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Abstract

The well-known anisotropic diffusion (a.k.a. Perona-
Malik equation, nonlinear diffusion, or diffusion partial
differential equation – PDE) is widely used in image seg-
mentation, filtering and edge detection. The behavior of
the diffusion depends highly on the appropriate choice of
the gradient thresholding scale parameterK. However, it
seems that no clear relationship between the parameterK
and the output image has ever been established, and hence
the choice ofK is a guesswork. This paper proposes the
Histogram Gradient-Based Anisotropic Diffusion (GHAD).
In GHAD, the user specifies the desired numberν of edge-
elements (edgels) of the filtered image. Let us define that the
frontier between two neighboring pixels(p, q) is an edgel if
|I(p) − I(q)| > τ , whereI(p) is the image intensity atp
and τ is a constant. From the specifiedν, an appropriate
parameterK is automatically computed in every diffusion
iteration, so that the final filtered image has almost exactly
ν edgels. Using this approach, the diffusion converges to
a nontrivial piecewise constant image, whenever a feasible
parameterν is specified.

1. Introduction

Linear scale space is a theory introduced by Witkin [1]
and used to process an image in multiple resolutions. In
this theory, Gaussian low-pass filters process the original
fine-scale image, generating simplified coarse-scale images.
Unfortunately, coarse-scale images generated by Gaussian
filters present blurry edges that do not spatially match the
original edges.

In order to keep important edges sharp and spatially
fixed, while filtering noise and small edges, Perona and Ma-
lik has introduced the nonlinear scale-space [2]. This theory
uses the anisotropic diffusion to simplify the original im-
age. Recently, the relations between the anisotropic diffu-
sion and the robust statistics have been established, leading
to the robust anisotropic diffusion (RAD) that preserves the
boundaries sharper than previous techniques [3].

The behavior of the anisotropic diffusion depends on two
parameters: the artificial time parametert and the gradi-
ent thresholding parameterK. The appropriate selection of
both parameters is still subjects of ongoing researches and
no definitive solution seems to be available [4, 5]. The aim
of this paper is to contribute to the elucidation of this prob-
lem.

Perona-Malik’s anisotropic diffusion converges to an im-
age with constant graylevel whent → ∞. On the other
hand, RAD usually converges to a piecewise smooth image
after a sufficient number of iteration steps, and consequently
the image filtered by RAD depends practically only onK,
provided that the diffusion is iterated a suitable number of
times. Thus, for RAD, the filtered image practically de-
pends only on the choice ofK. Though, it seems that no
clear relationship between the parameterK and the output
image has ever been established, and hence the choice ofK
is a guesswork.

Some papers have proposed to automatically chooseK
[3, 4]. We think that such an automated strategy can be ap-
plied only to some specific application, because the amount
of desired filtering is a user’s choice and no automated sys-
tem can predict the user’s mind.

This paper proposes the Histogram Gradient-Based
Anisotropic Diffusion (GHAD). GHAD can only be con-
ceived as a spatio-temporally discretized anisotropic diffu-
sion process. There is no version of GHAD for spatially or
temporally continuous images.

In GHAD, the user specifies the desired numberν of
edge-elements (edgels) of the filtered image. Let us define
that the frontier between two neighboring pixels(p, q) is an
edgel if|I(p)−I(q)| > τ , whereI(p) is the image intensity
atp andτ is a non-negative constant (for quantized images,
τ is usually zero). The quantityν is roughly equivalent to
the sum of all edge lengths in the filtered image (distance
unit in pixels). From the specifiedν, an appropriate param-
eterK is automatically computed in every diffusion itera-
tion, so that the final filtered image hasν edgels. Note that
in each iteration, a differentK must be estimated and used.
Using this approach, the diffusion converges to a nontrivial
piecewise constant image, whenever a feasible parameterν



is specified.

2. Anisotropic Diffusion

Perona and Malik defined their anisotropic diffusion as
[2]:

∂I(x, y, t)
∂t

= div [g (‖∇I(x, y, t)‖)∇I(x, y, t)] (1)

using the original imageI(x, y, 0) : R2 → R+ as the initial
condition, wheret is an artificial time parameter andg is
an “edge-stopping” function. They suggested using one of
the two edge-stopping functions below (all edge-stopping
functionsgi(x) presented in this paper have been dilated
and scaled so thatgi(0) = 1 and their “influence functions”
ψi(x) = xgi(x) have local maxima atx = K):

g1(x) =
[
1 +

x2

K2

]−1

, g2(x) = exp
[
− x2

2K2

]
. (2)

The right choice of the edge-stopping functiong can greatly
affect the extent to which discontinuities are preserved. In-
deed, using the functiong1, the diffusion process converges
to an image with constant graylevel, where all edges are
suppressed. The functiong2 preserves the edges better than
g1. However,g2 also ends up in an image with constant
graylevel.

Black et al. [3] used the robust estimation theory to
choose a better edge-stopping function, called Tukey’s bi-
weight:

g3(x) =

{ [
1− x2

5K2

]2

, x2

5 ≤ K2

0, otherwise
(3)

The diffusion that uses this edge-stopping function is called
robust anisotropic diffusion (RAD) and this is the edge-
stopping function adopted in this paper.

Perona and Malik [2] discretized spatio-temporally their
anisotropic diffusion equation (1) as:

I(s, t+1) = I(s, t)+
λ

|ηs|
∑
p∈ηs

g(|∇Is,p(t)|)∇Is,p(t) (4)

whereI(s, t) is a discretely sampled image,s denotes the
pixel position in a discrete 2-D grid,t ≥ 0 now denotes dis-
crete time steps, the constantλ determines the rate of dif-
fusion (usually,λ = 1), andηs represents the set of spatial
neighbors of pixels. For 1-D signals, usually two neigh-
bors are considered:left andright, except at signal bound-
aries where only one neighbor must be considered. For 2-D
images, usually 4-neighborhood is used:north, south, west
andeast, except at the image boundaries. Perona and Malik

approximated the image gradient magnitude in a particular
direction at iterationt as:

∇Is,p(t) = I(p, t)− I(s, t), p ∈ ηs. (5)

Black et al. [3] have noticed that the valueKm where the
influence functionψi(Km) = Kmgi(Km) is maximal de-
termines the threshold between homogeneous regions and
edges. If‖∇Is,p(t)‖ > Km, the frontier between pixelss
andp is considered by the diffusion as an edgel to be pre-
served. And if‖∇I(x, y)‖ < Km, pixelss andp are con-
sidered to belong to the same homogeneous region and the
difference between them (possibly due to noises) is gradu-
ally suppressed by the diffusion.

3. Automated Selection ofK

We list below some of criteria described in the literature
to choose an appropriate parameterK:

1. SetK by hand at some fixed value [2].

2. Use the “noise estimator” described by Canny [6].
The histogram of the absolute values of the gradient
throughout the image is computed. ThenK is set equal
to the 90% value of its integral at every iteration [2].

3. Use tools from robust statistics to automatically esti-
mate the “robust scale”σe of an imageI [3]: K =
σe = 1.4826medianI [| ‖∇I‖−medianI(‖∇I‖) |]. It
seems thatK is evaluated once at the beginning of the
diffusion process and kept fixed, although it would be
easy to evaluate a differentK at every iteration.

4. Estimate the noise at every iteration using the dif-
ference between the average intensities of images fil-
tered by morphological opening and closing [4]:K =
average(I◦e)−average(I•e), wheree is a structuring
element.

5. Use the p-norm of the image to estimate the noise [4]:
K = (σ‖I‖p)/m, whereσ is a constant proportional
to the image average intensity andm is the number of
image pixels.

All above criteria try to find a parameterK to appropri-
ately separate edges from noises. However, we argue that
the classification of a pair of neighboring pixels in “edge”
or “noise” depends not only on the imageI to be filtered,
but also on the desired scale of the filtered image. If the
user wants to obtain a coarse-scale image with only the key
edges, a largeK should be specified. And if the user wants
to obtain a fine-scale image with all the detailed edges, a
smallK should be chosen. Evidently, no automated pro-
cess can guess the user’s mind.



Voci et al. [4] noticed that anisotropic diffusions with
a fixed value ofK (as in criteria 1 and 3) had shortcom-
ings. Indeed, any discretized anisotropic diffusion based
on equation 4 with fixedK is unable to suppress noise,
whenever the gradient of noise is larger than the gradient of
edges to be preserved. They suggested decreasingK with
the progress of the diffusion process (as in criteria 2, 4 and
5). Anisotropic diffusions with adaptive selection ofK can
suppress even noise with magnitude larger than edges. This
fact will be illustrated in subsection 5.1.

4. Gradient Histogram-Based Diffusion

4.1. The Proposed Technique

We propose a new approach, named Gradient
Histogram-based Anisotropic Diffusion (GHAD). GHAD
establishes the connection between the parameterK and
the numberν of edgels of the filtered image. Indeed,
GHAD is based on the criterion 2, whereK was arbitrarly
set equal to the 90% value of the integral of the gradient
histogram. Although this criterion was proposed in the
original Perona and Malik’s paper [2], it seems that many
of its consequences remain unexplored.

In GHAD, the user specifies the desired numberν of
edgels in the final filtered signal/image. Alternatively, the
user can specify the proportion$ = ν/n, wheren is the
number of possible edgels of the image.

In each diffusion iteration, GHAD computes the abso-
lute gradient values throughout the image. These values are
sorted in increasing order, generating the ordered sequence
~v = (v0, ..., vn−1).

In order to make the output image to haveν edgels, we
setK = vn−1−ν in every iteration. With this setting, the
diffusion considersν frontiers between neighboring pixels
as edgels to be preserved, andn − ν frontiers as homoge-
neous regions where the noise must be suppressed.

The sequence~v does not need to be completely sorted. It
is enough to know the value of the elementvn−1−ν of the
increasing sequence. This value can be efficiently computed
in average timeO(n) using the algorithm that computes the
k-th smallest element of a sequence, derived from the quick-
sort. The description of this algorithm can be found in many
introductory books on algorithms, for example, in [7].

Usually, the anisotropic diffusion uses 4-neighborhood
for 2-D images and 6-neighborhood for 3-D volumes. Some
care must be taken in 2-D/3-D GHAD implementation, to
assure that each frontier between neighboring pixels is com-
puted once and only once in~v. For example, a3× 3 image
has 12 possible edgels, and each one of 12 gradient magni-
tudes must appear once and only once in~v.

The image filtered by GHAD has almost exactly the
specified numberν of edgels, after a sufficient number of

diffusion process iterations. This property established an
explicit connection between the specified parameter and the
output image. It seems that no previous techniques have this
sort of property.

A remark on our implementation: We always normal-
ize the original grayscale signal/image from integer inten-
sity range[0, ..., 255] to floating-point range[0, 1] before
performing the diffusion. The diffusion is processed using
floating-point operations and variables, in order to minimize
rounding errors. The obtained filtered floating-point sig-
nal/image is converted back to the integer range and saved.

5. Experimental Results

5.1. Restoration of Piecewise Constant Images

As we said before, any discretized anisotropic diffusion
based on equation 4 with constantK is unable to suppress
noise, whenever the gradient of noise is larger than the gra-
dient of edges to be preserved. GHAD and the former meth-
ods with adaptive selection ofK can suppress even noise
with magnitude larger than edges. This subsection illus-
trates this property. Note that, although GHAD and the for-
mer adaptive methods can suppress noise with magnitude
larger than edges, only GHAD has the flexibility to specify
the desired scale (that is, the desired number of edgels) of
the filtered image.

Figure 1 depicts the restoration of a piecewise constant
image corrupted by Gaussian noise, using GHAD and RAD
with fixed K. The original image 1(a) has background
graylevel 128, with circles with intensities 89 and 166. This
image was converted to floating-point range[0, 1], and the
zero-mean Gaussian noise with standard deviation 0.04 was
added, resulting in figure 1(b).

In this particular case, the best GHAD’s parameter can
be obtained. The original image 1(a) has$ = 0.54%
of edgels and consequently this is the best restoration pa-
rameter. Filtering the noisy image 1(b) by GHAD with
$ = 0.54% (number of iterationst = 1000), the image
1(c) was obtained (PSNR = 46.1 dB).

Filtering the noisy image 1(b) by RAD withK fixed at
0.04 (t = 1000), the image 1(e) was obtained (PSNR = 39.2
dB). RAD could neither completely eliminate noise nor pre-
serve edges sharp. RAD with anotherK will not do a better
restoration because if a largerK is chosen (e.g.,K = 0.05,
figure 1(f)), the edges will become blurrer; and if a smaller
K is chosen (e.g.,K = 0.03, figure 1(d)), more noise will
remain unfiltered. Note that the poor filtering behavior was
expected.

Figure 2 depicts the restoration of a piecewise constant
image highly corrupted by Gaussian noise (σ = 0.08, figure
2(a)).



Filtering the noisy image 2(a) by GHAD with$ =
0.54% (number of iterationst = 1000), the image 2(b) was
obtained (PSNR = 40.1 dB).

Filtering figure 2(a) by RAD withK fixed at 0.04 (t =
1000), the image 2(d) was obtained (PSNR = 24.7 dB).
Again, RAD with anotherK will not do a better restora-
tion because if a largerK is chosen (e.g.,K = 0.05, figure
2(e)), the edges will become blurrer; and if a smallerK is
chosen (e.g.,K = 0.03, figure 2(c)), more noise will remain
unfiltered.

5.2. Filtering Natural Images with GHAD

Figure 3 depicts “Lenna” image 3(a) filtered by RAD
and GHAD. RAD’s parametersK = 0.022 and GHAD’s
parameter$ = 5% were chosen so that the final filtered im-
ages 3(c) and 3(e) have roughly the same number of edgels.
Although figure 3(c) generated by RAD has more edgels
than figure 3(e) generated by GHAD, image 3(c) consists
of one large area (with tiny details) while image 3(e) con-
sists of medium-sized regions.

RAD eliminates many important edges (red circles in
figure 3(b)) when iterated until convergence (figure 3(c),
t = 30000). This happens because the grayscale inten-
sity leaks continously through smooth edges (blue circles
in figure 3(b)). The anisotropic diffusion with fixedK can-
not deal appropriately with slowly varying edges. A smooth
edge will be either eliminated or preserved unaltered.

GHAD, on the contrary, preserves important edges sharp
(red circles in figure 3(d)) even when iterated until conver-
gence (figure 3(e),t = 40000). GHAD converts, if nec-
essary, smooth edges (blue circles in figure 3(d)) in sharp
edges in order to clearly delimit constant regions. Interest-
ingly, the resulting image 3(e) has 4.9946% of edgels.

Unfortunately, the present implementation of GHAD
shows preference for creating new horizontal and vertical
edges over new diagonal edges (or edges in other angles).
This is probably due to using 4-neighborhood spatial dis-
cretization (equation 4). We are researching spatial dis-
cretizations that do not have preferences for any particular
direction.

Figure 4 shows the images obtained by RAD using dif-
ferent values ofK, when iterated until convergence. Note
that there is no value ofK that makes RAD to generate im-
ages similar to those generated by GHAD.

Figure 5 shows the images obtained by GHAD using dif-
ferent values of$, when iterated until convergence. GHAD
creates artificial edges in order to not mix two regions de-
limited with slowly varying edges. RAD does not have this
property. Also note that the images generated by GHAD
has number of edgels almost exactly equal to the specified
parameter$.

6. Conclusions and Future Works

This paper has introduced a new variety of anisotropic
diffusion named GHAD (Gradient Histogram-based
Anisotropic Diffusion). In this technique, the user specified
the desired numberν of edge-elements of the filtered
image. From the specifiedν, GHAD computes an adequate
scale parameterK of the anisotropic diffusion in each
iteration step. When iterated until convergence, GHAD
ends up producing a piecewise constant image with the
number of edge-elements almost exactly equal toν. We
have shown that GHAD outperforms the conventional
robust anisotropic diffusion (RAD) in the restoration of
a piecewise constant image corrupted by Gaussian noise.
We have also shown that the conventional RAD cannot
appropriately filter smooth edges, while GHAD converts
these edges into sharp ones. In this conversion, the current
implementation of GHAD shows preference for creating
new horizontal/vertical edges over diagonal ones. We
are researching spatial discretizations that do not have
preferences for any particular direction.
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(a) Original image. (b) Corrupted by Gaussian noise
σ = 0.04, PSNR = 27.9dB.

(c) Restored by GHAD, PSNR =
46.1 dB.

(d) Restored by RAD,K = 0.03,
PSNR = 34.9 dB.

(e) Restored by RAD,K = 0.04,
PSNR = 39.2 dB.

(f) Restored by RAD,K = 0.05,
PSNR = 30.7 dB.

Figure 1. Restoration of a piecewise constant
image corrupted by Gaussian noise with stan-
dard deviation 0.04.



(a) Corrupted by Gaussian noiseσ =
0.08, PSNR = 21.9dB.

(b) Restored by GHAD, PSNR =
40.1dB.

(c) Restored by RAD,K = 0.03,
PSNR = 23.8dB.

(d) Restored by RAD,K = 0.04,
PSNR = 24.7dB.

(e) Restored by RAD,K = 0.05,
PSNR = 25.4dB.

Figure 2. Restoration of a piecewise constant
image corrupted by Gaussian noise with stan-
dard deviation 0.08.

(a) Original “Lenna” image.

(b) Filtered by RAD,t = 1000. (c) Filtered by RAD,t→∞. Actual
number of edgels = 6.29%.

(d) Filtered by GHAD,t = 500. (e) Filtered by GHAD,t → ∞. Ac-
tual number of edgels = 4.9946%.

Figure 3. Image “Lenna” processed by RAD
(K = 0.022) and GHAD ($ = 5%).



(a) K = 0.005 (b) K = 0.010

(c) K = 0.015

(d) K = 0.020 (e) K = 0.025

Figure 4. Image “Lenna” processed by RAD
with different values K and t→∞.

(a) $ = 20%. Actual number of
edgels = 19.8179%.

(b) $ = 15%. Actual number of
edgels = 14.9515%.

(c) $ = 10%. Actual number of
edgels = 9.9967%.

(d) $ = 2%. Actual number of
edgels = 1.9978%.

(e) $ = 1%. Actual number of
edgels = 0.9991%.

Figure 5. Image “Lenna” processed by GHAD
with different values $ and t→∞.


