (n−1)u(n)uT (n)M(n)}

−
B︷ ︸︸ ︷

ρE{γ(n)M(n)u(n)uT (n)w̃(n−1)w̃T (n−1)}

+

C︷ ︸︸ ︷
ρ2E{γ2(n)M(n)u(n)uT (n)w̃(n−1)

× w̃T (n−1)u(n)uT (n)M(n)}

+

D︷ ︸︸ ︷
ρ2E{β2(n)M(n)u(n)uT (n)M(n)}

−
E︷ ︸︸ ︷

ρE{β(n)w̃(n−1)uT (n)M(n)}

−
F︷ ︸︸ ︷

ρE{β(n)M(n)u(n)w̃T (n−1)}

+

G︷ ︸︸ ︷
ρ2E{γ(n)β(n)M(n)u(n)uT (n)w̃(n−1)uT (n)M(n)}

+

H︷ ︸︸ ︷
ρ2E{γ(n)β(n)M(n)u(n)w̃T (n−1)u(n)uT (n)M(n)}

+ E{q(n)qT (n)}. (27)

To simplify (27), we remark that:

R1. WhenM(n) = R̂−1(n) appears inside the expectations of (27), we simply replace it by its mean. Using (6),

we haveE{M(n)} ≈ (1− λ)R−1. For λ ≈ 1, this is a reasonable steady-state approximation [3, Sec. 6.9.2].
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R2. For channels with long impulse response, the following approximations are reasonable

E{γ(n)u2(n)} ≈ γ̄ E{u2(n)} (28)

and

E{β2(n)u2(n)} ≈ σ2
β
E{u2(n)}, (29)

with γ̄ andσ2
β

defined in (5) and (25), respectively.

R3. In steady-state, the weight-error vector has zero mean,i.e., E{w̃(n)} = 0.

Remarks R2 and R3 are justified in detail in Appendix A.

Now, using assumptions A1-A4 and remarks R1-R3, we can evaluate the termsA-H of (27):

A- Using A2, A4, R1, (28), and (16),A can be approximated by

A=ρE{E{γ(n)w̃(n−1)w̃T(n−1)u(n)uT(n)M(n)|u(n)}}

≈ρE{γ(n)E{w̃(n−1)w̃T (n−1)}u(n)uT (n)}E{M(n)}

≈ρ γ̄ S(n−1)E{u(n)uT (n)}E{M(n)}

=ρ γ̄ S(n−1)RE{M(n)}. (30)

B- Analogously, we obtain forB

B ≈ ρ γ̄ E{M(n)}RS(n−1). (31)

C- For CMA, sinceρ=µ andM(n)=I, C reduces to

CCMA≈µ2E{γ2(n)u(n)uT (n)S(n−1)u(n)uT (n)}. (32)

Analogously for SWA, replacingM(n) = R̂−1(n) by its mean andρ = (γ̄)−1, we get

CSWA≈(1−λ)2(γ̄)−2E{γ2(n)R−1u(n)uT (n)

× S(n−1)u(n)uT (n)R−1}. (33)

From (30)-(33), we observe that the four first terms of the right-hand side of (27) are linear inS(n−1). Thus,

assuming that the CMA step-sizeµ is sufficiently small and the SWA forgetting-factorλ is sufficiently close

to 1, the termC for both algorithms can be neglected with respect to the three first terms on the right-hand

side of (27).

D- Using R1 and (29), we get

D ≈ ρ2σ2
β

E{M(n)}R E{M(n)}. (34)
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E- The termE can be rewritten as

E = ρE{E{β(n)w̃(n−1)uT (n)M(n)|u(n)}}

≈ ρE{β(n)E{w̃(n−1)}uT (n)M(n)}. (35)

SinceE{w̃(n−1)} = 0 in steady-state, the termE is a null matrix with dimensionsM ×M , i.e.,E = 0M×M .

Using the same arguments, we can show that the termsF , G, andH are also null matrices in steady-state.

From the previous results, (27) reduces to

S(n)≈S(n− 1)− ργ̄S(n− 1)RE{M(n)}

− ργ̄E{M(n)}RS(n− 1)

+ ρ2σ2
β

E{M(n)}RE{M(n)}+ Q. (36)

Following a similar analysis for LMS [4], it can be shown that this recursion is stable for sufficiently smallρ

— however, (36) cannot be used to find a range ofρ that guarantees stability, due to the approximations made,

particularly the discarding of (33) (we intend to pursue this matter elsewhere). For smallρ, when n → ∞, we

obtain for CMA

µγ̄ [S(∞)R + RS(∞)] ≈ µ2σ2
β
R + Q. (37)

Taking the trace of both sides of (37), we arrive at

ζCMA = Tr
(
RS(∞)

)
≈ µσ2

β
Tr(R) + µ−1Tr(Q)

2γ̄
. (38)

Analogously for SWA, we have

2(1− λ)S(∞) ≈ (γ̄)−2σ2
β

(1− λ)2R−1 + Q. (39)

Multiplying both sides of (39) byR, and taking the trace, we obtain

ζSWA = Tr
(
RS(∞)

)
≈ σ2

β
(1− λ)M

2γ̄2
+

Tr(QR)

2(1− λ)
. (40)

These results coincide with those of [23] and [9], obtained with the feedback analysis for sufficiently smallµ and

(1 − λ). Furthermore, as shown in [9], the ratio between the minimum value of ζ of SWA and CMA is equal to

(19). This allows a direct extension to the blind context of the results comparing the tracking performance of the

RLS and LMS algorithms.

In Table II, the analytical expressions for the EMSEs of the supervised and blind algorithms considered here are

summarized for convenient reference. Comparing these expressions, one can observe that the EMSE of LMS and

RLS can also be obtained respectively from the EMSE of CMA and SWA,making σ2
β ← σ2

v and γ̄ ← 1. Thus,

there is an evident equivalence between LMS and CMA and between RLS and SWA, which reinforces the link

between blind equalization algorithms and classical adaptive filtering of [33].
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C. Tracking analysis of convex combinations

Using the same arguments of [12, Sec. III], it is possible to show that the convex combinations of algorithms of

the form (1) are universal in the mean-square error sense. Thus, considering, for example, the convex combination

of one RLS and one LMS, when RLS outperforms LMS in the steady-state, the behavior of the overall filter will

be close to that of RLS andζ ≈ ζRLS. On the other hand, when LMS is superior,ζ ≈ ζLMS. Moreover, there are

situations where the combination will outperform both of them. In this case, the EMSE of the overall filter will be

close to

ζ ≈ ζ12 +
∆ζ1∆ζ2

∆ζ1 + ∆ζ2
, (41)

whereζ12 is the cross-EMSE , defined as

ζ12 , lim
n→∞

E{ea,1(n)ea,2(n)}, (42)

and∆ζi = ζi − ζ12, i = 1, 2. Eq. (41) was obtained in [12, Eq. (33)] for the combination of two LMS filters with

different step-sizes (µ1-LMS andµ2-LMS). However, it is also valid for the convex combination of other algorithms

of the form (1), as for the combination of two RLSs with different forgetting factors (λ1-RLS andλ2-RLS), one

RLS and one LMS (λ1-RLS andµ2-LMS), two CMAs (µ1-CMA and µ2-CMA), two SWAs (λ1-SWA andλ2-

SWA), and one SWA and one CMA (λ1-SWA andµ2-CMA). The EMSE of the overall filter is the minimum of

the values calculated by the expressions of each component filter and (41).

Thus, the tracking analysis of convex combinations of the algorithms of the form (1) depends on the results of

Table II, and on the analytical expressions of the cross-EMSE. Using independence assumptions, such expressions

can be obtained through the evaluation of

ζ12 = lim
n→∞

Tr
(
RS12(n− 1)

)
, (43)

where

S12(n− 1) , E{w̃1(n− 1)w̃T

2 (n− 1)}. (44)

Although we are more interested in convex combinations of algorithms with different tracking capabilities as

LMS with RLS or CMA with SWA, we also obtain analytical expressions for ζ12, considering the combinations of

two RLSs, two CMAs, and two SWAs. Although our method also applies to the combination of two LMS filters,

this case was already analyzed in [12] using the feedback method.

Using the linear regression model of (3) for the desired responsed(n), the errorei(n), i = 1, 2 defined in (2)

can be rewritten as a function of thea priori error ea,i(n) and of the disturbancev(n), i.e.,

ei(n) = ea,i(n) + v(n). (45)

To make the performance analysis of the supervised convex combinations more tractable, we assume that
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A5. the sequence{v(n)} is independent of{u(l)} for all n and l. This assumption is widely used in the analysis

of adaptive algorithms [3, p. 284], [12, Sec. II].

Comparing (45) to (24), the errors for supervised or blind filters satisfy

ei(n) = κ(n)ea,i(n) + ϕ(n), (46)

whereκ(n) = 1 andϕ(n) = v(n) for a supervised algorithm, orκ(n) = γ(n) andϕ(n) = β(n) for a blind one. In

both cases,E{ϕ(n)} = 0, andϕ(n) andκ(n) are assumed to be independent ofw̃(n−1) in steady-state. Denoting

κ̄ = E{κ(n)} andσ2
ϕ

= E{ϕ2(n)}, R2 and A5 imply that

E{κ(n)u2(n)} ≈ κ̄E{u2(n)}, (47)

and

E{ϕ2(n)u2(n)} ≈ σ2
ϕ
E{u2(n)}. (48)

Subtracting both sides of (1) fromwo(n), using the model (10) and replacingei(n) by (46), we arrive at

w̃i(n) =[I− ρiκ(n)Mi(n)u(n)uT (n)]w̃i(n− 1)

− ρiϕ(n)Mi(n)u(n) + q(n). (49)

In order to obtainζ12, we multiply (49) with i = 1 by its transpose withi = 2 and take the expectations of both

sides. Then, assuming thatq(n) is independent of the initial conditions and ofu(n), after some algebra, we get

E{w̃1(n)w̃T

2 (n)} = E{w̃1(n− 1)w̃T

2 (n− 1)}

−ρ2E{κ(n)w̃1(n− 1)w̃T

2 (n− 1)u(n)uT (n)M2(n)}

−ρ1E{κ(n)M1(n)u(n)uT (n)w̃1(n− 1)w̃T

2 (n− 1)}

+ρ1ρ2E{κ2(n)M1(n)u(n)uT (n)w̃1(n− 1)

× w̃T

2 (n− 1)u(n)uT (n)M2(n)}

+ρ1ρ2E{ϕ2(n)M1(n)u(n)uT (n)M2(n)}

−ρ2E{ϕ(n)w̃1(n−1)uT (n)M2(n)}

−ρ1E{ϕ(n)M1(n)u(n)w̃T

2 (n−1)}

+ρ2E{κ(n)ϕ(n)M1(n)u(n)uT (n)w̃1(n−1)uT (n)M2(n)}

+ρ2E{κ(n)ϕ(n)M1(n)u(n)w̃T

2 (n−1)u(n)uT (n)M2(n)}

+E{q(n)qT (n)}. (50)
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Using the same arguments as in Section III-B, i.e., A1-A4/A5,(47), (48), R1, and R3, (50) can be simplified to

S12(n) = S12(n− 1)

− ρ2κ̄S12(n− 1)RE{M2(n)}

− ρ1κ̄E{M1(n)}RS12(n− 1)

+ ρ1ρ2σ
2
ϕ

E{M1(n)}R E{M2(n)}+ Q. (51)

Whenn→∞, for the combination ofµ1-LMS with µ2-LMS or µ1-CMA with µ2-CMA, we obtain

κ̄
[
µ2S12(∞)R + µ1RS12(∞)

]
= µ1µ2 σ2

ϕ
R + Q. (52)

Taking the trace of both sides (52), we arrive at

ζ12 = Tr
(
RS12(∞)

)
=

µ1µ2Tr(R)σ2
ϕ

+ Tr(Q)

κ̄ (µ1 + µ2)
. (53)

Similar expressions were also obtained using the feedback analysis in [12] for the combination of two LMS filters

and in [21] for the combination of two CMAs.

For the combination ofλ1-RLS with λ2-RLS or λ1-SWA with λ2-SWA, replacingMi(n) = R̂−1
i (n), i = 1, 2

by their means, we obtain in the steady-state

[
(1− λ1) + (1− λ2)

]
S12(∞)

= ρ1ρ2(1− λ1)(1− λ2)σ
2
ϕ
R−1 + Q. (54)

Multiplying both sides of (54) byR and taking the trace, we arrive at

ζ12 =
ρ1ρ2(1− λ1)(1− λ2)M σ2

ϕ
+ Tr(QR)

(1− λ1) + (1− λ2)
. (55)

Finally, for the combination ofλ1-RLS with µ2-LMS or λ1-SWA with µ2-CMA, we have in the steady-state

S12(∞)Γ = ρ1 µ2 (1− λ1)σ2
ϕ
I + Q. (56)

where

Γ = (1− λ1)I + κ̄ µ2R. (57)

Post-multiplying both sides of (56) byΣ , Γ−1R and taking the trace, we obtain

ζ12 = ρ1µ2(1− λ1)σ
2
ϕ

Tr
(
Σ
)

+ Tr
(
QΣ

)
. (58)

The results of (53), (55) and (58) are summarized in Table III for all the convex combinations of adaptive

algorithms considered here.
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IV. SIMULATION RESULTS

To verify the behavior of the proposed scheme and the validity of the tracking analysis in the supervised case,

we consider a system identification application. The initial optimal solution is formed withM = 5 independent

random values between 0 and 1, and is given by

wT

o (0) =
[
0.5349 0.9527 −0.9620 −0.0158 −0.1254

]
.

The regressoru(n) is obtained from a processu(n) asuT (n) = [ u(n) u(n−1) ··· u(n−4) ], whereu(n) is generated

with a first-order autoregressive model, whose transfer function is
√

1− b2/(1− bz−1). This model is fed with an

i.i.d. Gaussian random process, whose variance is such thatTr(R) = 1. Moreover, additive i.i.d. noisev(n) with

varianceσ2
v = 0.01 is added to form the desired signal.

Figure 5 shows the EMSE andE{η(n)} estimated from the ensemble-average of 500 independent runs for

λ1-RLS (λ1 = 0.92), µ2-LMS (µ2 = 0.04), and their convex combination (µα = 100, α+ = 4). To facilitate

the visualization, the EMSE curves were filtered by a moving-average filter with 32 coefficients. At every105

iterations, the nonstationary environment, represented by the matrixQ, is changed. During the first105 iterations,

Q = 10−6R, LMS presents better tracking performance than that of RLS andthe combination performs close

to LMS with E{η(n)} ≈ 0. When the matrixQ becomes equal to10−6R−1, this behavior changes: although

RLS is slightly better than LMS, the combination performs better than both of them andE{η(n)} ≈ 0.42. For

Q = 2 × 10−5R, the combination switches back to LMS andE{η(n)} ≈ 0. Finally, for Q = 2 × 10−5R−1,

the performance of RLS is better and the combination behaves close to it, with E{η(n)} ≈ 0.92. The dashed

lines in Figure 5-(a) show the predicted values ofζ for the combination, which are in a good agreement with the

experimental results. Note also that the small disagreement between our model and the simulations forn > 3×105

is due to an imprecision in the model for RLS.

Figure 6 shows the EMSE for different values ofc2, considering theoretical and experimental results forλ1-RLS

(λ1 = 0.92), µ2-LMS (µ2 = 0.04), and their convex combination (µα = 100, α+ = 4). We assume ensemble-average

of 100 independent runs and three different nonstationary environments:Q = c2I, Q = c2R, andQ = c2R−1. Good

agreement between analysis and simulation can be observed for all kinds of considered nonstationary environments.

Note that the small disagreement between our model and the simulations observed in Figure 6 for largec2 is due

to an imprecision in the model for RLS: this can be seen by comparing the theoretical and simulation curves for

RLS alone.

In Figure 7, we show the EMSE for different values ofc2, considering theoretical and experimental results

for λ1-RLS (λ1 = 0.92), λ2-RLS (λ2 = 0.995), and their convex combination (µα = 100, α+ = 4). For the

simulations, each point is an ensemble-average of 100 independent runs withQ = c2R. Again, we observe good

agreement between theoretical and experimental EMSE. Such agreement also occurs for other kinds of nonstationary
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environments, withQ = c2I or Q = c2R−1.

In the blind equalization case, we assume 4-PAM (pulse amplitude modulation) with statisticsE{a6(n)} = 365,

E{a2(n)} = 5, ra = 8.2 and channel coefficients1 [0.1, 0.3, 1, −0.1, 0.5, 0.2] [22]. In the combinations, each

component filter hasM = 4 coefficients as aT/2-fractionally spaced equalizer and is initialized with only one

non-null element in the second position.

Figure 8 shows the EMSE for different values ofc2, considering theoretical and experimental results forλ1-SWA

(λ1 = 0.99), µ2-CMA (µ2 = 10−4), and their convex combination (µα = 0.1, α+ = 4). Again, each point is an

ensemble-average of 100 independent runs and we present results for three different nonstationary environments:

Q = c2I, Q = c2R, andQ = c2R−1. Although the agreement between analysis and simulation isnot as good as in

the supervised case, the predicted values model reasonablywell the overall behavior of the algorithms, independently

of the nonstationary environment. Note that a difference ofa few dB is common in models for blind algorithms,

due to the strong assumptions necessary for the analysis.

Figures 9 and 10 show the EMSE for different values ofc2, considering respectively theoretical and experimental

results forµ1-CMA, µ2-CMA, and their convex combination withQ = c2R, and forλ1-SWA, λ2-SWA, and their

convex combination, withQ = c2R−1. We assumeµ1 = 10−3, µ2 = 10−4, λ1 = 0.99, λ2 = 0.999, µα = 0.1,

α+ = 4, and ensemble-average of 100 independent runs. The agreement between analysis and simulation for the

combination of two SWAs is better than that for the combination of two CMAs. This occurs because the steady-state

model of SWA shows a better agreement with experimental results than that of CMA, as shown in the figures 9

and 10. This behavior also happens for other kinds of nonstationary environments.

V. CONCLUSION

In this paper we proposed the convex combination of filters of different families (gradient-based and Hessian-

based) to achieve an overall filter with superior tracking performance. In addition, we presented a unified model

for the convex combination of several different adaptive algorithms, both supervised and unsupervised (blind). Our

models for the combination of two RLSs, two CMAs, two SWAs, one LMSwith one RLS, and one CMA with

one SWA are novel, and show good agreement with simulations.

1Although we assume channels with long impulse response to justify R2, our model agrees well with simulations even for a rather short

channel such as this one. Good agreement was also observed with longer channels.



18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY2008

APPENDIX A

REMARKS R2 AND R3

Considering an FIR channel with impulse response[ h0, h1, · · · , hL−1 ], its output in a noise-free environment

is given by

u(n) =
L−1∑

ℓ=0

hℓ a(n− ℓ).

In the analysis, we useE{γ(n)u2(n)} ≈ γ̄ E{u2(n)}. From (5), this approximation reduces to say that

E{a2(n− τd)u
2(n)} ≈ E{a2(n− τd)}E{u2(n)}. (59)

We check the validity of this approximation, evaluating both sides of (59). Evaluating the term on the right-hand

side of (59), using the fact that{a(n)} is i.i.d., we arrive at

E{a2(n−τd)E{u2(n)}

= E{a2(n−τd)}E
{

L−1∑

ℓ=0

L−1∑

m=0

hℓhma(n−ℓ)a(n−m)

}

= E{a2(n)}2
L−1∑

k=0

h2
k. (60)

Analogously for the term on the left-hand side of (59), we obtain

E{a2(n−τd)u
2(n)}

= E

{
a2(n−τd)

L−1∑

ℓ=0

L−1∑

m=0

hℓhma(n−ℓ)a(n−m)

}

= h2
τd

E{a4(n)}+E{a2(n)}2
L−1∑

k=0, k 6=τd

h2
k. (61)

ReplacingE{a4(n)} by (1 + ε4)E{a2(n)}2 in (61), we get

E{a2(n−τd)u
2(n)} = E{a2(n)}2

(
ε4 h2

τd
+

L−1∑

k=0

h2
k

)
. (62)

The value ofε4 is nonnegative and depends on the constellation. For example, ε4 = 0 for the constant-modulus

constellation of 2-PAM,ε4 = 0.64 for 4-PAM, andε4 = 0.73 for 6-PAM. Assuming thatL is sufficiently large

such thatε h2
τd
≪∑L−1

k=0 h2
k, (62) can be approximated by (60). In this case, (59) and (28)are satisfied.

To show the validity ofE{β2(n)u2(n)} ≈ σ2
β
E{u2(n)}, we use a similar argument. Recalling that{a(n)} is an

i.i.d. sequence, we get

E{β2(n)u2(n)}=h2
τd

E{a8(n)− 2raa6(n)+(ra)2a4(n)}

+ E{β2(n)}E{a2(n)}
L−1∑

k=0, k 6=τd

h2
k. (63)
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ReplacingE{ak(n)} = (1 + εk)E{ak−2(n)}E{a2(n)} in (63), we arrive at

E{β2(n)u2(n)}=h2
τd

E{a2(n)}E
{

ε8a
6(n)−ε6(2ra)a4(n)

+ ε4(r
a)2a2(n)

}
+ E{β2(n)}E{a2(n)}

L−1∑

k=0

h2
k. (64)

Again, εi, i = 4, 6, 8 are nonnegative and depend on the constellation. If the channel is such that the first term of

the right-hand side of (64) can be disregarded with respect to the second term, (29) of R2 will be satisfied.

To show thatE{w̃(n)} = 0 in the steady-state, we remark that

E{β(n)u(n)} =E

{
[−a3(n− τd) + raa(n− τd)]

·
L−1∑

ℓ=0

hℓ a(n− ℓ)

}

=hτd

[
−E{a4(n)}+ raE{a2(n)}

]
= 0. (65)

This is an exact relation. ForM(n) 6= I, we use R1 to approximateE{β(n)M(n)u(n)} = E{M(n)}E{β(n)u(n)}.

Then, taking the expectations of both sides of (26) and using A2, we obtain

E{w̃(n)} ≈ E{w̃(n−1)}

− ρE{M(n)}E{γ(n)u(n)uT (n)}E{w̃(n−1)}

− ρE{M(n)}E{β(n)u(n)}+ E{q(n)} =

= [I− ρE{M(n)}E{γ(n)u(n)uT (n)}] E{w̃(n−1)}, (66)

from E{q(n)} = 0 and using (65). SinceE{γ(n)u2(n)} 6= 0, we getE{w̃(n)} → 0 for sufficiently smallρ.
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[17] J. Arenas-Garćıa, A. R. Figueiras-Vidal, and A. H. Sayed, “Tracking properties of a convex combination of two adaptive filters,” in

Proc. of IEEE 13th Workshop on Statistical Signal Processing (SSP’05). IEEE, 2005, pp. 109–114.
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Fig. 1. Time-variant channel identification. (a) Squareda priori errors for RLS (λ = 0.995), LMS (µ = 0.01), and their convex

combination C-RLS-LMS (µα = 400, α+ = 4); (b) Evolution of the mixing parameter. Input: correlated Gaussian noise, AR-1 model with

pole at 0.99; measurement noise withσ2
v = 10−5; Rayleigh fading channel (5 coefficients, symbol periodT = 0.8µs, maximum Doppler

spreadfD = 50 Hz).
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Fig. 2. Same example of Fig. 1. Squareda priori errors for C-RLS-LMS, CLMS (µ1 = 0.01, µ2 = 0.001, µα = 400, α+ = 4), RVSS-LMS

(µmin = µ2, µmax = µ1, µinit = (µ1 + µ2)/2, β = 0.97).
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Fig. 3. Blind equalization. Residual intersymbol interference curves for CMA (µ = 2 × 10−3), SWA (λ = 0.999), and their convex

combination (µα = 15, α+ = 4); 2-PAM (pulse amplitude modulation); Rayleigh fading channel (3 coefficients, symbol periodT = 0.8µs,

maximum Doppler spreadfD = 80 Hz); SNR=30 dB; baud-rate equalizer with 11 coefficients.
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Fig. 4. Adaptive convex combination of two transversal filters for (a) supervised filtering and (b) blind equalization.
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Fig. 6. EMSE for different values ofc2 considering theoretical and experimental results for the convex combination and theoretical results

for LMS and RLS, withλ1 = 0.92, ǫ = 12.5, µ2 = 0.04, µα = 100, α+ = 4, b = 0.8; mean of 100 independent runs.
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Fig. 7. EMSE for different values ofc2 considering theoretical and experimental results for the convex combination and theoretical results

for λ2-RLS andλ1-RLS, with λ1 = 0.92, λ2 = 0.995, ǫ = 12.5, µα = 100, α+ = 4, b = 0.8; mean of 100 independent runs.
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Fig. 8. EMSE for different values ofc2, considering theoretical and experimental results for CMA, SWA, and their convex combination,

with λ1 = 0.99, µ2 = 10−4, µα = 0.1, α+ = 4; M = 4; 4-PAM; channel[0.1, 0.3, 1, −0.1, 0.5, 0.2]; T/2- fractionally-spaced equalizer;

mean of 100 independent runs.
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Fig. 9. EMSE for different values ofc2, considering theoretical and experimental results forµ1-CMA, µ2-CMA, and their convex

combination, withµ1 = 10−3, µ2 = 10−4, µα = 0.1, α+ = 4; M = 4; 4-PAM; channel[0.1, 0.3, 1, −0.1, 0.5, 0.2]; T/2- fractionally-

spaced equalizer; mean of 100 independent runs.
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Fig. 10. EMSE for different values ofc2, considering theoretical and experimental results forλ1-SWA, λ2-SWA, and their convex

combination, withλ1 = 0.99, λ2 = 0.999, µα = 0.1, α+ = 4; M = 4; 4-PAM; channel[0.1, 0.3, 1, −0.1, 0.5, 0.2]; T/2- fractionally-

spaced equalizer; mean of 100 independent runs.
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TABLE I

PARAMETERS OF THE CONSIDERED ALGORITHMS.

Alg. ρi ei(n) M
−1

i (n)

LMS µi d(n) − yi(n)
I

CMA µi [ra − y2
i (n)]yi(n)

RLS 1 d(n) − yi(n)
R̂i(n) =

n∑

l=1

λn−l

i u(l)uT (l)
SWA 1/γ̄ [ra − y2

i (n)]yi(n)
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TABLE II

ANALYTICAL EXPRESSIONS FOREMSE OF THE CONSIDERED ALGORITHMS.

Alg. ζ

LMS
µσ2

vTr(R) + µ−1Tr(Q)

2

RLS
σ2

v(1 − λ)M + (1 − λ)−1Tr(QR)

2

CMA
µσ2

β Tr(R) + µ−1Tr(Q)

2γ̄

SWA
(γ̄)−1σ2

β (1−λ)M + γ̄(1−λ)−1Tr(QR)

2γ̄
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TABLE III

ANALYTICAL EXPRESSIONS FOR CROSS-EMSE OF THE CONSIDERED COMBINATIONS.

Combination ζ12

µ1-LMS andµ2-LMS
µ1µ2Tr(R)σ2

v + Tr(Q)

µ1 + µ2

λ1-RLS andλ2-RLS
(1 − λ1)(1 − λ2)Mσ2

v + Tr(QR)

(1 − λ1) + (1 − λ2)

λ1-RLS andµ2-LMS µ2(1−λ1) σ2
v Tr

(
Σ
)

+ Tr
(
QΣ

)

µ1-CMA and µ2-CMA
µ1µ2Tr(R)σ2

β + Tr(Q)

γ̄(µ1 + µ2)

λ1-SWA andλ2-SWA
(γ̄)−2(1−λ1)(1−λ2)Mσ2

β + Tr(QR)

(1 − λ1) + (1 − λ2)

λ1-SWA andµ2-CMA (γ̄)−1µ2(1−λ1)σ
2
β Tr

(
Σ
)
+Tr

(
QΣ

)


