
Paper published in Proceedings of
Fifth IEEE International Conference on Image Processing,

October 4-7, 1998, Chicago, Illinois, USA,
vol. 2, pp. 737 - 741, 1998

Automatic Design of Nonlinear Filters
by Nearest Neighbor Learning

Hae Yong Kim and Flávio A. M. Cipparrone

Automatic Design of Nonlinear Filters by Nearest Neighbor Learning

Hae Yong Kim and Flávio A. M. Cipparrone
LPS, DEE, Escola Politécnica, Universidade de São Paulo.

Av. Prof. Luciano Gualberto, tr. 3, 158; CEP 05508-900, São Paulo, SP, Brazil.
E-mails: hae@lps.usp.br, cippafla@lps.usp.br.

Abstract
Nonlinear filters have been used not only in the noise

elimination but in a wide variety of image processing
applications. Traditionally the design of a digital filter is
a manual task and the user accomplishes it based on his
previous experiences. Unfortunately often this is not a
trivial task. Thus some recent works try to overcome this
difficulty constructing the filters automatically by compu-
tational learning, neural networks, genetic algorithms and
statistical estimation. These works use typical input-output
images of the application as the training samples. Many
different kinds of filters can be easily constructed using
this approach. This paper proposes the use of the nearest
neighbor (NN) learning to the automatic filter construc-
tion. The kd-tree (k-dimensional binary tree) is used to
accelerate the NN searching. A texture recognition appli-
cation example is depicted.

1. Introduction

In recent years, there has been a growing interest in
the nonlinear image processing. Nonlinear filters are used
not only in the noise elimination but in a wide variety of
applications such as texture recognition, shape recogni-
tion, segmentation, edge detection, skeleton obtaining, etc.
Nevertheless, the construction of the desired filter, that is,
the choice of the most adequate filter for a given applica-
tion, is not a trivial task. To overcome this difficulty, many
different techniques have been proposed, for example, the
use of the artificial intelligence [1] and the fuzzy expert
system [2].

A different methodology proposes to project a filter
Ψ supposing that the probability distribution P, responsi-
ble for the generation of the input image Qx and the output
image Qy, is entirely known. For example, let Qx be a
noisy image and Qy the corresponding clean image. If the
statistical process P of the corruption of the image Qy is
known, a filter Ψ can be constructed to minimize the ex-
pectation of the difference between the clean image Qy and
the processed image Q Qp x= Ψ() . In this context, the

classic image processing textbooks, as [3], expose linear

techniques for the image restoration; the works [4, 5]
design the stack filter that minimizes the mean absolute
error; and the work [6] designs the morphological filter
that minimizes the mean square error.

In practice, the distribution P is usually unknown.
Thus, a more realistic and useful approach uses the train-
ing input-output images Ax and Ay, generated by the distri-
bution P, instead of the distribution P itself. The filter Ψ is
projected automatically from the sample images by a
learning algorithm. This is the underlying idea of the re-
cent works [7-9], in spite of the apparently different theo-
ries on which they are based.

When an image Qx is processed by an automatically
constructed filter Ψ, probably the most of the patterns
found in Qx do not appear in the training input image Ax.
Therefore, an important subject of the automatic filter
designing is the strategy adopted to generalize the behav-
ior of the filter to the untrained patterns. The aim of this
strategy is to generalize heuristically the filter to the un-
known domain points using function approximators. If the
generalization is successful, the processed image
Qp=Ψ(Qx) will be “similar” to the unknown ideal output
image Qy, even using only a small amount of training
samples. To achieve this aim, the literature uses, for ex-
ample, genetic algorithms [7], neuro-fuzzy operators [8] or
decompose the filter as a set of elementary morphological
operators [9].

The present paper proposes the use of the NN learn-
ing [10], for it seems to be the most intuitive solution to
the “heuristic generalization.” The kd-tree [11, 12] is used
to accelerate the NN searching. The processing time of
this new approach is longer than the technique reported in
[9]. Nevertheless, the new technique usually generates
filters with better quality. In order to shorten the paper, we
will be concerned only with the gray-scale filters.

2. Windowed filter learning problem

Let (E, +) be an Abelian group (usually, E=!2) and
let K be an interval of integer numbers. A gray-scale image
is usually defined as a function Q:E→K, also denoted as
Q∈ KE. Let Ax, Ay, Qx and Qy be respectively the input

sample, the output sample, the image to be processed and
the ideal output image.

The goal of this paper is only the design of windowed
filters, for the most of the filters used in practice are win-
dowed. A windowed filter Ψ:KE→KE is defined via a win-

dow
!

W = (W1, ..., Ww), Wi ∈ E, and a characteristic func-
tion ψ:Kw → K as follows:
Ψ()() ((), , ()), ,Q p Q W p Q W p Q K p Ew

E= + + ∈ ∈ψ 1 " .

The support of an image is a finite subset of E where
the image is really defined. The size of the support is the
number of pixels of the image. Out of its support, an im-
age is considered to be filled with a background color. The

colors of the pixels of Ax, that belong to the window
!

W
translated to p∈ E, define a point

a A W p A W pw
x x x= + +[(), , ()]1 "

in the space Kw. This point, whose coordinates are the

gray-scales of the pixels within the window
!

W p+ , is

called a pattern. To each pattern a x so obtained, there is
an associated output value a A py y= () in the space K. Let

m be the size of the support of the images Ax and Ay. Let
us denote the data obtained when all the pixels of Ax and
Ay are scanned as:

!
" "a a a a a a am m m= =(, ,) ((,), , (,))1 1 1

x y x y .

In the filter designing stage, a learning algorithm

() ()A: ()# m
w m wK K K K≥ × → →1 receives the sequence

!
a and generates the characteristic function ψ=A(

!
a). The

function ψ and the window
!

W together represent a win-
dowed filter Ψ.

There exists a unknown joint probability distribution
P in Kw×K that generates independently each element of
the sequence

!
a . The same probability distribution gener-

ates independently each element of the sequence
!
q that

forms the images Qx and Qy:
!

" "q q q q q q qn n n= =(, ,) ((,), ,(,))1 1 1
x y x y ,

where n is the number of pixels of Qx and Qy.
In the filter application stage, the characteristic func-

tion ψ is applied to each input point qi
x , generating proc-

essed output values q qi i
p x= ψ() . The sequence of all

output values forms the processed image Qp.
The error of a filter can be measured using a real-

valued loss function l q qi i(,)p y that measures the differ-

ence between the processed and the ideal outputs (e.g., the
square error ()q qi i

p y− 2 or the absolute error | |q qi i
p y−). If

the learning process was effective, the resulting mean error
will be small.

3. Nearest neighbor learning

Although many different techniques (e.g., neural
networks and genetic algorithms) can be used to solve the
windowed filter learning problem, the NN learning seems
to be the most natural solution.

In the original NN learning [10], given a point qi
x ∈

Kw, its processed value qi
p = ψ(qi

x) = A(
!
a)(qi

x) is the

mode (the most frequent value) among the outputs of the
nearest neighbors in the training sequence

!
a . Instead of

the mode, the arithmetic mean was used to solve the “ties,”
for it minimizes the expected value of the square loss
function.

To use NN learning in practice, a good algorithm for
the NN searching problem is required. The NN searching
problem can be stated as follows: “Given m training points
a1

x , ..., am
x and n points to be processed q1

x , ..., qn
x (all

points in the space Kw) find, for each point to be processed
qi

x , the set of the nearest training points.” This problem

has a trivial solution with the computational complexity
O(wmn). In this solution, the distances between each qi

x

and all the m training points are computed and hence the
nearest training points are chosen. Let us refer to this as
brute-force algorithm. Obviously, this algorithm is exces-
sively slow.

There are faster algorithms for the NN searching and
probably the most used and known is the kd-tree. The kd-
tree is a generalization of the simple binary tree used for
sorting and searching. The root of the tree represents the
set of all training points. Each non-terminal node has two
successor nodes that represent two subsets defined by
partitioning the parent’s training points. The terminal
nodes represent mutually exclusive small subsets of the
training points. For a thorough exposition, the reader is
referred to [11, 12]. To use the kd-tree in the windowed
filter learning problem, the output gray-scale a j

y should be

stored in the terminal node, as well as the corresponding
pattern a j

x . In practice, to minimize the use of the mem-

ory, only the coordinates (line and column numbers) of the
pattern a j

x in Ax was stored in the terminal node (note that

the coordinates of a j
y in Ay are the same). This informa-

tion, together with the images Ax and Ay, allows to evalu-
ate a j

x and a j
y .

A kd-tree, constructed as above, can be viewed as a
characteristic function ψ. Given a pattern qi

x , a searching

in the kd-tree finds the nearest training patterns. The out-
put value of the characteristic function ψ(qi

x) is then de-

fined as the arithmetic mean of the output gray-scales of

the nearest patterns. According to [12], the computational
complexity of the construction of a kd-tree is O(wm log m)
and the n points searching in a kd-tree takes
O nwm w()()1 1− . That is, kd-tree is fast in non excessively
large dimension w.

4. Experimental results

The application of the proposed technique in a tex-
ture recognition problem is depicted in the figure 1. The
figure 1a shows the map of the south region of Brazil with
mean values in January of the daily maximum tempera-
tures. The figure 1b, edited manually, corresponds to the
checked texture. Using a H-shaped window with 7 ele-
ments (figure 2a) and figures 1a and 1b as the training
samples, we obtained a nonlinear filter that recognizes the
checked texture. Applying it in the figure 1c (temperatures
in June), we obtained the figure 1d. Filtering it four times
with 6×6 median filter, the figure 1e resulted. The median
filter is widely used in the noise elimination and its defini-
tion can be found, for example, in [13]. The figure 1f was
obtained merging the figures 1c and 1e. The construction
of the kd-tree took 30 seconds and its application 11530
seconds in a computer with Pentium 100 MHz processor
(table 1).

Note in the figure 2b that the checked texture is full
of irregularities and a manual design of the checked tex-
ture recognition filter would have been a troublesome task.
Applying exactly the same process in another map (figure
2c), the “checked texture” was again successfully recog-
nized (figure 2d). This process can also be used to recog-
nize other textures. Using the figures 1a and 2e as training
samples, “dark hatched texture” of the figure 2c was rec-
ognized, resulting the figure 2f.

Size of
the window

Brute-force Kd-tree
(training)

Kd-tree
(application)

w=2 42843s 16s 138s
w=3 58622s 18s 141s
w=5 ? 20s 2345s
w=7 ? 30s 11530s

Table 1: The performance of the brute-force and the kd-
tree, measured in a “Pentium-100,” to process an 424×312
image using 422×312 sample images. The line w=7 exhib-
its the processing time to obtain the figure 1d.

5. Conclusions

In this paper, the windowed filter learning problem
has been formalized and the nearest neighbor learning has
been proposed as a solution to this problem. To accelerate
the processing, the proposed technique has been imple-

mented using kd-tree. As an application example, this
technique has been used in the gray-scale texture recogni-
tion problem.

Acknowledgments

This work has been partially supported by FAPESP.

References

[1] M. Schmitt, “Mathematical morphology and artificial
intelligence: an automatic programming system,” Signal
Processing, vol. 16, no. 4, pp. 389-401, 1989.

[2] H. Y. Kim, F. A. M. Cipparrone and M. T. C. Andrade,
“Technique for constructing grey-scale morphological op-
erators using fuzzy expert system,” Electron. Lett., vol. 33,
no. 22, pp. 1859-1861, 1997.

[3] R. C. Gonzalez and R. E. Woods, Digital Image Process-
ing, Addison-Wesley, 1992.

[4] E. J. Coyle and J. H. Lin, “Stack Filters and the Mean
Absolute Error Criterion,” IEEE Trans. Ac., Speech, Sig-
nal Proc., vol. 36, no. 8, pp. 1244-1254, Aug. 1988.

[5] W. L. Lee, K. C. Fan and Z. M Chen, “Design of optimal
stack filter under MAE criterion,” in Proc. IEEE Int. Conf.
Image Proc. (Santa Barbara, USA), vol. 1, pp. 420-423,
1997.

[6] E. R. Dougherty, “Optimal mean-square N-observation
digital morphological filters - optimal binary filters,”
CVGIP: Image Understanding, vol. 55, no. 1, pp. 36-54,
Jan. 1992.

[7] R. Harvey and S. Marshall, “The use of genetic algorithms
in morphological filter design,” Signal Processing: Image
Comm., vol. 8, pp. 55-71, 1996.

[8] F. Russo, “Nonlinear filtering of noisy images using
neuro-fuzzy operators,” in Proc. IEEE Int. Conf. Image
Proc. (Santa Barbara, USA), vol. 3, pp. 412-415, 1997.

[9] H. Y. Kim, “Quick construction of efficient morphological
operators by computational learning,” Electron. Lett., vol.
33, no. 4, pp. 286-287, 1997.

[10] T. M. Cover and P. E. Hart, “Nearest neighbor pattern
classification,” IEEE T. Information Theory, vol. IT-13,
no. 1, pp. 21-27, 1967.

[11] J. H. Friedman, J. L. Bentley and R. A. Finkel, “An algo-
rithm for finding best matches in logarithmic expected
time,” ACM T. Math. Software, vol. 3, no. 3, pp. 209-226,
Sep. 1977.

[12] F. P. Preparata and M. I. Shamos, Computational Geome-
try, an Introduction, Springer-Verlag, New York, 1985.

[13] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital
Filters - Principles and Applications, Kluwer, 1990.

(1a) Input sample (Ax).
422 × 312 pixels, 1 byte per pixel.

(1b) Output sample (Ay) corresponding
to the “checked texture” of 1a.

(1c) Image to be processed (Qx).
424 × 312 pixels, 1 byte per pixel.

(1d) Processed image (Qp) using the
H-shaped window (figure 2a).

(1e) Image obtained applying
6×6 median filter four times in 1d.

(1f) The result of the merging
of the figures 1c and 1e.

Figure 1: To construct a filter that recognizes the checked texture, the figure 1b was edited manually to correspond to the
checked texture region of the figure 1a. Using the figures 1a and 1b as the training input-output samples, a windowed filter
was automatically designed. Applying this filter in 1c, the figure 1d was generated. Filtering this image four times with the
6×6 median filter we obtained the figure 1e. Merging the original figure 1c with the figure 1e, the figure 1f resulted and it
has the original “checked texture” painted in white.

× ×
× × ×
× ×





















(2a) H-shaped window
with 7 elements.

(2b) Zoomed views of the checked
texture, extracted from the figure 1c.

(2c) Map of the temperatures in July
(image to be processed Qx).

(2d) Image obtained applying in 2c
the same process used to obtain 1f.

(2e) Output sample (Ay).
“Dark hatched texture” of 1a.

(2f) Recognition of the “dark hatched
texture” of the figure 2c.

Figure 2: The process described in the figure 1 to recognize the “checked texture” was applied in another figure (2c) and it
successfully recognized the aimed texture (figure 2d). The same process was used to recognize the “dark hatched texture.”
Applying the filter constructed using 1a and 2e as training samples in the figure 2c, the figure 2f resulted.

