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Abstract. Functional magnetic resonance imaging (fMRI) uses MRI to noninvasively map areas of increased 
neuronal activity in human brain without the use of an exogenous contrast agent. Low signal-to-noise ratio of 
fMRI images makes it necessary to use sophisticated image processing techniques, such as statistical parametric 
map (SPM), to detect activated brain areas. This paper presents a new technique to obtain clear SPM from 
noisy fMRI data. It is based on the robust anisotropic diffusion. A direct application of the anisotropic diffusion 
to fMRI does not work, mainly due to the lack of sharp boundaries between activated and non-activated 
regions. To overcome this difficulty, we propose to calculate SPM from noisy fMRI, compute diffusion 
coefficients in the SPM space, and then perform the diffusion in fMRI images using the coefficients previously 
computed. These steps are iterated until the convergence. Experimental results using the new technique yielded 
surprisingly sharp and noiseless SPMs. 

1. Introduction 
The goal of functional neuroimaging is to map the activities 
of a living brain in space and time. The gold standard for 
measuring brain cell activities involves direct and invasive 
electrical recording of membrane potential of individual 
neurons. However, such measurements are limited to 
certain experimental conditions. For studies on human 
subjects, noninvasive methods, such as PET (positron 
emission tomography) or fMRI (functional magnetic 
resonance imaging), have to be applied. 

From the early 80s PET dominated the field of 
functional neuroanatomy, but in the past ten years fMRI has 
developed into an alternative and powerful technique. 
Local increases in neural activity cause both a relative 
deoxygenation of blood and an increase in perfusion, that 
quickly reverses the deoxygenation, leading to an increase 
in oxygenation that endures for several seconds. fMRI is 
sensitive to the oxygenation of blood and has a spatio-
temporal scale of about 1-3mm and one or more seconds. 
The lower limits on the effective resolution of fMRI are 
physiological and imposed by the spatio-temporal 
organization of evoked hemodynamic responses (2-5mm 
and 5-8 seconds). 

By virtue of the relatively long half-life of the tracers 
used, PET can only measure responses summed over fairly 
long periods of time. In contrast, fMRI can be used in two 
ways: periodic (repeated stimuli) or event-related 
paradigms. In the periodic paradigm, the subject alternates 

between periods of stimulation and rest. In this case, each 
voxel of fMRI consists of a time-series that can be divided 
in epochs, an epoch being the period of time that 
corresponds to the activity followed by the rest. In the 
event-related paradigm, the subject executes the activity 
only during a short period of time, i.e., a trial.  

Low signal-to-noise ratio in fMRI images compels us 
to use sophisticated image-processing techniques to detect 
activated brain areas. Raw fMRI images pass through many 
transformations until yielding the statistical parametric map 
(SPM). SPM is the spatial map of the statistical 
significance of an effect. To obtain SPM, the user specifies 
manually a design matrix and makes use of the general 
linear model (multiple linear regression) to compute the 
estimated parameters, i.e., to determine how well the time-
series of each voxel fit the specified design matrix. These 
parameters are used to compute the statistical significance 
of an effect. These statistical tests, spatially disposed, form 
the SPM. In this paper, we will use indistinctly words 
“estimated parameters” and “SPM.” Course notes [SPM, 
1997] is a good reference on fMRI processing. Even with 
all these image-processing apparatus, a noisy fMRI will 
yield a noisy SPM. Simple low-pass filters cannot be used 
because they blur the edges of activated areas. Traditional 
edge-preserving image filtering techniques cannot be used 
either because there is no clear edge between activated and 
non-activated areas. 

In the literature, there are many works on attenuating 
noise and clustering activated regions in fMRI volumes 



  

 
 

 

[Goutte et al., 1999; Ardekani and Kanno, 1998; Kershaw 
et al., 1999; Chuang et al., 1999; Friston et al., 1994]. In 
particular, Solé et al. [Solé et al., 2001] have recently 
proposed a technique named anisotropic averaging. This 
technique is inspired on the anisotropic diffusion, 
introduced by Perona and Malik [Perona and Malik, 1990]. 
Anisotropic averaging computes an initial set of clearly 
activated voxels by thresholding the correlation coefficient 
(estimated parameters). This set is then used to construct a 
complex “similarity measure” to compute the averaging 
coefficients. Despite the fact that Solé et al. try to explain 
the definition of their measure with intuitive arguments, we 
are impelled to ask if there are no simpler and more natural 
way to define the similarity measure. Solé et al. themselves 
state, “the key problem (...) becomes the design of the 
similarity measure.” Moreover, their technique can be used 
only to process periodic fMRI tests, because their similarity 
measure is based on the discrete Fourier transformation of 
time-series of each voxel. In an event-related fMRI test, 
Fourier transformation does not make any sense.  

In this paper, we present a new technique to obtain 
clear SPM from noisy fMRI data. Instead of defining a 
highly complex similarity measure based on the thresholded 
SPM, we use the gradient magnitude of SPM as the 
diffusion coefficients. We have also replaced the 
anisotropic averaging by the robust anisotropic diffusion 
[Black et al., 1998]. Our technique can be used to process 
both periodic and event-related fMRI tests. Simulated 
experiments using our technique produced surprisingly 
sharp and noiseless SPMs. 

2. Robust Anisotropic Diffusion 
Witkin introduced a clean formalism for the scale-space 
filtering [Witkin, 1983]. Let +→!!2:),( yxI  be a 2-D 
image in the continuous domain. The scale-space of this 
image is a 3-D image ++ →× !!!2:),,( tyxI  that 
satisfies the following partial differential equation 

)(),,( Idiv
t

tyxI ∇=
∂

∂ , 

using the original image )0,,( yxI  as the initial condition. 
Variable t is an artificial time parameter that specifies the 
image scale. Modifying the image according to this 
isotropic diffusion equation is equivalent to filtering the 
original image with a Gaussian filter, that is: 

),(),(),,( yxIyxGtyxI t ∗= , 

where ),( yxGt  is the Gaussian function with variance 

t22 =σ . This linear scale-space has many nice 
mathematical properties. However, it blurs out image 
edges. 

In order to keep sharp edges, while filtering noises and 
small details, Perona and Malik defined nonlinear 
anisotropic scale-space [Perona and Malik, 1990] by 
modifying the partial differential equation as follows 

( )[ ]IIgdiv
t

tyxI ∇∇=
∂

∂ ),,( , 

where I∇  is the gradient magnitude, and ( )Ig ∇  is an 
“edge-stopping” function. They suggested two edge-
stopping functions: 
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where K is a positive constant. 
The choice of g(.) can greatly affect the extent to 

which discontinuities are preserved. So, recently, Black et 
al. [Black et al., 1998] proposed to use the robust 
estimation theory to define a better edge-stopping function 
(Tukey’s biweight function): 
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where 2/K=σ . Using Tukey’s function, the diffusion 
process converges faster and yields sharper edges. 

Perona and Malik discretized (spatio-temporally) their 
anisotropic diffusion equation as follows: 

( )∑
η∈

∇∇
η
λ+=+

sp
psps

s
IIgtsItsI ,,),()1,( , 

where ),( tsI  is a discretely sampled image, s denotes the 
pixel position in a discrete 2-D or 3-D grid, and t now 
denotes discrete time steps (iterations, t ≥ 0). The constant 

+∈λ !  is a scalar that determines the rate of diffusion, sη  
represents the spatial neighborhood of pixel s. sη  is 
usually four for 2-D images and six for 3-D images, except 
at image boundaries. Perona and Malik approximated the 
image gradient magnitude in a particular direction as 

.),,(),(, sps ptsItpII η∈−=∇  

The same discretization scheme can be used with Tukey’s 
robust estimation function, yielding robust anisotropic 
diffusion. 



  

 
 

 

3. General Linear Model 
The general linear model is simply an equation that relates 
what one observes, to what one expected to see, by 
expressing the observations as a linear combination of 
expected components and some residual error. The general 
linear model comes in a number of guises, for example 
multiple linear regression, analysis of covariance or a 
simple t test. The general linear model can be written as: 

ε+β= XY , 

where Y is the column vector of observations, ε is the 
column vector of error terms, and β is the column vector of 
parameters. X is the design matrix with one row per 
observation and one column per model parameter. 

The following equation performs the least square 
estimation of parameters: 

YXXX TT 1)(ˆ −=β  

Different statistical tests (such as “are there any effects 
of interest?”) can be computed using the estimated vector 
β̂ . SPM is the image of statistical tests. As we have said 
above, we will use indistinctly the words “image of 
estimated parameters” and “SPM.” 

Let us give a simple numerical example of parameter 
estimation in fMRI: 
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The first matrix Y is a time-series of values of a voxel. Let 
us suppose that values were taken in every 5 seconds. The 
second matrix X is the design matrix. The first column 
indicates that we would like to detect a periodic activation 
that repeats every 20 seconds and lasts 10 seconds. The 
second column is dummy. Estimating parameters, we obtain 

75.10ˆ
1 =β  and 00.51ˆ

2 =β . High value of 1β̂  indicates 
that very likely the voxel is activated. 

4. Anisotropic Averaging 
The anisotropic diffusion has been successfully applied to 
structural MRI [Gerig et al., 1992]. However, this 
technique cannot be applied directly to fMRI, mainly due to 
the lack of sharp boundaries between activated and non-

activated regions. It also cannot be directly applied to SPM, 
because it is usually very noisy. 

Smoothing fMRI (convolving the data with a 
smoothing kernel) generally increases the signal-to-noise 
ratio. However, it blurs the edges between activated and 
non-activated regions. Thus, it is desirable to perform only 
intra-region smoothing (avoiding inter-region smoothing). 

Solé et al. [Solé et al., 2001] proposed this idea and 
called it anisotropic averaging, a technique motivated in 
part by the anisotropic diffusion. It consists on making a 
selective neighborhood averaging of the signal. Let I be an 
fMRI image, ),( npI  denote the voxel value at spatial 
voxel position p and volume n ∈  [1...N], and )( pI  denote 
the time-series signal at voxel p. Then, the selective 
neighborhood averaging consists on: 

,),,(),(
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1)1,,( ∑∑ η∈
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s

s

p
p

tnpIpsw
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for n ∈  [1...N] and t ≥ 0. 
The similarity measure Ψ determines the weights 

),( psw  using the time-series signal being averaged )(sI  
and its corresponding neighbor )( pI : 

))(),((),( pIsIpsw Ψ= . 

This similarity measure allows us to distinguish 
activated voxels from non-activated ones and is able to 
perform a selective averaging, combining only signals of 
the same class.  

Solé et al. propose to compute the initial set Ω of 
clearly activated voxels by thresholding correlation 
coefficients (estimated parameters β̂ ). Then, the Fourier 
spectra of voxels in Ω are computed to define the similarity 
measure function Ψ. The Fourier spectrum of time-series of 
each voxel is also computed in order to evaluate the 
similarity between voxels. The whole procedure is highly 
complex and the readers are referred to [Solé et al., 2001] 
for further details. We would like to ask, “are all these 
calculations really necessary?” Moreover, “how can this 
technique be applied to event-related fMRI acquisition 
protocols?” 

5. Proposed Method 
We propose a different approach, directly motivated by the 
robust anisotropic diffusion, to filter fMRI. Our method is 
simpler, can be applied to event-related fMRI and has 
yielded surprisingly clear SPMs. 

Given an fMRI image )0,,( nsI , estimate parameters 



  

 
 

 

)0(β̂  at iteration t=0 using the general linear model. The 
magnitude of gradient of SPM will be used as the argument 
of edge-stopping function g to calculate the diffusion 
coefficients. These coefficients are used to perform 
diffusion in fMRI data )0,,( nsI . Then, the diffused fMRI 

)1,,( nsI  is used to estimate new parameters )1(β̂  at 
iteration t=1. These steps are repeated until the average of 
diffused value is below some threshold. It is also possible 
to specify the desired number of iterations, instead of 
defining the thresholding average diffused value. The 
following equation describes this process: 

( )∑
η∈

∇β∇
η
λ+=+

sp
psps

s
IgtnsItnsI ,,),,()1,,( , 

for all n ∈  [1...N] and for t ≥ 0. 
The best edge-stopping function g is the Tukey’s 

biweight function, defined in section 2. Note that the 
correct choice of parameter σ of Tukey’s function is 
essential to yield good results. The magnitude of this 
parameter depends on the average value of the estimated 
parameters β̂ .  

6. Experimental Results 
We have tested the method proposed in this paper on both 
simulated and real fMRI data. However, the experimental 
results on real fMRI images are inconclusive, because the 
actual activated region is unknown. Consequently, we will 
depict in this paper only simulated data with well-delimited 
activated areas. We aim to investigate further the 
experimental results on real fMRI images in a future work. 

Figure 1 depicts part of a simple simulated fMRI 
phantom with 10×10×3 voxels per volume and 64 volumes. 
All voxel values are originally 500. Gaussian noise with 
standard deviation 10 was added to the original values. 
Volumes 3, 4, 7, 8, 11, 12, ... have a 6×6 square activated 
area in the center of the volume, with two non-activated 
holes with 4 voxels each. Activated voxels had their values 
increased by 20. Figure 2 depicts the image of estimated 
parameters using the general linear model. SPM obtained 
without filtering is presented in the left column. SPM 
obtained by filtering fMRI with the proposed method (using 
Tukey’s edge-stopping function with 10=σ ) is depicted in 
the right column. Note that the filtered SPM is completely 
noiseless, and the edges are perfectly preserved. 

Figure 3 depicts real fMRI images with 79×95×68 
voxels per volume and 12 volumes. The volumes were 
realigned in order to correct subject’s head-movements. 
Then, the volumes were randomly shuffled in order to 
remove any activation signal that may be present in the 

original fMRI. The average value of voxels is roughly 450 
and the average value eliminating the background is 
approximately 900. In volumes 3, 4, 7, 8, 11 and 12, an 
ellipsoidal area was artificially activated by adding 150 and 
Gaussian noise with standard deviation 10 to the original 
values. The left column of figure 3 depicts three slices of 
volume 1, with no activated voxels. The right column of 
figure 3 depicts three slices of volume 3, with artificially 
activated ellipsoid. Note that the activated area is hardly 
visible. Figure 4 depicts SPM obtained without filtering 
(left column) and the corresponding threshold images (right 
column). These images are very noisy and many non-
activated areas were falsely detected as activated (and vice 
versa). Figure 5 depicts SPM obtained by filtering fMRI 
with the proposed method (left column) and corresponding 
threshold images (right column). Great part of noises was 
removed and the threshold images are perfect: there is 
neither non-activated area falsely detected as activated, nor 
activated voxel falsely detected as non-activated. 

7. Conclusion 
In this paper, we have presented a new technique to obtain 
clear SPM from noisy fMRI. It is directly inspired by the 
robust anisotropic diffusion. Experimental results on the 
simulated data show that surprisingly sharp and noiseless 
SPMs can be obtained. 
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Fig. 1: A simple simulated fMRI phantom with 10×10×3 
voxels per volume and 64 volumes. Only the first 4 
volumes are depicted. All voxel values are 500 added with 
Gaussian noise with standard deviation 10. Volumes 3, 4, 7, 
8, 11, 12, ... have some activated voxels where value 20 
was added to the original value. 
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Fig. 2: Spatial map of estimated parameters β̂  from fMRI 
depicted in figure 1. Left column: original parameters. 
Right column: parameters obtained filtering phantom with 
the proposed technique. 
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Fig. 3: Real fMRI images (79×95×68 voxels per volume, 
12 volumes) with artificially activated area. The average 
value of voxels is roughly 450 and the average value 
eliminating the background is approximately 900. In 
volumes 3, 4, 7, 8, 11 and 12, an ellipsoidal area was 
artificially activated by adding 150 and Gaussian noise with 
standard deviation 10 to the original values. 
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Fig. 4: Spatial map of estimated parameters β̂  from fMRI 
depicted in figure 3. Left column: estimated parameters. 
Right column: activated area detected by thresholding the 
estimated parameters. 
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Fig. 5: Spatial map of estimated parameters β̂  obtained 
using the proposed method. Left column: estimated 
parameters. Right column: activated area detected by 
thresholding the estimated parameters. 

 


