
REVERSIBLE DATA HIDING AND REVERSIBLE AUTHENTICATION
WATERMARKING FOR BINARY IMAGES

Sergio Vicente D. Pamboukian1 and Hae Yong Kim2
1Universidade Presbiteriana Mackenzie, Brazil. E-mail: sergiop@mackenzie.com.br

2Universidade de São Paulo, Escola Politécnica, Brazil. E-mail: hae@lps.usp.br

Abstract

Data hiding is a technique used to embed a se-

quence of bits in a host image with small visual dete-
rioration and the means to extract it afterwards. Re-
versible data hiding allows, in addition, recovering the
original cover-image exactly. Several reversible data
hiding techniques have been developed but none of
them seems to be appropriate for binary images. This
paper proposes a reversible data hiding for binary
images. The proposed technique selects a set of low-
visibility pixels and uses the Golomb code to compress
the predictions of these pixels. This compressed data
and the net payload data are embedded into the image.
Images watermarked by the proposed technique have
excellent visual quality, because only low-visibility
pixels are flipped. Then, we use the proposed data hid-
ing to reversibly authenticate binary images and
documents. This technique has many potential practi-
cal uses, including lossless authenticated FAX trans-
mission and reversible content protection of binary
document databases.

1. Introduction

Data-hiding is a technique used to embed a se-
quence of bits in a host image with small visual dete-
rioration and the means to extract it afterwards. Most
data-hiding techniques modify and consequently dis-
tort the host signal in order to insert the additional in-
formation. This distortion is usually small but irre-
versible. Reversible data-hidings insert information
bits by modifying the host signal, but enable the exact
(lossless) restoration of the original host signal after
extracting the embedded information. Sometimes, ex-
pressions like distortion-free, invertible, lossless or
erasable watermarking are used as synonyms for re-
versible watermarking.

In most applications, the small distortion due to the
data embedding is usually tolerable. However, the pos-

sibility of recovering the exact original image is a de-
sirable property in many fields, like legal, medical and
military imaging. Let us consider that sensitive docu-
ments (like bank checks) are scanned, protected with
an authentication scheme based on a reversible data
hiding, and sent through the Internet. In most cases, the
watermarked documents will be sufficient to distin-
guish unambiguously the contents of the documents.
However, if any uncertainty arises, the possibility of
recovering the original unmarked document is very
interesting.

To the best of our knowledge, none of the available
reversible data hidings is adequate for watermarking
binary images. We propose in this paper a reversible
data hiding for binary images called RDTC (Reversible
Data hiding by Template ranking with symmetrical
Central pixels). Images watermarked by the proposed
technique have excellent visual quality, because only
low-visibility pixels are flipped. RDTC is adequate for
watermarking most types of binary images, like
scanned or computer-generated texts, charts and graph-
ics; cartoon-like images; and clustered-dot halftones.
RDTC can even be used to watermark dispersed-dot
halftones (like images generated by error diffusion),
however the resulting watermarked image may not
present high visual quality, because the concept “low-
visibility pixel” does not apply to this kind of image.

Then, we use RDTC to create a reversible public-
key authentication watermarking for binary images
named RATC (Reversible Authentication Watermark-
ing by Template ranking with symmetrical Central
pixels). Any reversible data hiding technique can be
easily converted into a reversible authentication wa-
termarking, provided that an enough number of bits
can be embedded into the host image. To do it, the
digital signature (DS) of the original image is com-
puted using the private key. Then, the DS is embedded
into the image, along with the information to allow
recovering the original image. The verification algo-
rithm extracts the DS, restores the original cover-

image and verifies whether the DS matches the recov-
ered image.

The advantages of reversibly embedding the DS
over appending it are obvious. First, there is no extra
information (besides the image itself) to be stored or
transmitted. Second, any lossless format conversion,
such as changing the format from TGA to BMP, does
not erase the embedded information. Third, the pres-
ence of a reversible authentication is less noticeable
than the ostensibly appended DS.

RATC has many potential practical uses, because
most of scanned documents are binary, and they must
be digitally signed to assure their authenticity and in-
tegrity. Using RATC, the receiver of an Internet FAX
document can be sure of the identity of the sender of
the document and that the document was not tampered
with. It is also possible to publish a database of binary
documents in the Internet (for example, patent docu-
ments) and the reader can be sure that the documents
are authentic and that they were not maliciously modi-
fied.

2. Reversible watermarking

Some authors [1, 2, 3] classify reversible data hid-
ing techniques in two types: (1) those based on addi-
tive spread spectrum and (2) those based on image
feature compression (high-capacity reversible water-
marking).

(1) The first type [4, 5] makes use of additive
spread spectrum techniques. In these techniques, a
spread spectrum signal corresponding to the data to be
embedded is superimposed (added) on the host signal.
In the decoding, the hidden data is detected and the
added signal is removed (subtracted) to restore the
original host signal. In this type, the payload extraction
is robust, in the sense that the payload can be extracted
even if the watermarked image is slightly modified.
However, in this case, the original image cannot be
recovered. These techniques use modulus arithmetic to
avoid overflow/underflow errors, which may cause
salt-and-pepper artifacts. Moreover, they usually offer
very limited information hiding capacity.

(2) The second type [1, 2, 6, 7, 8, 9, 10] overwrites
some portions of the host signal with the embedded
data. Two kinds of information must be embedded: the
compressed data of the portion to be overwritten (to
allow recovering the original signal) and the net pay-
load data. During the decoding, the hidden information
is extracted, the payload data is recovered, and the
compressed data is used to restore the original signal.
These techniques do not cause salt-and-pepper arti-
facts, because the modified portions are usually the

least significant bits or the high frequency wavelet
coefficients that do not cause perceptible distortion.
These techniques usually offer more data hiding capac-
ity than the first type.

The proposed technique RDTC is of the second
type. There are two main challenges for designing a
reversible data hiding of the second type for binary
images:

(1) The first is to find a suitable non-reversible data
hiding technique to be converted into a reversible ver-
sion. In order to recover the original image, this tech-
nique must be able to localize precisely the flippable
pixels in both insertion and extraction. Many tech-
niques do not have this property. Consider, for exam-
ple, the data hiding where the cover image is subdi-
vided into blocks, and one bit is inserted in each block
by flipping (if necessary) the pixel with the lowest
visibility. The blocks with even (odd) number of black
pixels has bit zero (one) embedded. In this technique,
the original image cannot be recovered even if the
original parities of black pixels are known, because the
precise flipped pixel inside each block cannot be local-
ized.

(2) The second is an efficient compression of the
portion to be overwritten by the hidden data. This por-
tion is typically small, has no structure and its samples
are virtually uniformly distributed and uncorrelated
from sample to sample. Direct compression of the data
therefore results in rather small lossless embedding
capacity. However, if the remainder of the image is
used as the side-information, significant compression
gains can be achieved [2]. In continuous-tone reversi-
ble data hiding, the choice of the compression algo-
rithm seems not to be critical, because there is enough
space to store the information (least significant bits, for
instance). Awrangjeb [1] uses Arithmetic Coding,
LZW and JBIG for lossless compression. Celik [2]
uses an adapted version of CALIC [11]. In the reversi-
ble data hiding for binary images, in contrast, most
compression algorithms based on redundancy or dic-
tionaries are not effective. RDTC uses the Golomb
code to compress predictions of low-visibility pixels to
obtain the space to store the hidden data.

3. PWLC data hiding technique

To the best of our knowledge, the only proposed
reversible data hiding technique for binary images is
PWLC (Pair-Wise Logical Computation) [12, 13].
However, it seems that sometimes PWLC does not
correctly extract the hidden data, and fails to recover
perfectly the original cover image.

PWLC uses neither the spread spectrum nor any
compression technique. It uses XOR binary operations
to store the payload in the host image. It scans the host
image in some order (for example, in raster scanning
order). Only sequences “000000” or “111111” that are
located near to the image boundaries are chosen to
hide data. The sequence “000000” becomes “001000”
if bit 0 is inserted, and becomes “001100” if bit 1 is
inserted. Similarly, the sequence “111111” becomes
“110111” if bit 0 is inserted, and becomes “110011” if
bit 1 is inserted.

However, the papers [12, 13] do not describe
clearly how to identify the modified pixels in the ex-
traction process. The image boundaries may change
with the watermark insertion. Moreover, let us suppose
that a sequence “001000” (located near to an image
boundary) was found in the stego image. The papers
do not describe how to discriminate between an un-
marked “001000” sequence and an originally
“000000” sequence that became “001000” with the
insertion of the hidden bit 0.

4. DHTC data hiding technique

The technique proposed in this paper (RDTC) is
based on the non-reversible data hiding named DHTC
(Data Hiding by Template ranking with symmetrical
Central pixels) [14]. DHTC flips only low-visibility
pixels to insert the hidden data and consequently im-
ages marked by DHTC have excellent visual quality
and do not present salt-and-pepper noise.

Figure 1: A 3×3 template ranking with symmetrical
central pixels in increasing visual impact order.
Hatched pixels match either black or white pixels (note
that all central pixels are hatched). The score of a
given pattern is that of the matching template with the
lowest impact. Mirrors, rotations and reverses of each
pattern have the same score.

DHTC insertion algorithm is:
1. Divide the binary cover image Z in a sequence v

of non-overlapping “image pieces” (e.g., 3×3). Only
the central pixels of the pieces of v can have their col-
ors changed by the watermark insertion.

2. Sort the sequence v in increasing order using the
visual impact score as the primary-key and non-
repeating pseudo-random numbers as the secondary-

key. The primary key classifies the flippable central
pixels according to their “visibility.” Figure 1 enumer-
ates all possible 3×3 templates, listed in increasing
visibility of their central pixels. To assure the feasibil-
ity of reconstruction of v in the data extraction stage,
two templates that differ only by the colors of their
central pixels must have the same visibility score. This
visibility ranking can be modified or larger templates
may be used in order to minimize some specific per-
ceptual distortion measure. The secondary-key pre-
vents from embedding the data only in the upper part
of the image.

3. The n first central pixels of the sorted v are the
data bearing pixels (DBPs). Embed n bits of the data
by flipping (if necessary) the DBPs.

To extract the hidden data, exactly the same se-
quence v must be reconstructed and sorted. Then, the n
first central pixels are DBPs and their values are the
hidden data.

In DHTC, the exact positions of n DBPs are known
in both the data insertion and extraction. This property
makes it possible to transform DHTC into a reversible
data hiding. To do it, the original values of DBPs may
be compressed, appended with the bits to be hidden
(the net payload), and stored in the DBPs.

5. The proposed reversible data hiding

This paper proposes a reversible data hiding tech-
nique for binary images called RDTC (Reversible Data
hiding by Template ranking with symmetrical Central
pixels), based on DHTC previously described. In
RDTC, two kinds of information must be embedded in
the host image: the compressed data to allow recover-
ing the original image and the net payload data to be
hidden. That is, the n DBPs’ original values are com-
pressed in order to create space to store the net payload
data.

There are some difficulties to compress the DBPs’
original values. Most compression algorithms based on
redundancy and dictionaries do not work, because usu-
ally the amount of bits to be compressed is very small.
Moreover, there is no way to predict the next bit based
on the previous, because these bits correspond to the
pixels dispersed throughout the whole image.

The solution we found is to compress the predic-
tions of DBPs’ values (using its neighborhood as the
side-information) instead of their values directly. A
pixel can be either of the same color or of the different
color than the majority of its spatial neighboring pix-
els. Let us assume that the first hypothesis (a pixel is of
the same color than the majority of its neighbors) is
more probable than the second one. Let b be the num-

ber of black neighbor pixels of a DBP (using 3×3 tem-
plates, a DBP has 8 neighbor pixels). The prediction is
correct (represented by 0) if the original DBP is black
and b>4, or if it is white and b≤4. Otherwise, the pre-
diction is wrong (represented by 1).

 If the prediction is good, the predicted value and
the true value should be the same with probability
higher than 50%. As we store zero when the prediction
is correct and one when it is wrong, subsequences of
zeros will be longer (in most cases) than subsequences
of ones, what makes the compression possible. The
Golomb code (to be explained in the next section) is a
good compression algorithm for this kind of sequence.
As the DBPs’ neighborhoods are not modified during
the insertion, the predictions can be reconstructed in
the extraction. The vector of predictions (0s and 1s),
together with the neighborhoods of DBPs, allows
recovering the original DBPs’ values.

RDTC insertion algorithm is:
1. Divide the cover image Z in a sequence v of non-

overlapping pieces.
2. Sort the sequence v in increasing order using the

visual scores as the primary-key, the number of black
pixels around the central pixels as the secondary-key
and non-repeating pseudo-random numbers as the ter-
tiary-key.

3. Estimate the smallest length n of DBPs capable
of storing the header (size h), the compressed predic-
tion vector (size w) and the given net payload data
(size p), i.e., that satisfies n ≥ h+w+p. Try iteratively
different values of n, until obtaining the smallest n that
satisfies the inequality above.

4. Insert the header (the values of n, w, p and the
Golomb code parameter m), the compressed prediction
vector and the payload by flipping the central pixels of
the first n pieces of the sorted v.

To extract the payload and recover the original im-
age, the sequence v of 3×3 image pieces is recon-
structed and sorted. Then, the data is extracted from
the n first central pixels of v. The compressed predic-
tion vector is uncompressed and used to restore the
original image.

We have embedded the data at the beginning of v,
because this part has the least visible pixels. However,
in order to obtain a higher embedding capacity, we can
scan the vector v searching for a segment that allows a
better compression. The pixels at the beginning of v
are the least visible ones but they cannot be predicted
accurately, because usually they have similar number
of black and white pixels in their neighborhoods (since
they are boundary pixels). As we move forward in the
vector, we find pixels that can be predicted more accu-
rately, but with more visibility. In this case, the initial

index of the embedded data in v must also be stored in
the header. Here, there is a trade-off between the visual
quality of the stego image and the embedding capacity.

6. The Golomb Code

As we said in the last section, the sequence of pre-
dictions consists of (usually long) segments of zeros
separated by (usually short) segments of ones. An effi-
cient method to compress this type of information is
the Golomb code [15, 16, 17]. Some other methods
based on the Golomb code (as LOCO-I [18], FELICS
[19] and JPEG-LS [20]) also seem to be efficient,
however we did not test them.

The Golomb code is used to encode sequences of
zeros and ones, where a zero occurs with (high) prob-
ability p and a one occurs with (low) probability 1-p.
The Golomb code depends on the choice of an integer
parameter m≥2 and it becomes the best prefix code
when

⎥
⎥

⎤
⎢
⎢

⎡ +
−=

p
pm

2

2

log
)1(log .

For small values of m, the Golomb codes start short
and increase quickly in length. For large values of m,
the Golomb codes start long, but their lengths increase
slowly.

To compute the code of a nonnegative integer n,
three quantities q, r and c are computed:

⎡ ⎤mcqmnr
m
nq 2logand,, =−=⎥⎦

⎥
⎢⎣
⎢= .

Then, the code is constructed in two parts: the first
is the value of q, coded in unary, and the second is the
binary value of r coded in a special way. If r<2c-m, r is
coded as unsigned integers in c-1 bits. If r≥2c-m, r is
represented as the unsigned integer r+2c-m in c bits.
The case where m is a power of 2 is special because it
requires no (c-1)-bit codes (called Rice codes). To de-
code a Golomb code, the values of q and r are used to
reconstruct n (n=r+qm).

Example 1: Let us encode n=17 using m=14:

⎡ ⎤ 414logand,314117,1
14
17

2 ===×−==⎥⎦
⎥

⎢⎣
⎢= crq .

1. Encoding q=1 in unary yields 10.
2. As r ≥ 2c–m, the remainder r=3 is coded as un-

signed number r+2c-m=5 using c=4 bits, that is,
(0101)2.

3. Therefore, n=17 is encoded as 100101, the result
of the concatenation of 10 and 0101. �

Example 2: Let us encode the following sequence
with 59 bits.
00000100110001010000001110100010000010001001
000110100001001

This sequence has 19 runs of zeros:
5, 2, 0, 3, 1, 6, 0, 0, 1, 3, 5, 3, 2, 3, 0, 1, 4, 2 and 0.

The last zero indicates that the sequence terminates
with a 1. As this sequence has 41 zeros and 18 ones,
the probability of a zero is 41/(41+18) ≅ 0.7, yielding
m = ⎡ –log 1.7 / log 0.7 ⎤ = ⎡ 1.487 ⎤ = 2.

Thus, encoding the sequence with m=2, we obtain a
sequence of 19 codes:
1101|100|00|101|01|11100|00|00|01|101|1101|101|100|1
01|00|01|1100|100|00

The result is a 52-bit sequence that represents the
original 59 bits. There is almost no compression be-
cause p is not large enough. �

Very small values of p, such as 0.1, result in a se-

quence with more ones than zeros. In such case, the
Golomb code should compress runs of ones. For val-
ues of p around 0.5, the Golomb code is not a good
choice and other methods should be considered.

7. Reversible authentication watermarking

A reversible fragile authentication watermarking
can be easily created using RDTC. Let us call it RATC
(Reversible Authentication watermarking by Template
ranking with symmetrical Central pixels). RATC can
detect any image alteration. It can work with secret-
key or public/private-key ciphers. The public/private-
key version of RATC insertion algorithm is:

1. Given a binary image Z to be authenticated, com-
pute the integrity index of Z using a one-way hashing
function H = H(Z). Cryptograph the integrity index H
using the private-key, obtaining the digital signature S.

2. Insert S into Z using RDTC, obtaining the wa-
termarked stego image Z’.

RATC verification algorithm is:
1. Given a stego image Z’, extract the authentication

signature S and decrypted it using the public-key, ob-
taining the extracted integrity index E.

2. Extract the prediction vector, uncompress it and
restore the original cover image Z. Recalculate the
hashing function, obtaining the check integrity index C
= H(Z).

3. If the extracted integrity index E and the check
integrity-index C are the same, the image is authentic.
Otherwise, the image was modified.

8. Experimental results

We have tested RDTC to reversibly embed 128 bits
in binary images of different kinds and sizes (scanned
texts, computer-generated texts, cartoon-like images,
halftones, random noises, etc). 128 bits are enough to
store a message authentication code, used in secret-key
image authentication. It was necessary to compress in
average (excluding random noise images) only 453
low-visibility pixels to get space enough to store 128
bits of payload data and 37 bits of header (table 1).
The marked stego-images have excellent visual quality
(figures 2 and 3), because only low-visibility pixels are
modified. The recovered images are identical to the
originals.

Only two kinds of images could not be marked: (1)
very small images, because there is not enough space
to store the payload and the compressed information
and (2) random noise images with similar amounts of
black and white pixels, because the prediction is very
difficult. On the other hand, theses kinds of image are
very unusual and the proposed technique can be used
for practically all images.

9. Conclusions

We have presented a reversible data hiding for bi-
nary images and used it to reversibly authenticate bi-
nary images. In this technique, predictions of low-
visibility pixels are compressed using the Golomb code
to create space to store the hidden data. The proposed
technique was applied to several kinds of binary im-
ages and, in average, only 453 pixels were compressed
to get space to store 128 bits of net payload data. Re-
sulting watermarked images have pleasant visual as-
pect.

10. References

[1] M. Awrangjeb and M. S. Kankanhalli, “Lossless Water-
marking Considering the Human Visual System,” Int. Work-
shop on Digital Watermarking 2003, Lecture Notes in Com-
puter Science 2939, pp. 581-592, 2004.
[2] M. U. Celik, G. Sharma, A. M. Tekalp and E. Saber,
“Reversible Data Hiding,” in Proc. IEEE Int. Conf. on Image
Processing, vol. 2, pp. 157-160, 2002.
[3] Y. Q. Shi, “Reversible Data Hiding,” Int. Workshop on
Digital Watermarking 2004, (Seoul), Lecture Notes in Com-
puter Science 3304, pp. 1-13, 2004.
[4] C. W. Honsinger, P. W. Jones, M. Rabbani, J. C. Stoffel,
“Lossless Recovery of an Original Image Containing Em-
bedded Data,” US Patent #6,278,791, Aug. 2001.
[5] J. Fridrich, M. Goljan, R. Du, “Invertible Authentica-
tion,” in Proc. SPIE Security and Watermarking of Multime-
dia Contents III, (San Jose, California, USA), vol. 3971, pp.
197-208, 2001.

[6] J. Tian, “Reversible data embedding using difference
expansion,” IEEE Transactions on Circuits Systems and
Video Technology, vol. 13, no. 8, pp. 890-896, 2003.
[7] J. Tian, “Wavelet-based reversible watermarking for
authentication,” in Proc. SPIE Security and Watermarking of
Multimedia Contents IV, vol. 4675, pp. 679-690, 2002.
[8] J. Fridrich, M. Goljan, R. Du, “Lossless data embedding
– new paradigm in digital watermarking,” in EURASIP
Journ. Appl. Sig. Proc., vol. 2002, no. 2, pp. 185-196, 2002.
[9] M. U. Celik; G. Sharma; A. M. Tekalp; E. Saber, “Loss-
less generalized-LSB data embedding,” IEEE Transactions
on Image Processing, vol. 14, no. 2, pp. 253-266, 2005.
[10] Z. C. Ni, Y. Q. Shi, N. Ansari, W. Su, Q. B. Sun, X.
Lin, “Robust Lossless Image Data Hiding,” IEEE Int. Conf.
Multimedia and Expo 2004, pp. 2199-2202.
[11] X. Wu, “Lossless compression of continuous-tone im-
ages via context selection, quantization, and modeling,” in
IEEE Transactions on Image Processing, vol. 6, no. 5, pp.
656-664, 1997.
[12] C. L. Tsai, K. C. Fan, C. D. Chung and T. C. Chuang,
“Data Hiding of Binary Images Using Pair-wise Logical
Computation Mechanism,” in Proc. IEEE International Con-
ference on Multimedia and Expo, ICME 2004, (Taipei, Tai-
wan), vol. 2, pp. 951-954, 2004.
[13] C. L. Tsai, K. C. Fan, C. D. Chung and T. C. Chuang,
“Reversible and Lossless Data Hiding with Application in

Digital Library,” International Carnahan Conference on Se-
curity Technology, pp. 226-232, 2004.
[14] H. Y. Kim, “A New Public-Key Authentication Water-
marking for Binary Document Images Resistant to Parity
Attacks,” in Proc. IEEE Int. Conf. on Image Processing,
(Italy), vol. 2, pp. 1074-1077, 2005.
[15] S. W. Golomb, “Run-Length Encodings,” IEEE Trans.
Inform. Theory, vol. IT-12, pp. 399-401, 1966.
[16] D. Salomon, Data Compression: The Complete Refer-
ence, 3rd Edition, Springer-Verlag, New York, 2004, pp. 57-
64.
[17] R. Gallager; D. V. Voorhis, “Optimal source codes for
geometrically distributed integer alphabets,” IEEE Trans.
Inform. Theory, vol. IT-21, pp. 228-230, 1975.
[18] M. J. Weinberger; G. Seroussi; G. Sapiro, “LOCO-I: A
low complexity, context based, lossless image compression
algorithm,” in Proc. 1996 Data Compression conference,
(Snowbird, Utah, USA), pp. 140-149, 1996.
[19] P. G. Howard; J. S. Vitter, “Fast and efficient lossless
image compression,” IEEE Data Compression Conference,
pp. 351-360, 1993.
[20] ISO/IEC 14495-1, ITU Recommendation T.87, “Infor-
mation Technology – Lossless and near-lossless compression
of continuous-tones till images,” 1999.

Table 1: Insertion of 128 bits of payload and 37 bits of header in different images, where n is the number of DBPs
and w is the size of the compressed DBPs. “Not” means that the insertion was not possible.

Image Description Size n w n-w
lena0 Error diffusion 512×512 432 264 168
lena2 Ordered dithering 512×512 272 98 174
fides Computer-generated text 1275×1650 432 259 173

persuas 150 dpi scanned text 1275×1650 560 395 165
toip300 300 dpi scanned text 2384×3194 496 325 171

toip300b Sub-image of toip300 1094×414 464 288 176
toip300c Sub-image of toip300 1092×1664 560 385 175
toip400 400 dpi scanned text 3179×4259 464 293 171

abc Computer-generated text 91×58 400 219 181
pag1 Tiny computer-generated text 64×56 Not Not Not

noise10 10% random black pixels 300×300 400 227 173
noise20 20% random black pixels 300×300 880 711 169
noise30 30% random black pixels 300×300 3824 3654 170
noise35 35% random black pixels 300×300 Not Not Not
noise65 65% random black pixels 300×300 Not Not Not
noise70 70% random black pixels 300×300 1424 1256 168
noise80 80% random black pixels 300×300 592 423 169
noise90 90% random black pixels 300×300 368 194 174

(a) Original cover image.

(b) Watermarked image.

(c) Modified pixels.

(d) Modified pixels in red.

Figure 2: Part of a magazine page scanned at 400 dpi, with 3179×4259 pixels and reversibly watermarked with
1280-bits MAC (ten times the usually MAC size) using 3440 pixels to store the payload.

(a) Original cover image.

(b) Watermarked image.

(c) Modified pixels.

(d) Modified pixels in red.

Figure 3: A 295×331 image reversibly watermarked with 128-bits MAC, using 496 pixels to store the payload.

