
OpenGL 1.1 Reference

for HP-UX 11.x
Manufacturing Part Number: B2355-IE001

Edition E0302

© Copyright 2002 by Hewlett-Packard

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by copyright.
All rights reserved. No part of this document may be photocopied, reproduced or
translated to another language without the prior written consent of
Hewlett-Packard Company.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government Department of Defense is
subject to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in
Technical Data and Software clause in DFARS
252.227.7013.

This document contains proprietary information that is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company.

UNIX is a registered trademark in the United States of America and other
countries, licensed exclusively through X/Open Company Limited.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

© Copyright 2002 Hewlett-Packard Company. All Rights Reserved.

© Copyright 1980, 1984 AT&T, Inc.

© Copyright 1979, 1980, 1983 The Regents of the University of California.
2

Contents
glAccum . 10
glAlphaFunc . 13
glAreaTexturesResident . 15
glArrayElement . 17
glBegin . 20
gluBeginCurve . 23
gluBeginPolygon. 24
gluBeginSurface . 25
gluBeginTrim . 26
glBindTexture. 28
glBitMap . 30
glBlendColorEXT . 32
glBlendFunc . 33
gluBuild1DMipmaps . 36
gluBuild2DMipmaps . 38
glCallList . 42
glCallLists . 43
glXChooseVisual. 46
glClear . 50
glClearAccum . 52
glClearColor . 53
glClearDepth . 54
glClearindex . 55
glClearStencil . 56
glClipPlane . 57
glColor. 59
glColorMask . 63
glColorMaterial . 64
glColorPointer . 66
glXCopyContext . 68
glCopyPixels . 70
glCopyTexImage1D . 74
glCopyTexImage2D . 77
glCopyTexSubImage1D . 80
glCopyTexSubImage2D . 82
glCopyTexSubImage3DEXT . 85
glXCreateContext. 87
glXCreateGLXPixmap . 89
3

Contents
glCullFace . 91
gluCylinder . 92
glDeleteLists. 94
gluDeleteNurbsRenderer. 95
gluDeleteQuadric . 96
gluDeleteTess . 97
glDeleteTextures . 98
glDepthFunc. 100
glDepthMask . 102
glDepthRange. 103
glXDestroyContext . 104
glXDestroyGLXPixmap . 105
glDisable . 106
gluDisk . 112
glDrawArrays . 113
glDrawArraysSethp . 115
glDrawBuffer . 117
glDrawElements. 119
glDrawPixels . 121
glEdgeFlag . 128
glEdgeFlagPointer . 129
glEnable . 131
glEnableClientState. 137
glErrorString . 139
glEvalCoord . 140
glEvalMesh. 143
glEvalPoint . 146
glFeedbackBuffer . 150
glFinish. 153
glFlush . 154
glFog . 155
glFrontFace. 158
glFrustum. 159
glGenLists. 162
glGenTextures . 163
glGet . 165
4

Contents
glXGetClientString . 186
glXGetClipPlane. 187
glXGetConfig . 188
glXGetCurrentContext. 191
glXGetCurrentDisplay . 192
glXGetCurrentDrawable . 193
glGetError . 194
glGetLight. 196
glGetMap . 199
glGetMaterial . 201
gluGetNurbsProperty . 203
glGetPixelMap . 204
glGetPointer . 206
glGetPolygonStipple. 208
glGetString . 209
gluGetString. 211
gluGetTessProperty . 212
glGetTexEnv. 213
glGetTexGen. 215
glGetTexImage . 217
glGetTexLevelParameter . 219
glGetTexParameter . 222
glHint . 226
glIndex . 230
glIndexMask. 232
glIndexPointer . 233
glInitNames . 235
glInterleavedArrays . 236
glXIntro. 238
glXIsDirect . 242
glIsEnabled. 243
glIsList . 246
glIsTexture . 247
glLight. 250
glLightModel . 254
glLineStipple . 257
glLineWidth . 259
glListBase. 261
5

Contents
glLoadIdentity . 262
glLoadMatrix . 263
glLoadName . 265
gluLoadSamplingMatrices. 266
glLogicOp . 267
gluLookAt . 269
glXMakeCurrent . 272
glMap1 . 274
glMap2 . 278
glMapGrid. 283
glMaterials . 285
glMatrixMode . 288
glMultMatrix . 289
glNewList . 292
glNextVisibilityTesthp . 294
gluNewNurbsRenderer . 295
gluNewQuadric . 296
gluNewTess. 297
gluNextContour . 298
glNormal . 300
glNormalPointer. 302
gluNurbsCallback . 304
gluNurbsCurve. 305
gluNurbsPrperty . 307
gluNurbsSurface . 310
glOrtho . 314
gluOrtho2D. 316
gluPartialDisk . 318
glPassThrough . 320
gluPerspective . 321
gluPickMatrix. 323
glPixelMap . 324
glPixelStore . 328
glPixelTransfer. 333
glPixelZoom . 337
glPointSize . 338
6

Contents
glPolygonMode . 340
glPolygonOffset . 342
glPolygonStipple. 344
glPrioritizeTextures . 346
gluProject . 348
glPushAttrib . 349
glPushClientAttrib. 355
glPushMatrix . 357
glPushName . 359
gluPwlCurve. 361
gluQuadricCallback . 364
gluQuadricDrawStyle . 365
gluQuadricNormals . 366
gluQuadricOrientation. 367
gluQuadricTexture . 368
glXQueryExtension . 369
glXQueryExtensionsString . 370
glXQueryServerString . 371
glXQueryVersion . 372
glRasterPos. 374
glReadBuffer. 378
glReadPixels . 380
glRect . 384
glRenderMode . 386
glRotate. 388
glScale. 392
gluScaleImage . 394
glScissor . 396
glSelectBuffer . 398
glShadeModel . 400
gluSphere . 402
glStencilFunc . 403
glStencilMask. 405
glStencilOp . 406
glXSwapBuffers . 408
gluTessBeginContour. 410
gluTessBeginPolygon . 411
gluTessCallback . 412
7

Contents
gluTessEndPolygon . 416
gluTessNormal . 417
gluTessProperty . 418
gluTessVertex . 420
glTexCoord . 422
glTexCoordPointer . 425
glTexEnv. 427
glTexGen. 431
glTexImage1D . 434
glTexImage2D . 439
glTexImage3DEXT. 444
glTexParameter . 449
glTexSubImage1D . 455
glTexSubImage2D . 458
glTexSubImage3DEXT . 461
glTranslate . 464
gluUnProject. 468
glXUseXFont. 470
glVertex. 474
glVertexPointer. 477
glViewport . 479
glVisibilityBufferhp . 480
glXWaitGL . 484
glXWaitX. 485
8

1 A
Chapter 1 9

A
glAccum
glAccum
glAccum : operate on the accumulation buffer.

C Specification

void glAccum(
GLenum op,
GLfloat value)

Parameters

op Specifies the accumulation buffer operation. Symbolic constants
GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN are
accepted.

value Specifies a floating-point value used in the accumulation buffer
operation. op determines how value is used.

Description

The accumulation buffer is an extended-range color buffer. Images are not rendered into
it. Rather, images rendered into one of the color buffers are added to the contents of the
accumulation buffer after rendering. Effects such as anti-aliasing (of points, lines, and
polygons), motion blur, and depth of field can be created by accumulating images
generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The
number of bits per component in the accumulation buffer depends on the
implementation. You can examine this number by calling glGetIntegerv four times, with
arguments:

GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS,
GL_ACCUM_BLUE_BITS, and
GL_ACCUM_ALPHA_BITS.

Regardless of the number of bits per component, the range of values stored by each
component is [- 1, 1]. The accumulation buffer pixels are mapped one-to-one with frame
buffer pixels.

glAccum operates on the accumulation buffer. The first argument, op, is a symbolic
constant that selects an accumulation buffer operation. The second argument, value, is a
floating-point value to be used in that operation. Five operations are specified:
GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and
applied identically to the red, green, blue, and alpha components of each pixel. If a
glAccum operation results in a value outside the range [- 1, 1], the contents of an
accumulation buffer pixel component are undefined.

The operations are as follows:

GL_ACCUM Obtains R, G, B, and A values from the buffer currently selected for
reading (see glReadBuffer).
Chapter 110

A
glAccum
Each component value is divided by 2n -1, where n is the number of
bits allocated to each color component in the currently selected buffer.
The result is a floating-point value in the range [0, 1], which is
multiplied by value and added to the corresponding pixel component in
the accumulation buffer, thereby updating the accumulation buffer.

GL_LOAD Similar to GL_ACCUM, except that the current value in the
accumulation buffer is not used in the calculation of the new value.
That is, the R, G, B, and A values from the currently selected buffer are
divided by 2n - 1, multiplied by value, and then stored in the
corresponding accumulation buffer cell, overwriting the current value.

GL_ADD Adds value to each R, G, B, and A in the accumulation buffer.

GL_MULT Multiplies each R, G, B, and A in the accumulation buffer by value and
returns the scaled component to its corresponding accumulation buffer
location.

GL_RETURN Transfers accumulation buffer values to the color buffer or buffers
currently selected for writing. Each R, G, B, and A component is
multiplied by value, then multiplied by 2n - 1, clamped to the range [0,
2n - 1], and stored in the corresponding display buffer cell. The only
fragment operations that are applied to this transfer are pixel
ownership, scissor, dithering, and color writemasks.

To clear the accumulation buffer, call glClearAccum with R, G, B, and A values to set it
to, then call glClear with the accumulation buffer enabled.

Notes

Only pixels within the current scissor box are updated by a glAccum operation.

Errors

• GL_INVALID_ENUM is generated if op is not an accepted value.
• GL_INVALID_OPERATION is generated if there is no accumulation buffer.
• GL_INVALID_OPERATION is generated if glAccum is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ACCUM_RED_BITS
glGet with argument GL_ACCUM_GREEN_BITS
glGet with argument GL_ACCUM_BLUE_BITS
glGet with argument GL_ACCUM_ALPHA_BITS

See Also

glBlendFunc,
glClear,
glClearAccum,
glCopyPixels,
glGet,
Chapter 1 11

A
glAccum
glLogicOp,
glPixelStore,
glPixelTransfer,
glReadBuffer,
glReadPixels,
glScissor,
glStencilOp
Chapter 112

A
glAlphaFunc
glAlphaFunc

glAlphaFunc: specify the alpha test function.

C Specification

void glAlphaFunc(
GLenum func,

GLclampf ref)

Parameters

func Specifies the alpha comparison function. Symbolic constants
GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER,
GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The
initial value is GL_ALWAYS.

ref Specifies the reference value that incoming alpha values are compared
to. This value is clamped to the range 0 through 1, where 0 represents
the lowest possible alpha value and 1 the highest possible value. The
initial reference value is 0.

Description

The alpha test discards fragments depending on the outcome of a comparison between
an incoming fragment’s alpha value and a constant reference value.

glAlphaFunc specifies the reference value and the comparison function. The comparison
is performed only if alpha testing is enabled. By default, it is not enabled. (See glEnable
and glDisable of GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming alpha
value is compared to ref using the function specified by func. If the value passes the
comparison, the incoming fragment is drawn if it also passes subsequent stencil and
depth buffer tests. If the value fails the comparison, no change is made to the frame
buffer at that pixel location. The comparison functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.

GL_EQUAL Passes if the incoming alpha value is equal to the reference value.

GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference
value.

GL_GREATER Passes if the incoming alpha value is greater than the reference value.

GL_NOTEQUAL Passes if the incoming alpha value is not equal to the reference value.

GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the
reference value.

GL_ALWAYS Always passes (initial value).
Chapter 1 13

A
glAlphaFunc
glAlphaFunc operates on all pixel write operations, including those resulting from the
scan conversion of points, lines, polygons, and bitmaps, and from pixel draw and copy
operations. glAlphaFunc does not affect screen-clear operations.

Notes

Alpha testing is performed only in RGBA mode.

Errors

• GL_INVALID_ENUM is generated if func is not an accepted value.
• GL_INVALID_OPERATION is generated if glAlphaFunc is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ALPHA_TEST_FUNC
glGet with argument GL_ALPHA_TEST_REF
glIsEnabled with argument GL_ALPHA_TEST

See Also

glBlendFunc,
glClear,
glDepthFunc,
glEnable,
glStencilFunc
Chapter 114

A
glAreaTexturesResident
glAreaTexturesResident
glAreaTexturesResident : determine if textures are loaded in texture memory.

C Specification

GLboolean glAreTexturesResident(
GLsizei n,
const GLuint *textures,

GLboolean *residences)

Parameters

n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned.
The residence status of a texture named by an element of textures is
returned in the corresponding element of residences.

Description

GL establishes a “working set” of textures that are resident in texture memory. These
textures can be bound to a texture target much more efficiently than textures that are
not resident.

glAreTexturesResident queries the texture residence status of the n textures named by
the elements of textures. If all the named textures are resident, glAreTexturesResident
returns GL_TRUE, and the contents of residences are undisturbed. If not all the named
textures are resident, glAreTexturesResident returns GL_FALSE, and detailed status is
returned in the n elements of residences. If an element of residences is GL_TRUE, then
the texture named by the corresponding element of textures is resident.

The residence status of a single bound texture may also be queried by calling
glGetTexParameter with the target argument set to the target to which the texture is
bound, and the p_name argument set to GL_TEXTURE_RESIDENT. This is the only
way that the residence status of a default texture can be queried.

Notes

 glAreTexturesResident is available only if the GL version is 1.1 or greater.

 glAreTexturesResident returns the residency status of the textures at the time of
invocation. It does not guarantee that the textures will remain resident at any other
time.

If textures reside in virtual memory (there is no texture memory), they are considered
always resident.

 Some implementations may not load a texture until the first use of that texture.
Chapter 1 15

A
glAreaTexturesResident
Errors

• GL_INVALID_VALUE is generated if n is negative.

• GL_INVALID_VALUE is generated if any element in textures is 0 or does not name a
texture. In that case, the function returns GL_FALSE and the contents of residences
is indeterminate.

• GL_INVALID_OPERATION is generated if glAreTexturesResident is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGetTexParameter with parameter name GL_TEXTURE_RESIDENT retrieves the
residence status of a currently bound texture.

See Also

glBindTexture,
glGetTexParameter,
glPrioritizeTextures,
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 116

A
glArrayElement
glArrayElement
glArrayElement: render a vertex using the specified vertex array element.

C Specification

void glArrayElement(

GLint i)

Parameters

i Specifies an index into the enabled vertex data arrays.

Description

glArrayElement commands are used within glBegin/glEnd pairs to specify vertex and
attribute data for point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled
when glArrayElement is called, a single vertex is drawn, using vertex and attribute data
taken from location i of the enabled arrays. If GL_VERTEX_ARRAY is not enabled, no
drawing occurs but the attributes corresponding to the enabled arrays are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than by
streaming through arrays of data in first-to-last order. Because each call specifies only a
single vertex, it is possible to explicitly specify per-primitive attributes such as a single
normal per individual triangle.

Changes made to array data between the execution of glBegin and the corresponding
execution of glEnd may affect calls to glArrayElement that are made within the same
glBegin/glEnd period in non-sequential ways. That is, a call to glArrayElement that
precedes a change to array data may access the changed data, and a call that follows a
change to array data may access original data.

Notes

glArrayElement is available only if the GL version is 1.1 or greater.

glArrayElement is included in display lists. If glArrayElement is entered into a display
list, the necessary array data (determined by the array pointers and enables) is also
entered into the display list. Because the array pointers and enables are client-side
state, their values affect display lists when the lists are created, not when the lists are
executed.

See Also

glColorPointer,
glDrawArrays,
glEdgeFlagPointer,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
Chapter 1 17

A
glArrayElement
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 118

2 B
Chapter 2 19

B
glBegin
glBegin
glBegin, glEnd: delimit the vertices of a primitive or a group of like primitives.

C Specification

void glBegin(
GLenum mode)

void glEnd(void)

Parameters

mode Specifies the primitive or primitives that will be created from vertices
presented between glBegin and the subsequent glEnd. Ten symbolic
constants are accepted:
GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP,
GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

Description

glBegin and glEnd delimit the vertices that define a primitive or a group of like
primitives. glBegin accepts a single argument that specifies in which of ten ways the
vertices are interpreted. Taking n as an integer count starting at one, and n as the total
number of vertices specified, the interpretations are as follows:

GL_POINTS Treats each vertex as a single point. Vertex n defines point n. n points
are drawn.

GL_LINES Treats each pair of vertices as an independent line segment. Vertices
2n - 1 and 2n define line n. n/2 lines are drawn.

GL_LINE_STRIP
Draws a connected group of line segments from the first vertex to the
last. n - 1 lines are drawn.

GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the
last, then back to the first. Vertices n and n+1 define line n. The last
line, however, is defined by vertices n and 1. n lines are drawn.

GL_TRIANGLES
Treats each triplet of vertices as an independent triangle. Vertices 3n -
2, 3n - 1, and 3n define triangle n. n/3 triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each
vertex presented after the first two vertices. For odd n, vertices n, n+1,
and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define
triangle n. n2 triangles are drawn.
Chapter 220

B
glBegin
GL_TRIANGLE_FAN
Draws a connected group of triangles. One triangle is defined for each
vertex presented after the first two vertices. Vertices 1, n+1, and n+2
define triangle n. n - 2 triangles are drawn.

GL_QUADS
Treats each group of four vertices as an independent quadrilateral.
Vertices 4n - 3, 4n - 2, 4n - 1, and 4n define quadrilateral n. n/4
quadrilaterals are drawn.

GL_QUAD_STRIP
Draws a connected group of quadrilaterals. One quadrilateral is
defined for each pair of vertices presented after the first pair. Vertices
2n -1, 2n, 2n+2, and 2n+1 define quadrilateral n. n/21 quadrilaterals
are drawn. Note that the order in which vertices are used to construct
a quadrilateral from strip data is different from that used with
independent data.

GL_POLYGON
 Draws a single, convex polygon. Vertices 1 through n define this
polygon.

Only a subset of GL commands can be used between glBegin and glEnd. The commands
are glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint,
glArrayElement, glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or
glCallLists to execute display lists that include only the preceding commands. If any
other GL command is executed between glBegin and glEnd, the error flag is set and the
command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that
can be defined between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons
that are incompletely specified are not drawn. Incomplete specification results when
either too few vertices are provided to specify even a single primitive or when an
incorrect multiple of vertices is specified. The incomplete primitive is ignored; the rest
are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for
a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a
certain multiple of vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4),
and GL_QUAD_STRIP (2).

Errors

• GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

• GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin
and the corresponding execution of glEnd.

• GL_INVALID_OPERATION is generated if glEnd is executed without being
preceded by a glBegin.

• GL_INVALID_OPERATION is generated if a command other than glVertex, glColor,
glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement,
glMaterial, glEdgeFlag, glCallList, or glCallLists is executed between the execution
of glBegin and the corresponding execution glEnd.
Chapter 2 21

B
glBegin
Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer,
glTexCoordPointer, glColorPointer, glIndexPointer, glNormalPointer, glVertexPointer,
glInterleavedArrays, or glPixelStore is not allowed after a call to glBegin and before the
corresponding call to glEnd, but an error may or may not be generated.

See Also

glArrayElement,
glCallList,
glCallLists,
glColor,
glEdgeFlag,
glEvalCoord,
glEvalPoint,
glIndex,
glMaterial,
glNormal,
glTexCoord,
glVertex
Chapter 222

B
gluBeginCurve
gluBeginCurve
gluBeginCurve, gluEndCurve: delimit a NURBS curve definition.

C Specification

void gluBeginCurve(
GLUnurbs* nurb)

void gluEndCurve(

GLUnurbs* nurb)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

Description

Use gluBeginCurve to mark the beginning of a NURBS curve definition. After calling
gluBeginCurve, make one or more calls to gluNurbsCurve to define the attributes of the
curve. Exactly one of the calls to gluNurbsCurve must have a curve type of
GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4. To mark the end of the NURBS curve
definition, call gluEndCurve.

GL evaluators are used to render the NURBS curve as a series of line segments.
Evaluator state is preserved during rendering with glPushAttrib(GL_EVAL_BIT) and
glPopAttrib(). See the glPushAttrib reference page for details on exactly what state these
calls preserve.

See Also

gluBeginSurface,
gluBeginTrim,
gluNewNurbsRenderer,
gluNurbsCurve,
glPopAttrib,
glPushAttrib
Chapter 2 23

B
gluBeginPolygon
gluBeginPolygon
gluBeginPolygon, gluEndPolygon : delimit a polygon description.

C Specification

void gluBeginPolygon(
GLUtesselator* tess)

void gluEndPolygon(

GLUtesselator* tess)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

Description

gluBeginPolygon and gluEndPolygon delimit the definition of a nonconvex polygon. To
define such a polygon, first call gluBeginPolygon. Then define the contours of the polygon
by calling gluTessVertex for each vertex and gluNextContour to start each new contour.
Finally, call gluEndPolygon to signal the end of the definition. See the gluTessVertex and
gluNextContour reference pages for more details.

Once gluEndPolygon is called, the polygon is tessellated, and the resulting triangles are
described through callbacks. See gluTessCallback for descriptions of the callback
functions.

Notes

This command is obsolete and is provided for backward compatibility only. Calls to
gluBeginPolygon are mapped to gluTessBeginPolygon followed by gluTessBeginContour.
Calls to gluEndPolygon are mapped to gluTessEndContour followed by
gluTessEndPolygon.

See Also

gluNewTess,
gluNextContour,
gluTessCallback,
gluTessVertex,
gluTessBeginPolygon,
gluTessBeginContour
Chapter 224

B
gluBeginSurface
gluBeginSurface
gluBeginSurface, gluEndSurface: delimit a NURBS surface definition.

C Specification

void gluBeginSurface(
GLUnurbs* nurb)

void gluEndSurface(

GLUnurbs* nurb)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

Description

Use gluBeginSurface to mark the beginning of a NURBS surface definition. After calling
gluBeginSurface, make one or more calls to gluNurbsSurface to define the attributes of
the surface. Exactly one of these calls to gluNurbsSurface must have a surface type of
GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4. To mark the end of the NURBS
surface definition, call gluEndSurface.

Trimming of NURBS surfaces is supported with gluBeginTrim, gluPwlCurve,
gluNurbsCurve, andgluEndTrim. See the gluBeginTrim reference page for details.

GL evaluators are used to render the NURBS surface as a set of polygons. Evaluator
state is preserved during rendering with glPushAttrib(GL_EVAL_BIT) and
glPopAttrib(). See the glPushAttrib reference page for details on exactly what state these
calls preserve.

See Also

gluBeginCurve,
gluBeginTrim,
gluNewNurbsRenderer,
gluNurbsCurve,
gluNurbsSurface,
gluPwlCurve
Chapter 2 25

B
gluBeginTrim
gluBeginTrim
gluBeginTrim, gluEndTrim: delimit a NURBS trimming loop definition.

C Specification

void gluBeginTrim(
GLUnurbs* nurb)

void gluEndTrim(

GLUnurbs* nurb)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

Description

Use gluBeginTrim to mark the beginning of a trimming loop, and gluEndTrim to mark
the end of a trimming loop. A trimming loop is a set of oriented curve segments (forming
a closed curve) that define boundaries of a NURBS surface. You include these trimming
loops in the definition of a NURBS surface, between calls to gluBeginSurface and
gluEndSurface.

The definition for a NURBS surface can contain many trimming loops. For example, if
you wrote a definition for a NURBS surface that resembled a rectangle with a hole
punched out, the definition would contain two trimming loops. One loop would define the
outer edge of the rectangle; the other would define the hole punched out of the rectangle.
The definitions of each of these trimming loops would be bracketed by a
gluBeginTrim/gluEndTrim pair.

The definition of a single closed trimming loop can consist of multiple curve segments,
each described as a piece wise linear curve (see gluPwlCurve) or as a single NURBS
curve (see gluNurbsCurve), or as a combination of both in any order. The only library
calls that can appear in a trimming loop definition (between the calls to gluBeginTrim
and gluEndTrim) are gluPwlCurve and gluNurbsCurve.

The area of the NURBS surface that is displayed is the region in the domain to the left of
the trimming curve as the curve parameter increases. Thus, the retained region of the
NURBS surface is inside a counterclockwise trimming loop and outside a clockwise
trimming loop. For the rectangle mentioned earlier, the trimming loop for the outer edge
of the rectangle runs counterclockwise, while the trimming loop for the punched-out hole
runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments
must form a closed loop (that is, the endpoint of each curve must be the starting point of
the next curve, and the endpoint of the final curve must be the starting point of the first
curve). If the endpoints of the curve are sufficiently close together but not exactly
coincident, they will be coerced to match. If the endpoints are not sufficiently close, an
error results (see gluNurbsCallback).
Chapter 226

B
gluBeginTrim
If a trimming loop definition contains multiple curves, the direction of the curves must
be consistent (that is, the inside must be to the left of all of the curves). Nested trimming
loops are legal as long as the curve orientations alternate correctly. If trimming curves
are self-intersecting, or intersect one another, an error results.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

See Also

gluBeginSurface,
gluNewNurbsRenderer,
gluNurbsCallback,
gluNurbsCurve,
gluPwlCurve
Chapter 2 27

B
glBindTexture
glBindTexture
glBindTexture : bind a named texture to a texture target.

C Specification

void glBindTexture(
GLenum target,

GLuint texture)

Parameters

target Specifies the target to which the texture is bound. Must be either
GL_TEXTURE_1D or GL_TEXTURE_2D. Initially, both
GL_TEXTURE_1D and GL_TEXTURE_2D are bound to texture 0.

texture Specifies the name of a texture.

Description

glBindTexture binds the texture named texture to the specified target. If the name does
not exist, it is created. target must be either GL_TEXTURE_1D or GL_TEXTURE_2D.
When a texture is bound to a target, the previous binding for that target is broken.

Texture names are unsigned integers. The value 0 is reserved to represent the default
texture for each texture target. glGenTextures may be used to generate a set of new
texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first
bound to GL_TEXTURE_1D becomes one-dimensional and a texture first bound to
GL_TEXTURE_2D becomes two-dimensional. The state of a one-dimensional texture
immediately after it is first bound is equivalent to the state of the default
GL_TEXTURE_1D at GL initialization, and similarly for two-dimensional textures.

While a texture is bound, GL operations on the target to which it is bound affect the
bound texture, and queries of the target to which it is bound return state from the bound
texture. If texture mapping of the dimensionality of the target to which a texture is
bound is active, the bound texture is used. In effect, the texture targets become aliases
for the textures currently bound to them, and the texture name “0” refers to the default
textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different texture is
bound to the same target, or until the bound texture is deleted with glDeleteTextures.
When a bound texture is deleted, the default texture is bound to that target.

Once created, a named texture may be re-bound to the target of the matching
dimensionality as often as needed. It is usually much faster to use glBindTexture to bind
an existing named texture to one of the texture targets than it is to reload the texture
image using glTexImage1D or glTexImage2D. For additional control over performance,
use glPrioritizeTextures.
Chapter 228

B
glBindTexture
Notes

glBindTexture is available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if target is not one of the allowable values.

• GL_INVALID_OPERATION is generated if texture has a dimensionality that
doesn’t match that of target.

• GL_INVALID_OPERATION is generated if glBindTexture is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGet with argument GL_TEXTURE_1D_BINDING

 glGet with argument GL_TEXTURE_2D_BINDING

See Also

glAreTexturesResident,
glDeleteTextures,
glGenTextures,
glGet,
glGetTexParameter,
glIsTexture,
glPrioritizeTextures,
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 2 29

B
glBitMap
glBitMap
glBitmap : draw a bitmap.

C Specification

void glBitmap(
GLsizei width,
GLsizei height,
GLfloat xorig,
GLfloat yorig,
GLfloat xmove,
GLfloat ymove,

const GLubyte *bitmap)

Parameters

width, height Specify the pixel width and height of the bitmap image.

xorig, yorig Specify the location of the origin in the bitmap image. The origin is
measured from the lower left corner of the bitmap, with right and up
being the positive axes.

xmove, ymove Specify the x and y offsets to be added to the current raster position
after the bitmap is drawn.

bitmap Specifies the address of the bitmap image.

Description

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current
raster position, and frame buffer pixels corresponding to 1s in the bitmap are written
using the current raster color or index. Frame buffer pixels corresponding to 0s in the
bitmap are not modified.

glBitmap takes seven arguments. The first pair specifies the width and height of the
bitmap image. The second pair specifies the location of the bitmap origin relative to the
lower left corner of the bitmap image. The third pair of arguments specifies x and y
offsets to be added to the current raster position after the bitmap has been drawn. The
final argument is a pointer to the bitmap image itself.

The bitmap image is interpreted like image data for the glDrawPixels command, with
width and height corresponding to the width and height arguments of that command,
and with type set to GL_BITMAP and format set to GL_COLOR_INDEX.

Modes specified using glPixelStore affect the interpretation of bitmap image data; modes
specified using glPixelTransfer do not.

If the current raster position is invalid, glBitmap is ignored. Otherwise, the lower left
corner of the bitmap image is positioned at the window coordinates

xw = xr - xo

yw = yr - yo

Chapter 230

B
glBitMap
where (xr, yr) is the raster position and (xo, yo) is the bitmap origin. Fragments are then
generated for each pixel corresponding to a 1 (one) in the bitmap image. These fragments
are generated using the current raster z coordinate, color or color index, and current
raster texture coordinates. They are then treated just as if they had been generated by a
point, line, or polygon, including texture mapping, fogging, and all per-fragment
operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position
are offset by xmove and ymove. No change is made to the z coordinate of the current
raster position, or to the current raster color, texture coordinates, or index.

Notes

To set a valid raster position outside the viewport, first set a valid raster position inside
the viewport, then call glBitmap with NULL as the bitmap parameter and with xmove
and ymove set to the offsets of the new raster position. This technique is useful when
panning an image around the viewport.

Errors

• GL_INVALID_VALUE is generated if width or height is negative.

• GL_INVALID_OPERATION is generated if glBitmap is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_COLOR

glGet with argument GL_CURRENT_RASTER_INDEX

glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

glGet with argument GL_CURRENT_RASTER_POSITION_VALID

See Also

glDrawPixels,
glPixelStore,
glPixelTransfer,
glRasterPos
Chapter 2 31

B
glBlendColorEXT
glBlendColorEXT
glBlendColorEXT : set the blend color.

C Specification

void glBlendColorEXT(
GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha)

Parameters

red, green, blue, alpha Specify the components of GL_BLEND_COLOR_EXT.

Description

The GL_BLEND_COLOR_EXT may be used to calculate the source and destination
blending factors. See glBlendFunc for a complete description of the blending operations.
Initially the GL_BLEND_COLOR_EXT is set to (0, 0, 0, 0).

Notes

glBlendColorEXT is part of the EXT_blend_color extension, not part of the core GL
command set. If GL_EXT_blend_color is included in the string returned by glGetString,
when called with argument GL_EXTENSIONS, extension EXT_blend_color is supported
by the connection.

Errors

• GL_INVALID_OPERATION is generated if glBlendColorEXT is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with an argument of GL_BLEND_COLOR_EXT.

See Also

glBlendFunc,
glGetString
Chapter 232

B
glBlendFunc
glBlendFunc
glBlendFunc : specify pixel arithmetic.

C Specification

void glBlendFunc(
GLenum sfactor,

GLenum dfactor)

Parameters

sfactor Specifies how the red, green, blue, and alpha source blending factors
are computed. Nine symbolic constants are accepted:
GL_ZERO, GL_ONE, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, and GL_SRC_ALPHA_SATURATE.
The initial value is GL_ONE.

dfactor Specifies how the red, green, blue, and alpha destination blending
factors are computed. Eight symbolic constants are accepted:
GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, and
GL_ONE_MINUS_DST_ALPHA.
The initial value is GL_ZERO.

Description

In RGBA mode, pixels can be drawn using a function that blends the incoming (source)
RGBA values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use glEnable and glDisable with
argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which
of nine methods is used to scale the source color components. dfactor specifies which of
eight methods is used to scale the destination color components. The eleven possible
methods are described in the following table. Each method defines four scale factors, one
each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are
referred to as (Rs, Gs, Bs, As) and (Rd, Gd, Bd, Ad). They are understood to have integer
values between 0 and (kR, kG, kB, kA), where

 kc = 2mc - 1

and (mR, mG, mB, mA) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (sR, sG, sB, sA) and (dR, dG, dB, dA).
The scale factors described in the table, denoted (fR, fG, fB, fA), represent either source or
destination factors. All scale factors have range [0,1].
Chapter 2 33

B
glBlendFunc
Parameters

In the table,

 i = min(As, kA - Ad) / kA

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the
system uses the following equations:

 Rd = min(kR, Rs sR + Rd dR)

Gd = min(kG, Gs sG + Gd dG)

Bd = min(kB, Bs sB + Bd dB)

Ad = min(kA, As sA + Ad dA)

Despite the apparent precision of the above equations, blending arithmetic is not exactly
specified, because blending operates with imprecise integer color values. However, a
blend factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a
blend factor equal to 0 reduces its multiplicand to 0. For example, when sfactor is
GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the
equations reduce to simple replacement:

Rd = Rs

Gd = Gs

Bd = Bs

Ad = As

Table 2-1

Parameter (fR, fG, fB, fA)

GL_ZERO (0, 0, 0, 0)

GL_ONE (1, 1, 1, 1)

GL_SRC_COLOR (Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_ONE_MINUS_SRC_COLOR (1,1,1,1) - (Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_DST_COLOR (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_SRC_ALPHA (As/kA, As/kA, As/kA, As/kA)

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As/kA, As/kA, As/kA, As/kA)

GL_DST_ALPHA (Ad/kA, Ad/kA,Ad/kA,Ad/kA)

GL_ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad/kA, Ad/kA,Ad/kA,Ad/kA)

GL_SRC_ALPHA_SATURATE (i, i, i,1)
Chapter 234

B
glBlendFunc
Examples

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for
rendering anti-aliased points and lines in arbitrary order.

Polygon anti-aliasing is optimized using blend function (GL_SRC_ALPHA_SATURATE,
GL_ONE) with polygons sorted from nearest to farthest. (See the glEnable, glDisable
reference page and the GL_POLYGON_SMOOTH argument for information on polygon
anti-aliasing.) Destination alpha bitplanes, which must be present for this blend
function to operate correctly, store the accumulated coverage.

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0
(KA), representing complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, the GL performs blending
separately for each enabled buffer, using the contents of that buffer for destination color.
(See glDrawBuffer.)

Blending affects only RGBA rendering. It is ignored by color index renderers.

Errors

• GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted
value.

• GL_INVALID_OPERATION is generated if glBlendFunc is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_BLEND_SRC
glGet with argument GL_BLEND_DST
glIsEnabled with argument GL_BLEND

See Also

glAlphaFunc,
glClear,
glDrawBuffer,
glEnable,
glLogicOp,
glStencilFunc
Chapter 2 35

B
gluBuild1DMipmaps
gluBuild1DMipmaps
gluBuild1DMipmaps: create 1D mipmaps.

C Specification

GLint gluBuild1DMipmaps(
GLenum target,
GLint component,
GLsizei width,
GLenum format,
GLenum type,

const void *data)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

component Specifies the number of color components in the texture. Must be 1, 2,
3, or 4.

width Specifies the width of the texture image.

format Specifies the format of the pixel data. Must be one of
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

data Specifies a pointer to the image data in memory.

Description

gluBuild1DMipmaps builds a series of pre-filtered 1D texture maps of decreasing
resolution. Mipmaps can be used so that textures don’t appear aliased.

A return value of 0 indicates success. Otherwise a GLU error code is returned (see
gluErrorString).

 gluBuild1DMipmaps first checks whether the width of data is a power of 2. If not, it
scales a copy of data (up or down) to the nearest power of two. This copy is used as the
base for subsequent mipmapping operations. For example, if width is 57, a copy of data
scales up to 64 before mipmapping takes place. (If width is exactly between powers of 2,
the copy of data is scaled upward.)

If the GL version is 1.1 or greater, gluBuild1DMipmaps uses proxy textures (see
glTexImage1D) to determine if the implementation can store the requested texture in
texture memory. If there isn’t enough room, width is halved (and halved again) until it
fits.
Chapter 236

B
gluBuild1DMipmaps
Next, gluBuild1DMipmaps builds a series of mipmap levels; it halves a copy of data (or a
scaled version of data, if necessary) until size 1 is reached. At each level, each texel in
the halved image is an average of the corresponding two texels in the larger image.

 glTexImage1D is called to load each of these images by level. If width is a power of 2
which fits in the implementation, level 0 is a copy of data, and the highest level is log2
width. For example, if width is 64, the following images are built: 64x1, 32x1, 16x1, 8x1,
4x1, 2x1 and 1x1. These correspond to levels 0 through 6, respectively.

See the glTexImage1D reference page for a description of the acceptable values for type.
See the glDrawPixels reference page for a description of the acceptable values for data.

Notes

While you can’t query the maximum level directly, you can derive it indirectly by calling
glGetTexLevelParameter. First, query for the width actually used at level 0. (The width
may be unequal to width since gluBuild1DMipmaps might have shrunk or expanded
width if width isn’t a power of 2 or if the implementation only supports smaller textures.
The maximum level can then be derived using the formula log2 width.

Errors

• GLU_INVALID_VALUE is returned if width is negative.

• GLU_INVALID_ENUM is returned if format or type is not one of the accepted
values.

Bugs

Passing GL_STENCIL_INDEX or GL_DEPTH_COMPONENT as format will incorrectly
return 0 and set the error code to GL_INVALID_ENUM. It should return
GLU_INVALID_ENUM and not set an error code.

See Also

glTexImage1D,
gluBuild2DMipmaps,
gluErrorString,
gluScaleImage
Chapter 2 37

B
gluBuild2DMipmaps
gluBuild2DMipmaps
gluBuild2DMipmaps : create 2D mipmaps.

C Specification

GLint gluBuild2DMipmaps(
GLenum target,
GLint component,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,

const void *data)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

component Specifies the number of color components in the texture. Must be 1, 2,
3, or 4.

target Specifies the target texture. Must be GL_TEXTURE_2D.

width, height Specifies the width and height, respectively, of the texture image.

format Specifies the format of the pixel data. Must be one of:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT
or GL_FLOAT.

data Specifies a pointer to the image data in memory.

Description

gluBuild2DMipmaps builds a series of pre-filtered 2D texture maps of decreasing
resolution. Mipmaps can be used so that textures don’t appear aliased.

A return value of 0 indicates success. Otherwise a GLU error code is returned (see
gluErrorString).

gluBuild2DMipmaps first check whether width and height of data are both powers of 2.
If not, gluBuild2DMipmaps scales a copy of data up or down to the nearest power of 2.
This copy is then used as the base for subsequent mipmapping operations. For example,
if width is 57 and height is 23, then a copy of data scales up to 64 and down to 16,
respectively, before mipmapping takes place. (If width or height is exactly between
powers of 2, the copy of data is scaled upward.)
Chapter 238

B
gluBuild2DMipmaps
If the GL version is 1.1 or greater, gluBuild2DMipmaps then uses proxy textures (see
glTexImage1D) to determine whether there’s enough room for the requested texture in
the implementation. If not, width is halved (and halved again) until it fits.

gluBuild2DMipmaps then uses proxy textures (see glTexImage2D) to determine if the
implementation can store the requested texture in texture memory. If not, both
dimensions are continually halved until it fits.

Next, gluBuild2DMipmaps builds a series of images; it halves a copy of type (or a scaled
version of type, if necessary) along both dimensions until size 11 is reached. At each
level, each texel in the halved mipmap is an average of the corresponding four texels in
the larger mipmap. (In the case of rectangular images, halving the images repeatedly
eventually results in an n 1 or 1n configuration. Here, two texels are averaged instead.)

glTexImage2D is called to load each of these images by level. If width and height are
both powers of 2 which fit in the implementation, level 0 is a copy of data, and the
highest level is log2(max(width, height)). For example, if width is 64 and height is 16, the
following mipmaps are built: 64×16, 32×8, 16×4, 8×2, 4×1, 2×1 and 1×1. These correspond
to levels 0 through 6, respectively.

See the glTexImage1D reference page for a description of the acceptable values for
format. See the glDrawPixels reference page for a description of the acceptable values for
type.

Notes

While you can’t query the maximum level directly, you can derive it indirectly by calling
glGetTexLevelParameter. First, query for the width and height actually used at level 0.
(The width and height may be unequal to width and height since proxy textures might
have shrunk or expanded them if width or height are not powers of 2 or if the
implementation only supports smaller textures.) The maximum level can then be
derived using the formula log2(max(width, height)).

Errors

• GLU_INVALID_VALUE is returned if width or height are negative.

• GLU_INVALID_ENUM is returned if format or type is not one of the accepted
values.

See Also

glDrawPixels,
glTexImage1D,
glTexImage2D,
gluBuild1DMipmaps,
gluErrorString,
gluScaleImage
Chapter 2 39

B
gluBuild2DMipmaps
Chapter 240

3 C
Chapter 3 41

C
glCallList
glCallList
glCallList : execute a display list.

C Specification

void glCallList(

GLuint list)

Parameters

list Specifies the integer name of the display list to be executed.

Description

glCallList causes the named display list to be executed. The commands saved in the
display list are executed in order, just as if they were called without using a display list.
If list has not been defined as a display list, glCallList is ignored.

glCallList can appear inside a display list. To avoid the possibility of infinite recursion
resulting from display lists calling one another, a limit is placed on the nesting level of
display lists during display-list execution. This limit is at least 64, and it depends on the
implementation.

GL state is not saved and restored across a call to glCallList. Thus, changes made to GL
state during the execution of a display list remain after execution of the display list is
completed. Use glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve
GL state across glCallList calls.

Notes

Display lists can be executed between a call to glBegin and the corresponding call to
glEnd, as long as the display list includes only commands that are allowed in this
interval.

Associated Gets

glGet with argument GL_MAX_LIST_NESTING glIsList

See Also

glCallLists,
glDeleteLists,
glGenLists,
glNewList,
glPushAttrib,
glPushMatrix
Chapter 342

C
glCallLists
glCallLists
glCallLists: execute a list of display lists.

C Specification

void glCallLists(
GLsizei n,
GLenum type,

const GLvoid *lists)

Parameters

n Specifies the number of display lists to be executed.

type Specifies the type of values in lists. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES,
GL_3_BYTES, and GL_4_BYTES are accepted.

 lists Specifies the address of an array of name offsets in the display list. The
pointer type is void because the offsets can be bytes, shorts, ints, or
floats, depending on the value of type.

Description

glCallLists causes each display list in the list of names passed as lists to be executed. As
a result, the commands saved in each display list are executed in order, just as if they
were called without using a display list. Names of display lists that have not been
defined are ignored.

glCallLists provides an efficient means for executing more than one display list. type
allows lists with various name formats to be accepted. The formats are as follows:

GL_BYTE lists is treated as an array of signed bytes, each in the range - 128
through 127.

GL_UNSIGNED_BYTE
lists is treated as an array of unsigned bytes, each in the range 0
through 255.

GL_SHORT lists is treated as an array of signed two-byte integers, each in the
range - 32768 through 32767.

GL_UNSIGNED_SHORT
 lists is treated as an array of unsigned two-byte integers, each in the
range 0 through 65535.

GL_INT lists is treated as an array of signed four-byte integers.

GL_UNSIGNED_INT
lists is treated as an array of unsigned four-byte integers.

GL_FLOAT lists is treated as an array of four-byte floating-point values.
Chapter 3 43

C
glCallLists
GL_2_BYTES lists is treated as an array of unsigned bytes. Each pair of bytes
specifies a single display-list name. The value of the pair is computed
as 256 times the unsigned value of the first byte plus the unsigned
value of the second byte.

GL_3_BYTES lists is treated as an array of unsigned bytes. Each triplet of bytes
specifies a single display-list name. The value of the triplet is computed
as 65536 times the unsigned value of the first byte, plus 256 times the
unsigned value of the second byte, plus the unsigned value of the third
byte.

GL_4_BYTES lists is treated as an array of signed bytes, each in the range 128
through 127.

The list of display-list names is not null-terminated. Rather, n specifies how many names
are to be taken from lists.

An additional level of indirection is made available with the glListBase command, which
specifies an unsigned offset that is added to each display-list name specified in lists
before that display list is executed.

glCallLists can appear inside a display list. To avoid the possibility of infinite recursion
resulting from display list scaling one another, a limit is placed on the nesting level of
display lists during display-list execution. This limit must be at least 64, and it depends
on the implementation.

GL state is not saved and restored across a call to glCallLists. Thus, changes made to GL
state during the execution of the display lists remain after execution is completed. Use
glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across
glCallLists calls.

Notes

Display lists can be executed between a call to glBegin and the corresponding call to
glEnd, as long as the display list includes only commands that are allowed in this
interval.

Errors

• GL_INVALID_VALUE is generated if n is negative.

• GL_INVALID_ENUM is generated if type is not one of GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES, GL_3_BYTES, GL_4_BYTES.

Associated Gets

glGet with argument GL_LIST_BASE
glGet with argument GL_MAX_LIST_NESTING
glIsList
Chapter 344

C
glCallLists
See Also

glCallList,
glDeleteLists,
glGenLists,
glListBase,
glNewList,
glPushAttrib,
glPushMatrix
Chapter 3 45

C
glXChooseVisual
glXChooseVisual
glXChooseVisual : return a visual that matches specified attributes.

C Specification

XVisualInfo *glXChooseVisual(
Display *dpy,
int screen,

int *attribList)

Parameters

dpy Specifies the connection to the X server.

screen Specifies the screen number.

attribList Specifies a list of boolean attributes and integer attribute/value pairs.
The last attribute must be None.

Description

glXChooseVisual returns a pointer to an XVisualInfo structure describing the visual that
best meets a minimum specification. The boolean GLX attributes of the visual that is
returned will match the specified values, and the integer GLX attributes will meet or
exceed the specified minimum values. If all other attributes are equivalent, then
TrueColor and PseudoColor visuals have priority over DirectColor and StaticColor
visuals, respectively. If no conforming visual exists, NULL is returned. To free the data
returned by this function, use XFree.

All boolean GLX attributes default to False except GLX_USE_GL, which defaults to
True. All integer GLX attributes default to zero. Default specifications are superseded by
attributes included in attribList. Boolean attributes included in attribList are
understood to be True. Integer attributes and enumerated type attributes are followed
immediately by the corresponding desired or minimum value. The list must be
terminated with None.

The interpretations of the various GLX visual attributes are as follows:

GLX_USE_GL

Ignored. Only visuals that can be rendered with GLX are considered.

GLX_BUFFER_SIZE

Must be followed by a non-negative integer that indicates the desired color index buffer
size. The smallest index buffer of at least the specified size is preferred. Ignored if
GLX_RGBA is asserted.

GLX_LEVEL

Must be followed by an integer buffer-level specification. This specification is honored
exactly. Buffer level zero corresponds to the main frame buffer of the display. Buffer level
one is the first overlay frame buffer, level two the second overlay frame buffer, and so on.
Negative buffer levels correspond to underlay frame buffers.
Chapter 346

C
glXChooseVisual
GLX_RGBA

If present, only TrueColor and DirectColor visuals are considered. Otherwise, only
PseudoColor and StaticColor visuals are considered.

GLX_DOUBLEBUFFER

If present, only double-buffered visuals are considered. Otherwise, only single-buffered
visuals are considered.

GLX_STEREO

If present, only stereo visuals are considered. Otherwise, only monoscopic visuals are
considered.

 GLX_AUX_BUFFERS

Must be followed by a nonnegative integer that indicates the desired number of auxiliary
buffers. Visuals with the smallest number of auxiliary buffers that meets or exceeds the
specified number are preferred.

GLX_RED_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available red buffer is preferred. Otherwise, the largest available red buffer of
at least the minimum size is preferred.

GLX_GREEN_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available green buffer is preferred. Otherwise, the largest available green
buffer of at least the minimum size is preferred.

GLX_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available blue buffer is preferred. Otherwise, the largest available blue buffer of
at least the minimum size is preferred.

GLX_ALPHA_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available alpha buffer is preferred. Otherwise, the largest available alpha
buffer of at least the minimum size is preferred.

GLX_DEPTH_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero,
visuals with no depth buffer are preferred. Otherwise, the largest available depth buffer
of at least the minimum size is preferred.

GLX_STENCIL_SIZE

Must be followed by a nonnegative integer that indicates the desired number of stencil
bitplanes. The smallest stencil buffer of at least the specified size is preferred. If the
desired value is zero, visuals with no stencil buffer are preferred.

GLX_ACCUM_RED_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero,
visuals with no red accumulation buffer are preferred. Otherwise, the largest possible
red accumulation buffer of at least the minimum size is preferred.
Chapter 3 47

C
glXChooseVisual
 GLX_ACCUM_GREEN_SIZE

 Must be followed by a nonnegative minimum size specification. If this value is zero,
visuals with no green accumulation buffer are preferred. Otherwise, the largest possible
green accumulation buffer of at least the minimum size is preferred.

 GLX_ACCUM_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero,
visuals with no blue accumulation buffer are preferred. Otherwise, the largest possible
blue accumulation buffer of at least the minimum size is preferred.

GLX_ACCUM_ALPHA_SIZE

 Must be followed by a nonnegative minimum size specification. If this value is zero,
visuals with no alpha accumulation buffer are preferred. Otherwise, the largest possible
alpha accumulation buffer of at least the minimum size is preferred.

Examples

attribList =
GLX_RGBA,
GLX_RED_SIZE, 4,
GLX_GREEN_SIZE, 4,
GLX_BLUE_SIZE, 4,
None};

Specifies a single-buffered RGB visual in the normal frame buffer, not an overlay or
underlay buffer. The returned visual supports at least four bits each of red, green, and
blue, and possibly no bits of alpha. It does not support color index mode,
double-buffering, or stereo display. It may or may not have one or more auxiliary color
buffers, a depth buffer, a stencil buffer, or an accumulation buffer.

Notes

XVisualInfo is defined in Xutil.h. It is a structure that includes visual, visualID, screen,
and depth elements.

 glXChooseVisual is implemented as a client-side utility using only XGetVisualInfo and
glXGetConfig. Calls to these two routines can be used to implement selection algorithms
other than the generic one implemented by glXChooseVisual.

GLX implementers are strongly discouraged, but not proscribed, from changing the
selection algorithm used by glXChooseVisual. Therefore, selections may change from
release to release of the client-side library.

There is no direct filter for picking only visuals that support GLXPixmaps. GLXPixmaps
are supported for visuals whose GLX_BUFFER_SIZE is one of the pixmap depths
supported by the X server.

Errors

• NULL is returned if an undefined GLX attribute is encountered in attribList.
Chapter 348

C
glXChooseVisual
See Also

glXCreateContext,
glXGetConfig
Chapter 3 49

C
glClear
glClear
glClear : clear buffers to preset values.

C Specification

void glClear(

GLbitfield mask)

Parameters

mask Bitwise OR of masks that indicate the buffers to be cleared. The four
masks are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT,
GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

Description

glClear sets the bitplane area of the window to values previously selected by
glClearColor, glClearIndex, glClearDepth, glClearStencil, and glClearAccum. Multiple
color buffers can be cleared simultaneously by selecting more than one buffer at a time
using glDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the
operation of glClear. The scissor box bounds the cleared region. Alpha function, blend
function, logical operation, stenciling, texture mapping, and depth-buffering are ignored
by glClear.

glClear takes a single argument that is the bitwise or of several values indicating which
buffer is to be cleared. The values are as follows:

GL_COLOR_BUFFER_BIT

Indicates the buffers currently enabled for color writing.

GL_DEPTH_BUFFER_BIT

Indicates the depth buffer.

GL_ACCUM_BUFFER_BIT

Indicates the accumulation buffer.

GL_STENCIL_BUFFER_BIT

Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for
that buffer.

Notes

If a buffer is not present, then a glClear directed at that buffer has no effect.
Chapter 350

C
glClear
Errors

• GL_INVALID_VALUE is generated if any bit other than the four defined bits is set
in mask.

• GL_INVALID_OPERATION is generated if glClear is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated gets

glGet with argument GL_ACCUM_CLEAR_VALUE

glGet with argument GL_DEPTH_CLEAR_VALUE

glGet with argument GL_INDEX_CLEAR_VALUE

glGet with argument GL_COLOR_CLEAR_VALUE

glGet with argument GL_STENCIL_CLEAR_VALUE

See Also

glClearAccum,
glClearColor,
glClearDepth,
glClearIndex,
glClearStencil,
glDrawBuffer,
glScissor
Chapter 3 51

C
glClearAccum
glClearAccum
glClearAccum : specify clear values for the accumulation buffer.

C Specification

void glClearAccum(
GLfloat red,
GLfloat green,
GLfloat blue,

GLfloat alpha)

Parameters

red, green, blue, alpha
Specify the red, green, blue, and alpha values used when the
accumulation buffer is cleared. The initial values are all 0.

Description

glClearAccum specifies the red, green, blue, and alpha values used by glClear to clear
the accumulation buffer.

Values specified by glClearAccum are clamped to the range [-1, 1].

Errors

• GL_INVALID_OPERATION is generated if glClearAccum is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ACCUM_CLEAR_VALUE

See Also

glClear
Chapter 352

C
glClearColor
glClearColor
glClearColor : specify clear values for the color buffers.

C Specification

void glClearColor(
GLclampf red,
GLclampf green,
GLclampf blue,

GLclampf alpha)

Parameters

red, green, blue, alpha
Specify the red, green, blue, and alpha values used when the color
buffers are cleared. The initial values are all 0.

Description

glClearColor specifies the red, green, blue, and alpha values used by glClear to clear the
color buffers. Values specified by glClearColor are clamped to the range [0, 1].

Errors

• GL_INVALID_OPERATION is generated if glClearColor is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_COLOR_CLEAR_VALUE

See Also

glClear
Chapter 3 53

C
glClearDepth
glClearDepth
glClearDepth : specify the clear value for the depth buffer.

C Specification

void glClearDepth(

GLclampd depth)

Parameters

depth Specifies the depth value used when the depth buffer is cleared. The
initial value is 1.

Description

glClearDepth specifies the depth value used by glClear to clear the depth buffer. Values
specified by glClearDepth are clamped to the range [0, 1].

Errors

• GL_INVALID_OPERATION is generated if glClearDepth is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGet with argument GL_DEPTH_CLEAR_VALUE

See Also

glClear
Chapter 354

C
glClearindex
glClearindex
glClearIndex : specify the clear value for the color index buffers.

C Specification

void glClearIndex(

GLfloat c)

Parameters

c Specifies the index used when the color index buffers are cleared. The
initial value is 0.

Description

glClearIndex specifies the index used by glClear to clear the color index buffers. c is not
clamped. Rather, c is converted to a fixed-point value with unspecified precision to the
right of the binary point. The integer part of this value is then masked with 2m - 1,
where m is the number of bits in a color index stored in the frame buffer.

Errors

• GL_INVALID_OPERATION is generated if glClearIndex is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_INDEX_BITS

See Also

glClear
Chapter 3 55

C
glClearStencil
glClearStencil
glClearStencil : specify the clear value for the stencil buffer.

C Specification

void glClearStencil(

GLint s)

Parameters

s Specifies the index used when the stencil buffer is cleared. The initial
value is 0.

Description

glClearStencil specifies the index used by glClear to clear the stencil buffer. s is masked
with 2m - 1, where m is the number of bits in the stencil buffer.

Errors

• GL_INVALID_OPERATION is generated if glClearStencil is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_CLEAR_VALUE
glGet with argument GL_STENCIL_BITS

See Also

glClear
Chapter 356

C
glClipPlane
glClipPlane
glClipPlane : specify a plane against which all geometry is clipped.

C Specification

void glClipPlane(
GLenum plane,

const GLdouble *equation)

Parameters

plane Specifies which clipping plane is being positioned. Symbolic names of
the form GL_CLIP_PLANEi, where i is an integer between 0 and
GL_MAX_CLIP_PLANES --1, are accepted.

equation Specifies the address of an array of four double-precision floating-point
values. These values are interpreted as a plane equation.

Description

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z.
glClipPlane allows the specification of additional planes, not necessarily perpendicular
to the x, y, or Z axis, against which all geometry is clipped. To determine the maximum
number of additional clipping planes, call glGetIntegerv with argument
GL_MAX_CLIP_PLANES. All implementations support at least six such clipping planes.
Because the resulting clipping region is the intersection of the defined half-spaces, it is
always convex.

glClipPlane specifies a half-space using a four-component plane equation. When
glClipPlane is called, equation is transformed by the inverse of the modelview matrix
and stored in the resulting eye coordinates. Subsequent changes to the modelview
matrix have no effect on the stored plane-equation components. If the dot product of the
eye coordinates of a vertex with the stored plane equation components is positive or zero,
the vertex is \f2in\f1 with respect to that clipping plane. Otherwise, it is out.

To enable and disable clipping planes, call glEnable and glDisable with the argument
GL_CLIP_PLANEi, where i is the plane number.

All clipping planes are initially defined as (0, 0, 0, 0) in eye coordinates and are disabled.

Notes

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

Errors

• GL_INVALID_ENUM is generated if plane is not an accepted value.

• GL_INVALID_OPERATION is generated if glClipPlane is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 3 57

C
glClipPlane
Associated gets

glGetClipPlane
glIsEnabled with argument GL_CLIP_PLANE\f2i\fP

See Also

glEnable
Chapter 358

C
glColor
glColor
glColor3b, glColor3d, glColor3f, glColor3i, glColor3s, glColor3ub,
glColor3ui, glColor3us, glColor4b, glColor4d, glColor4f, glColor4i,
glColor4s, glColor4ub, glColor4ui, glColor4us, glColor3bv,
glColor3dv, glColor3fv, glColor3iv, glColor3sv, glColor3ubv,
glColor3uiv, glColor3usv, glColor4bv, glColor4dv, glColor4fv,
glColor4iv, glColor4sv, glColor4ubv, glColor4uiv, glColor4usv: set the
current color.

C Specification

void glColor3b(
GLbyte red,
GLbyte green,
GLbyte blue)

void glColor3d(
GLdouble red,
GLdouble green,
GLdouble blue)

void glColor3f(
GLfloat red,
GLfloat green,
GLfloat blue)

void glColor3i(
GLint red,
GLint green,
GLint blue)

void glColor3s(
GLshort red,
GLshort green,
GLshort blue)

void glColor3ub(
GLubyte red,
GLubyte green,
GLubyte blue)

void glColor3ui(
GLuint red,
GLuint green,
GLuint blue)

void glColor3us(
GLushort red,
GLushort green,
GLushort blue)

void glColor4b(
GLbyte red,
GLbyte green,
GLbyte blue,
GLbyte alpha)

void glColor4d(
GLdouble red,
Chapter 3 59

C
glColor
GLdouble green,
GLdouble blue,
GLdouble alpha)

void glColor4f(
GLfloat red,
GLfloat green,
GLfloat blue,
GLfloat alpha)

void glColor4i(
GLint red,
GLint green,
GLint blue,
GLint alpha)

void glColor4s(
GLshort red,
GLshort green,
GLshort blue,
GLshort alpha)

void glColor4ub(
GLubyte red,
GLubyte green,
GLubyte blue,
GLubyte alpha)

void glColor4ui(
GLuint red,
GLuint green,
GLuint blue,
GLuint alpha)

void glColor4us(
GLushort red,
GLushort green,
GLushort blue,

GLushort alpha)
void glColor3bv(

const GLbyte *v)
void glColor3dv(

const GLdouble *v)
void glColor3fv(

const GLfloat *v)
void glColor3iv(

const GLint *v)
void glColor3sv(

const GLshort *v)
void glColor3ubv(

const GLubyte *v)
void glColor3uiv(

const GLuint *v)
void glColor3usv(

const GLushort *v)
void glColor4bv(

const GLbyte *v)
void glColor4dv(

const GLdouble *v)
Chapter 360

C
glColor
void glColor4fv(
const GLfloat *v)

void glColor4iv(
const GLint *v)

void glColor4sv(
const GLshort *v)

void glColor4ubv(
const GLubyte *v)

void glColor4uiv(
const GLuint *v)

void glColor4usv(

const GLushort *v)

Parameters

red, green, blue Specify new red, green, and blue values for the current color.

alpha Specifies a new alpha value for the current color. Included only in the
four-argument glColor4 commands.

v Specifies a pointer to an array that contains red, green, blue, and
(sometimes) alpha values.

Description

The GL stores both a current single-valued color index and a current four-valued RGBA
color. glColor sets a new four-valued RGBA color. glColor has two major variants:
glColor3 and glColor4. glColor3 variants specify new red, green, and blue values
explicitly and set the current alpha value to 1.0 (full intensity) implicitly. glColor4
variants specify all four color components explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i take three or four
signed byte, short, or long integers as arguments. When v is appended to the name, the
color commands can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and
exponent sizes. Unsigned integer color components, when specified, are linearly mapped
to floating-point values such that the largest representable value maps to 1.0 (full
intensity), and 0 maps to 0.0 (zero intensity). Signed integer color components, when
specified, are linearly mapped to floating-point values such that the most positive
representable value maps to 1.0, and the most negative representable value maps to
-1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Floating-point values
are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0, 1] before
the current color is updated. However, color components are clamped to this range before
they are interpolated or written into a color buffer.

Notes

The initial value for the current color is (1, 1, 1, 1).

The current color can be updated at any time. In particular, glColor can be called
between a call to glBegin and the corresponding call to glEnd.
Chapter 3 61

C
glColor
Associated Gets

glGet with argument GL_CURRENT_COLOR
glGet with argument GL_RGBA_MODE

See Also

glIndex
Chapter 362

C
glColorMask
glColorMask
glColorMask: enable and disable writing of frame buffer color components.

C Specification

void glColorMask(
GLboolean red,
GLboolean green,
GLboolean blue,

GLboolean alpha)

Parameters

red, green, blue, alpha
Specify whether red, green, blue, and alpha can or cannot be written
into the frame buffer. The initial values are all GL_TRUE, indicating
that the color components can be written.

Description

 glColorMask specifies whether the individual color components in the frame buffer can
or cannot be written. If red is GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing operation
attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are
either enabled or disabled for entire color components.

Errors

• GL_INVALID_OPERATION is generated if glColorMask is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_COLOR_WRITEMASK
glGet with argument GL_RGBA_MODE

See Also

glColor,
glColorPointer,
glDepthMask,
glIndex,
glIndexPointer,
glIndexMask,
glStencilMask
Chapter 3 63

C
glColorMaterial
glColorMaterial
glColorMaterial : cause a material color to track the current color.

C Specification

void glColorMaterial(
GLenum face,

GLenum mode)

Parameters

face Specifies whether front, back, or both front and back material
parameters should track the current color. Accepted values are
GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The initial
value is GL_FRONT_AND_BACK.

mode Specifies which of several material parameters track the current color.
Accepted values are GL_EMISSION, GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, and GL_AMBIENT_AND_DIFFUSE. The initial
value is GL_AMBIENT_AND_DIFFUSE.

Description

 glColorMaterial specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by
mode, of the material or materials specified by face, track the current color at all times.

To enable and disable GL_COLOR_MATERIAL, call glEnable and glDisable with
argument GL_COLOR_MATERIAL. GL_COLOR_MATERIAL is initially disabled.

Notes

glColorMaterial makes it possible to change a subset of material parameters for each
vertex using only the glColor command, without calling glMaterial. If only such a subset
of parameters is to be specified for each vertex, calling glColorMaterial is preferable to
calling glMaterial.

Call glColorMaterial before enabling GL_COLOR_MATERIAL.

Calling glDrawElements may leave the current color indeterminate. If glColorMaterial
is enabled while the current color is indeterminate, the lighting material state specified
by face and mode is also indeterminate.

If the GL version is 1.1 or greater, and GL_COLOR_MATERIAL is enabled, evaluated
color values affect the results of the lighting equation as if the current color were being
modified, but no change is made to the tracking lighting parameter of the current color.

Errors

• GL_INVALID_ENUM is generated if face or mode is not an accepted value.
Chapter 364

C
glColorMaterial
• GL_INVALID_OPERATION is generated if glColorMaterial is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_COLOR_MATERIAL
glGet with argument GL_COLOR_MATERIAL_PARAMETER
glGet with argument GL_COLOR_MATERIAL_FACE

See Also

glColor,
glColorPointer,
glDrawElements,
glEnable,
glLight,
glLightModel,
glMaterial
Chapter 3 65

C
glColorPointer
glColorPointer
glColorPointer : define an array of colors.

C Specification

void glColorPointer(
GLint size,
GLenum type,
GLsizei stride,

const GLvoid *pointer)

Parameters

size Specifies the number of components per color. Must be 3 or 4.

type Specifies the data type of each color component in the array. Symbolic
constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
and GL_DOUBLE are accepted.

stride Specifies the byte offset between consecutive colors. If stride is 0, (the
initial value), the colors are understood to be tightly packed in the
array.

pointer Specifies a pointer to the first component of the first color element in
the array.

Description

glColorPointer specifies the location and data format of an array of color components to
use when rendering. size specifies the number of components per color, and must be 3 or
4. type specifies the data type of each color component, and stride specifies the byte stride
from one color to the next allowing vertexes and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see glInterleavedArrays.)

When a color array is specified, size, type, stride, and pointer are saved as client-side
state.

To enable and disable the color array, call glEnableClientState and glDisableClientState
with the argument GL_COLOR_ARRAY. If enabled, the color array is used when
glDrawArrays, glDrawElements, or glArrayElement is called.

Notes

glColorPointer is available only if the GL version is 1.1 or greater.

The color array is initially disabled and isn’t accessed when glArrayElement,
glDrawArrays, or glDrawElements is called.
Chapter 366

C
glColorPointer
Execution of glColorPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error
is generated, the operation is undefined.

glColorPointer is typically implemented on the client side.

Color array parameters are client-side state and are therefore not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

• GL_INVALID_VALUE is generated if size is not 3 or 4.

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_COLOR_ARRAY
glGet with argument GL_COLOR_ARRAY_SIZE
glGet with argument GL_COLOR_ARRAY_TYPE
glGet with argument GL_COLOR_ARRAY_STRIDE
glGetPointerv with argument GL_COLOR_ARRAY_POINTER

See Also

glArrayElement,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glPopClientAttrib,
glPushClientAttrib,
glTexCoordPointer,
glVertexPointer
Chapter 3 67

C
glXCopyContext
glXCopyContext
glXCopyContext : copy state from one rendering context to another.

C Specification

void glXCopyContext(
Display *dpy,
GLXContext src,
GLXContext dst,

unsigned long mask)

Parameters

dpy Specifies the connection to the X server.

src Specifies the source context.

dst Specifies the destination context.

mask Specifies which portions of src state are to be copied to dst.

Description

glXCopyContext copies selected groups of state variables from src to dst. mask indicates
which groups of state variables are to be copied. mask contains the bitwise OR of the
same symbolic names that are passed to the GL command glPushAttrib. The single
symbolic constant GL_ALL_ATTRIB_BITS can be used to copy the maximum possible
portion of rendering state.

The copy can be done only if the renderers named by src and dst share an address space.
Two rendering contexts share an address space if both are non-direct using the same
server, or if both are direct and owned by a single process. Note that in the non-direct
case it is not necessary for the calling threads to share an address space, only for their
related rendering contexts to share an address space.

Not all values for GL state can be copied. For example, pixel pack and unpack state,
render mode state, and select and feedback state are not copied. The state that can be
copied is exactly the state that is manipulated by the GL command glPushAttrib.

An implicit glFlush is done by glXCopyContext if src is the current context for the calling
thread.

Notes

A process is a single execution environment, implemented in a single address space,
consisting of one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain
separate program counters, stack spaces, and other related global data. A thread that is
the only member of its subprocess group is equivalent to a process.
Chapter 368

C
glXCopyContext
Errors

• BadMatch is generated if rendering contexts src and dst do not share an address
space or were not created with respect to the same screen.

• BadAccess is generated if dst is current to any thread (including the calling thread)
at the time glXCopyContext is called.

• GLXBadCurrentWindow is generated if src is the current context and the current
drawable is a window that is no longer valid.

• GLXBadContext is generated if either src or dst is not a valid GLX context.

See Also

glPushAttrib,
glXCreateContext,
glXIsDirect
Chapter 3 69

C
glCopyPixels
glCopyPixels
glCopyPixels : copy pixels in the frame buffer.

C Specification

void glCopyPixels(
GLint x,
GLint y,
GLsizei width,
GLsizei height,

GLenum type)

Parameters

x, y Specify the window coordinates of the lower left corner of the
rectangular region of pixels to be copied.

width, height Specify the dimensions of the rectangular region of pixels to be copied.
Both must be nonnegative.

type Specifies whether color values, depth values, or stencil values are to be
copied. Symbolic constants GL_COLOR, GL_DEPTH, and
GL_STENCIL are accepted.

Description

glCopyPixels copies a screen-aligned rectangle of pixels from the specified frame buffer
location to a region relative to the current raster position. Its operation is well defined
only if the entire pixel source region is within the exposed portion of the window. Results
of copies from outside the window, or from regions of the window that are not exposed,
are hardware dependent and undefined.

x and y specify the window coordinates of the lower left corner of the rectangular region
to be copied. width and height specify the dimensions of the rectangular region to be
copied. Both width and height must not be negative.

 Several parameters control the processing of the pixel data while it is being copied.
These parameters are set with three commands: glPixelTransfer, glPixelMap, and
glPixelZoom. This reference page describes the effects on glCopyPixels of most, but not
all, of the parameters specified by these three commands.

glCopyPixels copies values from each pixel with the lower left-hand corner at (x + i, y + j)
for 0 ≥ i<width and 0 ≥ j<height. This pixel is said to be the ith pixel in the jth row. Pixels
are copied in row order from the lowest to the highest row, left to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the
transfer for each data type are as follows:

GL_COLOR

Indices or RGBA colors are read from the buffer currently specified as the read source
buffer (see glReadBuffer). If the GL is in color index mode, each index that is read from
this buffer is converted to a fixed-point format with an unspecified number of bits to the
Chapter 370

C
glCopyPixels
right of the binary point. Each index is then shifted left by GL_INDEX_SHIFT bits, and
added toGL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right.
In either case, zero bits fill otherwise unspecified bit locations in the result. If
GL_MAP_COLOR is true, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of the index is
done or not, the integer part of the index is then ANDed with 2b - 1, where b is the
number of bits in a color index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that
is read are converted to an internal floating-point format with unspecified precision. The
conversion maps the largest representable component value to 1.0, and component value
0 to 0.0. The resulting floating-point color values are then multiplied by GL_c_SCALE
and added to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the
respective color components. The results are clamped to the range [0, 1]. If
GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is
R, G, B, or A.

The GL then converts the resulting indices or RGBA colors to fragments by attaching the
current raster position z coordinate and texture coordinates to each pixel, then assigning
window coordinates (xr + i, yr + j), where (xr, yr) is the current raster position, and the
pixel was the ith pixel in the jth row. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and
all the fragment operations are applied before the fragments are written to the frame
buffer.

GL_DEPTH

Depth values are read from the depth buffer and converted directly to an internal
floating-point format with unspecified precision. The resulting floating-point depth value
is then multiplied by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is
clamped to the range [0, 1].

 The GL then converts the resulting depth components to fragments by attaching the
current raster position color or color index and texture coordinates to each pixel, then
assigning window coordinates (xr + i, yr + j), where (xr, yr) is the current raster position,
and the pixel was the ith pixel in the jth row. These pixel fragments are then treated just
like the fragments generated by rasterizing points, lines, or polygons. Texture mapping,
fog, and all the fragment operations are applied before the fragments are written to the
frame buffer.

GL_STENCIL

Stencil indices are read from the stencil buffer and converted to an internal fixed-point
format with an unspecified number of bits to the right of the binary point. Each
fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In
either case, zero bits fill otherwise unspecified bit locations in the result. If
GL_MAP_STENCIL is true, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is
done or not, the integer part of the index is then ANDed with 2b - 1, where b is the
number of bits in the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the index read from the ith location of the jth row is written to
location (xr + i, yr + j), where (xr, yr) is the current raster position. Only the pixel
ownership test, the scissor test, and the stencil writemask affect these write operations.
Chapter 3 71

C
glCopyPixels
The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is
used to change the x and y pixel zoom factors, pixels are converted to fragments as
follows. If (xr, yr) is the current raster position, and a given pixel is in the ith location in
the jth row of the source pixel rectangle, then fragments are generated for pixels whose
centers are in the rectangle with corners at

 (xr + zoomxi, yr + zoomy j)

and

(xr + zoomx(i+1), yr + zoomy (j+1))

where zoomx is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Examples

To copy the color pixel in the lower left corner of the window to the current raster
position, use

glCopyPixels(0, 0, 1, 1, GL_COLOR);

Notes

Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

Errors

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if either width or height is negative.

• GL_INVALID_OPERATION is generated if type is GL_DEPTH and there is no depth
buffer.

• GL_INVALID_OPERATION is generated if type is GL_STENCIL and there is no
stencil buffer.

• GL_INVALID_OPERATION is generated if glCopyPixels is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

See Also

glDepthFunc,
glDrawBuffer,
glDrawPixels,
glPixelMap,
glPixelTransfer,
glPixelZoom,
glRasterPos,
Chapter 372

C
glCopyPixels
glReadBuffer,
glReadPixels,
glStencilFunc
Chapter 3 73

C
glCopyTexImage1D
glCopyTexImage1D
glCopyTexImage1D : copy pixels into a 1D texture image.

C Specification

void glCopyTexImage1D(
GLenum target,
GLint level,
GLenum internalFormat,
GLint x,
GLint y,
GLsizei width,

GLint border)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the
following symbolic constants: GL_ALPHA, GL_ALPHA4,
GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16,GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4,GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1,GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or
GL_RGBA16. Additionally, internalFormat maybe one of the symbolic
constants GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

x, y Specify the window coordinates of the left corner of the row of pixels to
be copied.

width Specifies the width of the texture image. Must be 0 or 2n + 2 × border
for some integer n. The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

Description

glCopyTexImage1D defines a one-dimensional texture image with pixels from the
current GL_READ_BUFFER.
Chapter 374

C
glCopyTexImage1D
The screen-aligned pixel row with left corner at (x, y) and with a length of width+2 ×
border defines the texture array at the mipmap level specified by level. internalFormat
specifies the internal format of the texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the
process stops just before final conversion. At this point all pixel component values are
clamped to the range [0, 1] and then converted to the texture’s internal format for
storage in the texel array.

Pixel ordering is such that lower x screen coordinates correspond to lower texture
coordinates.

If any of the pixels within the specified row of the current GL_READ_BUFFER are
outside the window associated with the current rendering context, then the values
obtained for those pixels are undefined.

Notes

glCopyTexImage1D is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

1, 2, 3, and 4 are not accepted values for internalFormat.

The GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, and GL_DEPTH_COMPONENT32_EXT values of
internalFormat may be used.

An image with 0 width indicates a NULL texture.

Errors

• GL_INVALID_ENUM is generated if target is not one of the allowable values.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2 max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if internalFormat is not an allowable value.

• GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2n + 2 ×border for some
integer value of n.

• GL_INVALID_VALUE is generated if border is not 0 or 1.

• GL_INVALID_OPERATION is generated if glCopyTexImage1D is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D
Chapter 3 75

C
glCopyTexImage1D
See Also

glCopyPixels,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glPixelStore
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 376

C
glCopyTexImage2D
glCopyTexImage2D
glCopyTexImage2D: copy pixels into a 2D texture image.

C Specification

C Specification

void glCopyTexImage2D(
GLenum target,
GLint level,
GLenum internalFormat,
GLint x,
GLint y,
GLsizei width,
GLsizei height,

GLint border)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the
following symbolic constants: GL_ALPHA, GL_ALPHA4,
GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8,
GL_INTENSITY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_B2,
GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.
Additionally, internalFormat may be one of the symbolic constants
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

x, y Specify the window coordinates of the lower left corner of the
rectangular region of pixels to be copied.

width Specifies the width of the texture image. Must be 0 or 2n + 2 × border
for some integer n.

height Specifies the height of the texture image. Must be 0 or 2m + 2 × border
for some integer m.

border Specifies the width of the border. Must be either 0 or 1.
Chapter 3 77

C
glCopyTexImage2D
Description

glCopyTexImage2D defines a two-dimensional texture image with pixels from the
current GL_READ_BUFFER.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of
width + 2 × border and a height of height + 2 × border defines the texture array at the
mipmap level specified by level. internalFormat specifies the internal format of the
texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but
the process stops just before final conversion. At this point all pixel component values
are clamped to the range [0, 1] and then converted to the texture’s internal format for
storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t
texture coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are
outside the window associated with the current rendering context, then the values
obtained for those pixels are undefined.

Notes

glCopyTexImage2D is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

1, 2, 3, and 4 are not accepted values for internalFormat.

The GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, and GL_DEPTH_COMPONENT32_EXT values of
internalFormat may be used.

An image with height or width of 0 indicates a NULL texture.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2 max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if width or height is less than 0, greater than 2 +
GL_MAX_TEXTURE_SIZE, or if width or height cannot be represented as 2k + 2 ×
border for some integer k.

• GL_INVALID_VALUE is generated if border is not 0 or 1.

• GL_INVALID_VALUE is generated if internalFormat is not one of the allowable
values.

• GL_INVALID_OPERATION is generated if glCopyTexImage2D is executed between
the execution of glBegin and the corresponding execution of glEnd.
Chapter 378

C
glCopyTexImage2D
Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 3 79

C
glCopyTexSubImage1D
glCopyTexSubImage1D
glCopyTexSubImage1D : copy a one-dimensional texture sub image.

C Specification

void glCopyTexSubImage1D(
GLenum target,
GLint level,
GLint xoffset,
GLint x,
GLint y,

GLsizei width)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xoffset Specifies the texel offset within the texture array.

x, y Specify the window coordinates of the left corner of the row of pixels to
be copied.

width Specifies the width of the texture sub image.

Description

glCopyTexSubImage1D replaces a portion of a one-dimensional texture image with
pixels from the current GL_READ_BUFFER (rather than from main memory, as is the
case for glTexSubImage1D).

The screen-aligned pixel row with left corner at (x, y), and with length width replaces the
portion of the texture array with X indices xoffset through xoffset + width - 1, inclusive.
The destination in the texture array may not include any texels outside the texture
array as it was originally specified. The pixels in the row are processed exactly as if
glCopyPixels had been called, but the process stops just before final conversion. At this
point all pixel component values are clamped to the range [0, 1] and then converted to
the texture’s internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no
effect. If any of the pixels within the specified row of the current GL_READ_BUFFER
are outside the read window associated with the current rendering context, then the
values obtained for those pixels are undefined.

No change is made to the internalformat, width, or border parameters of the specified
texture array or to texel values outside the specified subregion.

Notes

glCopyTexSubImage1D is available only if the GL version is 1.1 or greater.
Chapter 380

C
glCopyTexSubImage1D
Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D.

• GL_INVALID_OPERATION is generated if the texture array has not been defined
by a previous glTexImage1D or glCopyTexImage1D operation.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level>log2 max, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if y < - b or if width < - b, where b is the border
width of the texture array. GL_INVALID_VALUE is generated if xoffset < - b, or
(xoffset + width) > (w - b), where w is the GL_TEXTURE_WIDTH, and b is the
GL_TEXTURE_BORDER of the texture image being modified. Note that w includes
twice the border width.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage2D,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexParameter,
glTexSubImage1D,
glTexSubImage2D
Chapter 3 81

C
glCopyTexSubImage2D
glCopyTexSubImage2D
glCopyTexSubImage2D : copy a two-dimensional texture sub image.

C Specification

void glCopyTexSubImage2D(
GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint x,
GLint y,
GLsizei width,

GLsizei height)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the X direction within the texture array.

yoffset Specifies a texel offset in the Y direction within the texture array.

x, y Specify the window coordinates of the lower left corner of the
rectangular region of pixels to be copied.

width Specifies the width of the texture sub image.

height Specifies the height of the texture sub image.

Description

glCopyTexSubImage2D replaces a rectangular portion of a two-dimensional texture
image with pixels from the current GL_READ_BUFFER (rather than from main
memory, as is the case for glTexSubImage2D).

The screen-aligned pixel rectangle with lower left corner at (x, y) and with width width
and height height, replaces the portion of the texture array with X indices xoffset
through xoffset + width - 1, inclusive, and Y indices yoffset through yoffset + height - 1,
inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but
the process stops just before final conversion. At this point, all pixel component values
are clamped to the range [0, 1] and then converted to the texture’s internal format for
storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the
texture array as it was originally specified. It is not an error to specify a subtexture with
zero width or height, but such a specification has no effect.
Chapter 382

C
glCopyTexSubImage2D
If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are
outside the read window associated with the current rendering context, then the values
obtained for those pixels are undefined.

No change is made to the internalformat, width, height, or border parameters of the
specified texture array or to texel values outside the specified subregion.

Notes

glCopyTexSubImage2D is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

• GL_INVALID_OPERATION is generated if the texture array has not been defined
by a previous glTexImage2D or glCopyTexImage2D operation.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2 max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if x < - b or if y < - b, where b is the border width
of the texture array.

• GL_INVALID_VALUE is generated if xoffset < - b, (xoffset + width) > (w- b), yoffset <
- b, or (yoffset + height) > (h - b), where w is the GL_TEXTURE_WIDTH, h is the
GL_TEXTURE_HEIGHT, and b is the GL_TEXTURE_BORDER of the texture
image being modified. Note that w and h include twice the border width.

• GL_INVALID_OPERATION is generated if glCopyTexSubImage2D is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
Chapter 3 83

C
glCopyTexSubImage2D
glTexParameter,
glTexSubImage1D,
glTexSubImage2D
Chapter 384

C
glCopyTexSubImage3DEXT
glCopyTexSubImage3DEXT
glCopyTexSubImage3DEXT : copy pixels into a 3D texture sub image.

C Specification

void glCopyTexSubImage3DEXT(
GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLint x,
GLint y,
GLsizei width,

GLsizei height)

Parameters

target The target texture. Must be GL_TEXTURE_3D_EXT.

level The level-of-detail number. Level 0 is the base image level, and level n
is the nth mipmap reduction image.

xoffset Texel offset in the X direction within the texture array.

yoffset Texel offset in the Y direction within the texture array.

zoffset Texel offset in the Z direction within the texture array.

x The X coordinate of the lower-left corner of the pixel rectangle to be
transferred to the texture array.

y The Y coordinate of the lower-left corner of the pixel rectangle to be
transferred to the texture array.

width The width of the texture sub image.

height The height of the texture sub image.

Description

glCopyTexSubImage3DEXT replaces a rectangular portion of a three-dimensional
texture image with pixels from the current GL_READ_BUFFER (rather than from main
memory, as is the case for glTexSubImage3DEXT).

The screen-aligned pixel rectangle with lower-left corner at (x, y) having width width
and height height replaces the rectangular area of the S-T slice located at zoffset with X
indices xoffset through xoffset + width - 1, inclusive, and Y indices yoffset through yoffset
+ height - 1, inclusive.

The destination rectangle in the texture array may not include any texels outside the
texture array as it was originally specified. It is not an error to specify a subtexture with
zero width or height, but such a specification has no effect.
Chapter 3 85

C
glCopyTexSubImage3DEXT
The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but
the process stops just before final conversion. At this point all pixel component values
are clamped to the range [0, 1] and then converted to the texture’s internal format for
storage in the texel array.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are
outside the read window associated with the current rendering context, then the values
obtained for those pixels are undefined.

Notes

glCopyTexSubImage3DEXT is part of the EXT_copy_texture extension.

Errors

• GL_INVALID_ENUM is generated when target is not one of the allowable values.

• GL_INVALID_VALUE is generated if level is less than zero or greater than log2max,
where max is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if xoffset <- TEXTURE_BORDER, (xoffset +
width) > (TEXTURE_WIDTH - TEXTURE_BORDER), yoffset < -
TEXTURE_BORDER, or if zoffset < - TEXTURE_BORDER, where
TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_BORDER are the state
values of the texture image being modified, and interlace is 1 if
GL_INTERLACE_SGIX is disabled, and 2 otherwise. Note that TEXTURE_WIDTH
and TEXTURE_HEIGHT include twice the border width.

• GL_INVALID_VALUE is generated if width or height is negative.

• GL_INVALID_OPERATION is generated when the texture array has not been
defined by a previous glTexImage3D (or equivalent) operation.

• GL_INVALID_OPERATION is generated if glCopyTexSubImage3DEXT is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

See Also

glTexImage3D,
glTexSubImage3DEXT,
glCopyPixels.
Chapter 386

C
glXCreateContext
glXCreateContext
glXCreateContext: create a new GLX rendering context.

C Specification

GLXContext glXCreateContext(
Display *dpy,
XVisualInfo *vis,
GLXContext shareList,

Bool direct)

Parameters

dpy Specifies the connection to the X server.

vis Specifies the visual that defines the frame buffer resources available to
the rendering context. It is a pointer to an XVisualInfo structure, not a
visualID or a pointer to a Visual.

sharelist Specifies the context with which to share display lists. NULL indicates
that no sharing is to take place.

direct Specifies whether rendering is to be done with a direct connection to
the graphics system if possible (True) or through the X server (False).

Description

glXCreateContext creates a GLX rendering context and returns its handle. This context
can be used to render into both windows and GLX pixmaps. If glXCreateContext fails to
create a rendering context, NULL is returned.

If direct is True, then a direct rendering context is created if the implementation
supports direct rendering, if the connection is to an X server that is local, and if a direct
rendering context is available. (An implementation may return an indirect context when
direct is True). If direct is False, then a rendering context that renders through the X
server is always created. Direct rendering provides a performance advantage in some
implementations. However, direct rendering contexts cannot be shared outside a single
process, and they may be unable to render to GLX pixmaps.

If shareList is not NULL, then all display-list indexes and definitions are shared by
context shareList and by the newly created context. An arbitrary number of contexts can
share a single display-list space. However, all rendering contexts that share a single
display-list space must themselves exist in the same address space. Two rendering
contexts share an address space if both are non-direct using the same server, or if both
are direct and owned by a single process. Note that in the non-direct case, it is not
necessary for the calling threads to share an address space, only for their related
rendering contexts to share an address space.

If the GL version is 1.1 or greater, then all texture objects except object 0, are shared by
any contexts that share display lists.
Chapter 3 87

C
glXCreateContext
Notes

XVisualInfo is defined in Xutil.h. It is a structure that includes visual, visualID, screen,
and depth elements.

A process is a single execution environment, implemented in a single address space,
consisting of one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain
separate program counters, stack spaces, and other related global data. A thread that is
the only member of its subprocess group is equivalent to a process.

It may not be possible to render to a GLX pixmap with a direct rendering context.

Errors

• NULL is returned if execution fails on the client side.

• BadMatch is generated if the context to be created would not share the address
space or the screen of the context specified by shareList.

• BadValue is generated if vis is not a valid visual (for example, if a particular GLX
implementation does not support it).

• GLXBadContext is generated if shareList is not a GLX context and is not NULL.

• BadAlloc is generated if the server does not have enough resources to allocate the
new context.

See Also

glXDestroyContext,
glXGetConfig,
glXIsDirect,
glXMakeCurrent
Chapter 388

C
glXCreateGLXPixmap
glXCreateGLXPixmap
glXCreateGLXPixmap : create an off-screen GLX rendering area.

C Specification

GLXPixmap glXCreateGLXPixmap(
Display *dpy,
XVisualInfo *vis,

Pixmap pixmap)

Parameters

dpy Specifies the connection to the X server.

vis Specifies the visual that defines the structure of the rendering area. It
is a pointer to an XVisualInfo structure, not a visual ID or a pointer to
a Visual.

pixmap Specifies the X pixmap that will be used as the front left color buffer of
the off-screen rendering area.

Description

glXCreateGLXPixmap creates an off-screen rendering area and returns its XID. Any
GLX rendering context that was created with respect to vis can be used to render into
this off-screen area. Use glXMakeCurrent to associate the rendering area with a GLX
rendering context.

 The X pixmap identified by pixmap is used as the front left buffer of the resulting
off-screen rendering area. All other buffers specified by vis, including color buffers other
than the front left buffer, are created without externally visible names. GLX pixmaps
with double-buffering are supported. However, glXSwapBuffers is ignored by these
pixmaps.

Some implementations may not support GLX pixmaps with direct rendering contexts.

Notes

XVisualInfo is defined in Xutil.h. It is a structure that includes visual, visualID, screen,
and depth elements.

Errors

• BadMatch is generated if the depth of pixmap does not match the depth value
reported by core X11 for vis, or if pixmap was not created with respect to the same
screen as vis.

• BadValue is generated if vis is not a valid XVisualInfo pointer (for example, if a
particular GLX implementation does not support this visual).

• BadPixmap is generated if pixmap is not a valid pixmap.
Chapter 3 89

C
glXCreateGLXPixmap
• BadAlloc is generated if the server cannot allocate the GLX pixmap.

See Also

glXCreateContext,
glXIsDirect,
glXMakeCurrent
Chapter 390

C
glCullFace
glCullFace
glCullFace: specify whether front- or back-facing facets can be culled.

C Specification

void glCullFace(

GLenum mode)

Parameters

mode Specifies whether front- or back-facing facets are candidates for
culling. Symbolic constants GL_FRONT, GL_BACK, and
GL_FRONT_AND_BACK are accepted. The initial value is GL_BACK.

Description

glCullFace specifies whether front- or back-facing facets are culled (as specified by mode)
when facet culling is enabled. Facet culling is initially disabled. To enable and disable
facet culling, call the glEnable and glDisable commands with the argument
GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-facing
and back-facing. See glFrontFace.

Notes

If mode is GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as
points and lines are drawn.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glCullFace is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_CULL_FACE
glGet with argument GL_CULL_FACE_MODE

See Also

glEnable,
glFrontFace
Chapter 3 91

C
gluCylinder
gluCylinder
gluCylinder : draw a cylinder.

C Specification

void gluCylinder(
GLUquadric* quad,
GLdouble base,
GLdouble top,
GLdouble height,
GLint slices,

GLint stacks)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

base Specifies the radius of the cylinder at z = 0.

top Specifies the radius of the cylinder at z = height.

height Specifies the height of the cylinder.

slices Specifies the number of subdivisions around the Z axis.

stacks Specifies the number of subdivisions along the Z axis.

Description

gluCylinder draws a cylinder oriented along the Z axis. The base of the cylinder is placed
at Z = 0, and the top at Z = height. Like a sphere, a cylinder is subdivided around the Z
axis into slices, and along the Z axis into stacks.

Note that if top is set to 0.0, this routine generates a cone.

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any
generated normals point away from the Z axis. Otherwise, they point toward the Z axis.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are
generated so that t ranges linearly from 0.0 at Z = 0 to 1.0 at Z = height, and s ranges
from 0.0 at the +Y axis, to 0.25 at the +X axis, to0.5 at the - Y axis, to 0.75 at the - X axis,
and back to 1.0 at the +Y axis.

See Also

gluDisk,
gluNewQuadric,
gluPartialDisk,
gluQuadricTexture,
gluSphere
Chapter 392

4 D
Chapter 4 93

D
glDeleteLists
glDeleteLists
glDeleteLists : delete a contiguous group of display lists.

C Specification

void glDeleteLists(
GLuint list,

GLsizei range)

Parameters

list Specifies the integer name of the first display list to delete.

range Specifies the number of display lists to delete.

Description

glDeleteLists causes a contiguous group of display lists to be deleted. list is the name of
the first display list to be deleted, and range is the number of display lists to delete. All
display lists d with list ≥ d ≥ list + range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are
available for reuse at a later time. Names within the range that do not have an
associated display list are ignored. If range is 0, nothing happens.

Errors

• GL_INVALID_VALUE is generated if range is negative.

• GL_INVALID_OPERATION is generated if glDeleteLists is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glCallList,
glCallLists,
glGenLists,
glIsList,
glNewList
Chapter 494

D
gluDeleteNurbsRenderer
gluDeleteNurbsRenderer
gluDeleteNurbsRenderer : destroy a NURBS object.

C Specification

void gluDeleteNurbsRenderer(

GLUnurbs* nurb)

Parameters

nurb Specifies the NURBS object to be destroyed.

Description

gluDeleteNurbsRenderer destroys the NURBS object (which was created with
gluNewNurbsRenderer) and frees any memory it uses. Once gluDeleteNurbsRenderer
has been called, nurb cannot be used again.

See Also

gluNewNurbsRenderer
Chapter 4 95

D
gluDeleteQuadric
gluDeleteQuadric
gluDeleteQuadric: destroy a quadrics object.

C Specification

void gluDeleteQuadric(

GLUquadric* quad)

Parameters

quad Specifies the quadrics object to be destroyed.

Description

gluDeleteQuadric destroys the quadrics object (created with gluNewQuadric) and frees
any memory it uses. Once gluDeleteQuadric has been called, quad cannot be used again.

See Also

gluNewQuadric
Chapter 496

D
gluDeleteTess
gluDeleteTess
gluDeleteTess : destroy a tessellation object.

C Specification

void gluDeleteTess(

GLUtesselator* tess)

Parameters

tess Specifies the tessellation object to destroy.

Description

gluDeleteTess destroys the indicated tessellation object (which was created with
gluNewTess) and frees any memory that it used.

See Also

gluBeginPolygon,
gluNewTess,
gluTessCallback
Chapter 4 97

D
glDeleteTextures
glDeleteTextures
glDeleteTextures : delete named textures.

C Specification

void glDeleteTextures(
GLsizei n,

const GLuint *textures)

Parameters

n Specifies the number of textures to be deleted.

textures Specifies an array of textures to be deleted.

Description

glDeleteTextures deletes n textures named by the elements of the array textures. After a
texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for
example by glGenTextures). If a texture that is currently bound is deleted, the binding
everts to 0 (the default texture).

glDeleteTextures silently ignores 0s and names that do not correspond to existing
textures.

Notes

glDeleteTextures is available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_VALUE is generated if n is negative.

• GL_INVALID_OPERATION is generated if glDeleteTextures is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTexture

See Also

glAreTexturesResident,
glBindTexture,
glCopyTexImage1D,
glCopyTexImage2D,
glGenTextures,
glGet,
glGetTexParameter,
glPrioritizeTextures,
Chapter 498

D
glDeleteTextures
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 4 99

D
glDepthFunc
glDepthFunc
glDepthFunc : specify the value used for depth buffer comparisons.

C Specification

void glDepthFunc(

GLenum func)

Parameters

func Specifies the depth comparison function. Symbolic constants
GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER,
GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The
initial value is GL_LESS.

Description

glDepthFunc specifies the function used to compare each incoming pixel depth value
with the depth value present in the depth buffer. The comparison is performed only if
depth testing is enabled. (See glEnable and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison
functions are as follows:

 GL_NEVER

Never passes.

GL_LESS

Passes if the incoming depth value is less than the stored depth value.

GL_EQUAL

Passes if the incoming depth value is equal to the stored depth value.

GL_LEQUAL

Passes if the incoming depth value is less than or equal to the stored depth value.

GL_GREATER

Passes if the incoming depth value is greater than the stored depth value.

GL_NOTEQUAL

Passes if the incoming depth value is not equal to the stored depth value.

GL_GEQUAL

Passes if the incoming depth value is greater than or equal to the stored depth value.

GL_ALWAYS

Always passes.

The initial value of func is GL_LESS. Initially, depth testing is disabled.
Chapter 4100

D
glDepthFunc
Notes

Even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not
updated if the depth test is disabled.

Errors

• GL_INVALID_ENUM is generated if func is not an accepted value.

• GL_INVALID_OPERATION is generated if glDepthFunc is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_DEPTH_FUNC
glIsEnabled with argument GL_DEPTH_TEST

See Also

glDepthRange,
glEnable,
glPolygonOffset
Chapter 4 101

D
glDepthMask
glDepthMask
glDepthMask : enable or disable writing into the depth buffer.

C Specification

void glDepthMask(

GLboolean flag)

Parameters

flag Specifies whether the depth buffer is enabled for writing. If flag is
GL_FALSE, depth buffer writing is disabled. Otherwise, it is enabled.
Initially, depth buffer writing is enabled.

Description

glDepthMask specifies whether the depth buffer is enabled for writing. If flag is
GL_FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth
buffer writing is enabled.

Errors

• GL_INVALID_OPERATION is generated if glDepthMask is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_DEPTH_WRITEMASK

See Also

glColorMask,
glDepthFunc,
glDepthRange,
glIndexMask,
glStencilMask
Chapter 4102

D
glDepthRange
glDepthRange
glDepthRange : specify mapping of depth values from normalized device coordinates to
window coordinates.

C Specification

void glDepthRange(
GLclampd zNear,

GLclampd zFar)

Parameters

zNear Specifies the mapping of the near clipping plane to window
coordinates. The initial value is 0.

zFar Specifies the mapping of the far clipping plane to window coordinates.
The initial value is 1.

Description

After clipping and division by w, depth coordinates range from - 1 to 1, corresponding to
the near and far clipping planes. glDepthRange specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates. Regardless of
the actual depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components). Thus, the values accepted
by glDepthRange are both clamped to this range before they are accepted.

The setting of (0, 1) maps the near plane to 0 and the far plane to 1. With this mapping,
the depth buffer range is fully utilized.

Notes

It is not necessary that zNear be less than zFar.
Reverse mappings such as zNear = 1, and zFar = 0 are acceptable.

Errors

• GL_INVALID_OPERATION is generated if glDepthRange is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_DEPTH_RANGE

See Also

glDepthFunc,
glPolygonOffset,
glViewport
Chapter 4 103

D
glXDestroyContext
glXDestroyContext
glXDestroyContext : destroy a GLX context.

C Specification

void glXDestroyContext(
Display *dpy,

GLXContext ctx)

Parameters

dpy Specifies the connection to the X server.

ctx Specifies the GLX context to be destroyed.

Description

If the GLX rendering context ctx is not current to any thread, glXDestroyContext
destroys it immediately. Otherwise, ctx is destroyed when it becomes not current to any
thread. In either case, the resource ID referenced by ctx is freed immediately.

Errors

• GLXBadContext is generated if ctx is not a valid GLX context.

See Also

glXCreateContext,
glXMakeCurrent
Chapter 4104

D
glXDestroyGLXPixmap
glXDestroyGLXPixmap
glXDestroyGLXPixmap : destroy a GLX pixmap.

C Specification

void glXDestroyGLXPixmap(
Display *dpy,

GLXPixmap pix)

Parameters

dpy Specifies the connection to the X server.

pix Specifies the GLX pixmap to be destroyed.

Description

If the GLX pixmap pix is not current to any client, glXDestroyGLXPixmap destroys it
immediately. Otherwise, pix is destroyed when it becomes not current to any client. In
either case, the resource ID is freed immediately.

Errors

• GLXBadPixmap is generated if pix is not a valid GLX pixmap.

See Also

glXCreateGLXPixmap,
glXMakeCurrent
Chapter 4 105

D
glDisable
glDisable
glEnable, glDisable : enable or disable server-side GL capabilities.

C Specification

void glEnable(
GLenum cap)

void glDisable(

GLenum cap)

Parameters

cap Specifies a symbolic constant indicating a GL capability.

Description

glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or glGet
to determine the current setting of any capability. The initial value for each capability
with the exception of GL_DITHER is GL_FALSE. The initial value for GL_DITHER is
GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the
following values:

GL_ALPHA_TEST

If enabled, do alpha testing. See glAlphaFunc.

GL_AUTO_NORMAL

If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 is used to generate vertices. See glMap2.

GL_BLEND

If enabled, blend the incoming RGBA color values with the values in the color buffers.
See glBlendFunc.

GL_CLIP_PLANEi

If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.

GL_COLOR_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming RGBA color and
color buffer values. See glLogicOp.

GL_COLOR_MATERIAL

If enabled, have one or more material parameters track the current color. See
glColorMaterial.

GL_CULL_FACE

If enabled, cull polygons based on their winding in window coordinates. See glCullFace.

GL_DEPTH_TEST
Chapter 4106

D
glDisable
If enabled, do depth comparisons and update the depth buffer. Note that even if the
depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the
depth test is disabled. See glDepthFunc and glDepthRange.

GL_DITHER

If enabled, dither color components or indices before they are written to the color buffer.

GL_FOG

If enabled, blend a fog color into the post texturing color. See glFog.

GL_INDEX_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming index and color
buffer indices. See glLogicOp.

GL_LIGHTi

If enabled, include light i in the evaluation of the lighting equation. See glLightModel
and glLight.

GL_LIGHTING

If enabled, use the current lighting parameters to compute the vertex color or index.
Otherwise, simply associate the current color or index with each vertex. See glMaterial,
glLightModel, and glLight.

GL_LINE_SMOOTH

If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See
glLineWidth.

GL_LINE_STIPPLE

If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.

GL_MAP1_COLOR_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate RGBA
values. See glMap1.

GL_MAP1_INDEX

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate color indices.
See glMap1.

GL_MAP1_NORMAL

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate normals. See
glMap1.

GL_MAP1_TEXTURE_COORD_1

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s texture
coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_2

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s and t
texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, and r
texture coordinates. See glMap1.
Chapter 4 107

D
glDisable
GL_MAP1_TEXTURE_COORD_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, r, and q
texture coordinates. See glMap1.

GL_MAP1_VERTEX_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate x, y, and z
vertex coordinates. See glMap1.

GL_MAP1_VERTEX_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate homogeneous
x, y, z, and w vertex coordinates. See glMap1.

GL_MAP2_COLOR_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate RGBA
values. See glMap2.

GL_MAP2_INDEX

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate color indices.
See glMap2.

GL_MAP2_NORMAL

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate normals. See
glMap2.

GL_MAP2_TEXTURE_COORD_1

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s

GL_MAP2_TEXTURE_COORD_2

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s and t
texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, and r
texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, r, and q
texture coordinates. See glMap2.

GL_MAP2_VERTEX_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate x, y, and z
vertex coordinates. See glMap2.

GL_MAP2_VERTEX_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate homogeneous
x, y, z, and w vertex coordinates. See glMap2.

GL_NORMALIZE

If enabled, normal vectors specified with glNormal are scaled to unit length after
transformation. See glNormal.

GL_OCCLUSION_TEST_hp
Chapter 4108

D
glDisable
This token enables HP’s occlusion-testing extension. If any geometry is rendered while
occlusion culling is enabled, and if that geometry would be visible (i.e., rendering it
would affect the Z-buffer), the occlusion test state bit is set, indicating that the rendered
object is visible. This is typically done to increase performance: if every pixel of a
bounding box would be “behind” the current Z-buffer values for those pixels (i.e., the
bounding box is entirely occluded), anything you would draw within that bounding box
would also be behind the current Z values, and therefore you can cull it (i.e., avoid
processing that geometry through the pipeline). Note that this enable has no effect on
the current render mode, or any other OpenGL state.

GL_POINT_SMOOTH

If enabled, draw points with proper filtering. Otherwise, draw aliased points. See
glPointSize.

GL_POLYGON_OFFSET_FILL

If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_LINE

If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_POINT

If enabled, an offset is added to depth values of a polygon’s fragments before the depth
comparison is performed, if the polygon is rendered in GL_POINT mode. See
glPolygonOffset.

GL_POLYGON_SMOOTH

If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For
correct anti-aliased polygons, an alpha buffer is needed and the polygons must be sorted
front to back.

GL_POLYGON_STIPPLE

If enabled, use the current polygon stipple pattern when rendering polygons. See
glPolygonStipple.

GL_RESCALE_NORMAL_EXT

When normal rescaling is enabled, a new operation is added to the transformation of the
normal vector into eye coordinates. The normal vector is rescaled after it is multiplied by
the inverse modelview matrix and before it is normalized. The rescale factor is chosen so
that in many cases normal vectors with unit length in object coordinates will not need to
be normalized as they are transformed into eye coordinates.

GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See glScissor.

GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and
glStencilOp.

GL_TEXTURE_1D
Chapter 4 109

D
glDisable
If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is
also enabled). See glTexImage1D.

GL_TEXTURE_2D

If enabled, two-dimensional texturing is performed. See glTexImage2D.

GL_TEXTURE_3D_EXT

If supported and enabled, three-dimensional texturing is performed. See
glTexImage3DEXT.

GL_TEXTURE_GEN_Q

If enabled, the q texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current q texture coordinate is used. See
glTexGen.

GL_TEXTURE_GEN_R

If enabled, the r texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current r texture coordinate is used. See
glTexGen.

GL_TEXTURE_GEN_S

If enabled, the s texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current s texture coordinate is used. See
glTexGen.

GL_TEXTURE_GEN_T

If enabled, the t texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current t texture coordinate is used. See
glTexGen.

Notes

GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_COLOR_LOGIC_OP, and
GL_INDEX_LOGIC_OP are only available if the GL version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

• GL_INVALID_OPERATION is generated if glEnable or glDisable is executed
between the execution of glBegin and the corresponding execution of glEnd.

See Also

glAlphaFunc,
glBlendFunc,
glClipPlane,
glColorMaterial,
glCullFace,
glDepthFunc,
glDepthRange,
Chapter 4110

D
glDisable
glEnableClientState,
glFog,
glGet,
glIsEnabled,
glLight,
glLightModel,
glLineWidth,
glLineStipple,
glLogicOp,
glMap1,
glMap2,
glMaterial,
glNormal,
glPointSize,
glPolygonMode,
glPolygonOffset,
glPolygonStipple,
glScissor,
glStencilFunc,
glStencilOp,
glTexGen,
glTexImage1D,
glTexImage2D
Chapter 4 111

D
gluDisk
gluDisk
gluDisk : draw a disk.

C Specification

void gluDisk(
GLUquadric* quad,
GLdouble inner,
GLdouble outer,
GLint slices,

GLint loops)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

inner Specifies the inner radius of the disk (may be 0).

outer Specifies the outer radius of the disk.

slices Specifies the number of subdivisions around the z axis.

loops Specifies the number of concentric rings about the origin into which
the disk is subdivided.

Description

gluDisk renders a disk on the z = 0 plane. The disk has a radius of outer, and contains a
concentric circular hole with a radius of inner. If inner is 0, then no hole is generated.
The disk is subdivided around the Z axis into slices (like pizza slices), and also about the
Z axis into rings (as specified by slices and loops, respectively).

With respect to orientation, the +z side of the disk is considered to be “outside” (see
gluQuadricOrientation).

This means that if the orientation is set to GLU_OUTSIDE, then any normals generated
point along the +Z axis. Otherwise, they point along the - Z axis.

If texturing has been turned on (with gluQuadricTexture), texture coordinates are
generated linearly such that where r = outer, the value at (r, 0, 0) is (1, 0.5), at (0, r, 0) it
is (0.5, 1), at (- r, 0, 0) it is (0, 0.5), and at (0, - r, 0) it is (0.5, 0).

See Also

gluCylinder,
gluNewQuadric,
gluPartialDisk,
gluQuadricOrientation,
gluQuadricTexture,
gluSphere
Chapter 4112

D
glDrawArrays
glDrawArrays
glDrawArrays : render primitives from array data.

C Specification

void glDrawArrays(
GLenum mode,
GLint first,

GLsizei count)

Parameters

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.

count Specifies the number of indices to be rendered.

Description

glDrawArrays specifies multiple geometric primitives with very few subroutine calls.
Instead of calling a GL procedure to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can pre-specify separate arrays of vertexes, normals,
and colors and use them to construct a sequence of primitives with a single call to
glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array
to construct a sequence of geometric primitives, beginning with element first. mode
specifies what kind of primitives are constructed, and how the array elements construct
those primitives. If GL_VERTEX_ARRAY is not enabled, no geometric primitives are
generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after
glDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the value of the
current color is undefined after glDrawArrays executes. Attributes that aren’t modified
remain well defined.

Notes

glDrawArrays is available only if the GL version is 1.1 or greater.

glDrawArrays is included in display lists. If glDrawArrays is entered into a display list,
the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client-side state, their
values affect display lists when the lists are created, not when the lists are executed.
Chapter 4 113

D
glDrawArrays
Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_VALUE is generated if count is negative.

• GL_INVALID_OPERATION is generated if glDrawArrays is executed between the
execution of glBegin and the corresponding glEnd.

See Also

glArrayElement,
glColorPointer,
glDrawElements,
glEdgeFlagPointer,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 4114

D
glDrawArraysSethp
glDrawArraysSethp
glDrawArraySethp : render multiple primitives from array data.

C Specification

void glDrawArraySethp(
GLenum mode,
const GLint* list,

GLsizei count)

Parameters

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

list Points to an array of starting indices in the enabled arrays.

count Specifies the number of groups of primitives to be rendered.

Description

 glDrawArraySethp specifies multiple geometric primitives of the same type with a
single subroutine call. Instead of calling a GL procedure to pass each individual vertex,
normal, texture coordinate, edge flag, or color, you can use the vertex array calls to
pre-specify arrays of vertices, normals, and colors and use them to construct a sequence
of primitives with a single call to glDrawArraySethp.

When glDrawArraySethp is called, it iterates over count+1 array indices from the list.
For 0 ≥ i<count, glDrawArraySethp uses list[i+1] - list[i] sequential elements from each
enabled array to construct a sequence of geometric primitives, beginning with element
list[i]. mode specifies what kind of primitives are constructed, and how the array
elements construct those primitives. If GL_VERTEX_ARRAY is not enabled, no
geometric primitives are generated.

Vertex attributes that are modified by glDrawArraySethp have an unspecified value
after glDrawArraySethp returns. For example, if GL_C4UB_V3F is enabled, the value of
the current color is undefined after glDrawArraySethp executes. Attributes that aren’t
modified remain well defined.

glDrawArraySethp(mode, list, count) is functionally equivalent to:

for (i = 0; i < count; i++)
glDrawArrays(mode, list[i], list[i+1] - list[i]);

The behavior is undefined if list[i+1] is less than list[i] for any i in the range i ≥ 0 and
i<count.

Notes

glDrawArraySethp is a Hewlett-Packard GL version 1.1 extension.
Chapter 4 115

D
glDrawArraysSethp
glDrawArraySethp is included in display lists. If glDrawArraySethp is entered into a
display list, the necessary array data (determined by the array pointers and enables) is
also entered into the display list. Because the array pointers and enables are client- side
state, their values affect display lists when the lists are created, not when the lists are
executed.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_VALUE is generated if count is negative.

• GL_INVALID_OPERATION is generated if glDrawArraySethp is executed between
the execution of glBegin and the corresponding glEnd.

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 4116

D
glDrawBuffer
glDrawBuffer
glDrawBuffer : specify which color buffers are to be drawn into.

C Specification

void glDrawBuffer(

GLenum mode)

Parameters

mode Specifies up to four color buffers to be drawn into. Symbolic constants
GL_NONE,GL_FRONT_LEFT, GL_FRONT_RIGHT,
GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK,
GL_LEFT, GL_RIGHT, GL_FRONT_AND_BACK, and GL_AUXi,
where i is between 0 and GL_AUX_BUFFERS -1, are accepted
(GL_AUX_BUFFERS is not the upper limit; use glGet to query the
number of available aux buffers.) The initial value is GL_FRONT for
single-buffered contexts, and GL_BACK for double-buffered contexts.

Description

When colors are written to the frame buffer, they are written into the color buffers
specified by glDrawBuffer. The specifications are as follows:

GL_NONE

No color buffers are written.

GL_FRONT_LEFT

Only the front left color buffer is written.

 GL_FRONT_RIGHT

Only the front right color buffer is written.

GL_BACK_LEFT

Only the back left color buffer is written.

GL_BACK_RIGHT

Only the back right color buffer is written.

 GL_FRONT

Only the front left and front right color buffers are written. If there is no front right color
buffer, only the front left color buffer is written.

GL_BACK

Only the back left and back right color buffers are written. If there is no back right color
buffer, only the back left color buffer is written.

GL_LEFT
Chapter 4 117

D
glDrawBuffer
Only the front left and back left color buffers are written. If there is no back left color
buffer, only the front left color buffer is written.

GL_RIGHT

Only the front right and back right color buffers are written. If there is no back right
color buffer, only the front right color buffer is written.

GL_FRONT_AND_BACK

All the front and back color buffers (front left, front right, back left, back right) are
written. If there are no back color buffers, only the front left and front right color buffers
are written. If there are no right color buffers, only the front left and back left color
buffers are written. If there are no right or back color buffers, only the front left color
buffer is written. GL_AUXi Only auxiliary color buffer i is written.

If more than one color buffer is selected for drawing, then blending or logical operations
are computed and applied independently for each color buffer and can produce different
results in each buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both left
and right buffers. Likewise, single-buffered contexts include only front buffers, and
double-buffered contexts include both front and back buffers. The context is selected at
GL initialization.

Notes

It is always the case that GL_AUXi = GL_AUX0 + i.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_OPERATION is generated if none of the buffers indicated by mode
exists.

• GL_INVALID_OPERATION is generated if glDrawBuffer is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_DRAW_BUFFER
glGet with argument GL_AUX_BUFFERS

See Also

glBlendFunc,
glColorMask,
glIndexMask,
glLogicOp,
glReadBuffer
Chapter 4118

D
glDrawElements
glDrawElements
glDrawElements : render primitives from array data.

C Specification

void glDrawElements(
GLenum mode,
GLsizei count,
GLenum type,

const GLvoid *indices)

Parameters

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of
GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Description

glDrawElements specifies multiple geometric primitives with very few subroutine calls.
Instead of calling a GL function to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can pre-specify separate arrays of vertexes, normals,
and so on and use them to construct a sequence of primitives with a single call to
glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled
array, starting at indices to construct a sequence of geometric primitives. mode specifies
what kind of primitives are constructed, and how the array elements construct these
primitives. If more than one array is enabled, each is used. If GL_VERTEX_ARRAY is
not enabled, no geometric primitives are constructed.

Vertex attributes that are modified by glDrawElements have an unspecified value after
glDrawElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of
the current color is undefined after glDrawElements executes. Attributes that aren’t
modified remain well defined.

Notes

glDrawElements is available only if the GL version is 1.1 or greater.
Chapter 4 119

D
glDrawElements
glDrawElements is included in display lists. If glDrawElements is entered into a display
list, the necessary array data (determined by the array pointers and enables) is also
entered into the display list. Because the array pointers and enables are client-side
state, their values affect display lists when the lists are created, not when the lists are
executed.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_VALUE is generated if count is negative.

• GL_INVALID_OPERATION is generated ifglDrawElements is executed between the
execution of glBegin and the corresponding glEnd.

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glEdgeFlagPointer,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 4120

D
glDrawPixels
glDrawPixels
glDrawPixels : write a block of pixels to the frame buffer.

C Specification

void glDrawPixels(
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

width, height Specify the dimensions of the pixel rectangle to be written into the
frame buffer.

 format Specifies the format of the pixel data. Symbolic constants
GL_COLOR_INDEX, GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RGBA, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for pixels. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT are accepted.

pixels Specifies a pointer to the pixel data.

Description

glDrawPixels reads pixel data from memory and writes it into the frame buffer relative
to the current raster position. Use glRasterPos to set the current raster position; use
glGet with argument GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the
processing of the pixel data before it is placed in the frame buffer. These parameters are
set with four commands: glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom.
This reference page describes the effects on glDrawPixels of many, but not all, of the
parameters specified by these four commands.

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned
shorts, signed or unsigned integers, or single-precision floating-point values, depending
on type. Each of these bytes, shorts, integers, or floating-point values is interpreted as
one color or depth component, or one index, depending on format. Indices are always
treated individually. Color components are treated as groups of one, two, three, or four
values, again based on format. Both individual indices and groups of components are
referred to as pixels. If type is GL_BITMAP, the data must be unsigned bytes, and format
must be either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is
treated as eight 1-bit pixels, with bit ordering determined by GL_UNPACK_LSB_FIRST
(see glPixelStore).
Chapter 4 121

D
glDrawPixels
width × height pixels are read from memory, starting at location pixels. By default, these
pixels are taken from adjacent memory locations, except that after all width pixels are
read, the read pointer is advanced to the next four-byte boundary. The four-byte row
alignment is specified by glPixelStore with argument GL_UNPACK_ALIGNMENT, and
it can be set to one, two, four, or eight bytes. Other pixel store parameters specify
different read pointer advancements, both before the first pixel is read and after all
width pixels are read. See the glPixelStore reference page for details on these options.

The width × height pixels that are read from memory are each operated on in the same
way, based on the values of several parameters specified by glPixelTransfer and
glPixelMap. The details of these operations, as well as the target buffer into which the
pixels are drawn, are specific to the format of the pixels, as specified by format. format
can assume one of eleven symbolic values:

 GL_COLOR_INDEX

Each pixel is a single value, a color index. It is converted to fixed-point format, with an
unspecified number of bits to the right of the binary point, regardless of the memory data
type. Floating-point values convert to true fixed-point values. Signed and unsigned
integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or
1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In
either case, zero bits fill otherwise unspecified bit locations in the result.

If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel with the
help of the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables. If the GL is in color
index mode, and if GL_MAP_COLOR is true, the index is replaced with the value that it
references in lookup table GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of
the index is done or not, the integer part of the index is then ANDed with 2b - 1, where b
is the number of bits in a color index buffer.

The GL then converts the resulting indices or RGBA colors to fragments by attaching the
current raster position z coordinate and texture coordinates to each pixel, then assigning
x and y window coordinates to the nth fragment such that

 xn = xr + n mod width

yn = yr + n/width

where (xr, yr) is the current raster position.These pixel fragments are then treated just
like the fragments generated by rasterizing points, lines, or polygons. Texture mapping,
fog, and all the fragment operations are applied before the fragments are written to the
frame buffer.

GL_STENCIL_INDEX

Each pixel is a single value, a stencil index. It is converted to fixed-point format, with an
unspecified number of bits to the right of the binary point, regardless of the memory data
type. Floating-point values convert to true fixed-point values. Signed and unsigned
integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or
1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In
either case, zero bits fill otherwise unspecified bit locations in the result. If
Chapter 4122

D
glDrawPixels
GL_MAP_STENCIL is true, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is
done or not, the integer part of the index is then ANDed with 2b - 1, where b is the
number of bits in the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the nth index is written to location

xn = xr + n mod width

yn = yr + n/width

where (xr, yr) is the current raster position. Only the pixel ownership test, the scissor
test, and the stencil writemask affect these write operations.

GL_DEPTH_COMPONENT

Each pixel is a single-depth component. Floating-point data is converted directly to an
internal floating-point format with unspecified precision. Signed integer data is mapped
linearly to the internal floating-point format such that the most positive representable
integer value maps to 1.0, and the most negative representable value maps to 1.0.
Unsigned integer data is mapped similarly: the largest integer value maps to 1.0, and 0
maps to 0.0. The resulting floating-point depth value is then multiplied by
GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range
[0, 1].

The GL then converts the resulting depth components to fragments by attaching the
current raster position color or color index and texture coordinates to each pixel, then
assigning x and y window coordinates to the nth fragment such that

 xn = xr + n mod width

yn = yr + n/width

where (xr, yr) is the current raster position. These pixel fragments are then treated just
like the fragments generated by rasterizing points, lines, or polygons. Texture mapping,
fog, and all the fragment operations are applied before the fragments are written to the
frame buffer.

 GL_RGBA

Each pixel is a four-component group: for GL_RGBA, the red component is first, followed
by green, followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that the most
positive representable integer value maps to 1.0, and the most negative representable
value maps to 1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned
integer data is mapped similarly: the largest integer value maps to 1.0, and 0 maps to
0.0. The resulting floating-point color values are then multiplied by GL_c_SCALE and
added to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective
color components. The results are clamped to the range [0, 1].

If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is
R, G, B, or A respectively.

 The GL then converts the resulting RGBA colors to fragments by attaching the current
raster position Z coordinate and texture coordinates to each pixel, then assigning x and y
window coordinates to the nth fragment such that

xn = xr + n mod width
Chapter 4 123

D
glDrawPixels
yn = yr + n/width

where (xr, yr) is the current raster position.These pixel fragments are then treated just
like the fragments generated by rasterizing points, lines, or polygons. Texture mapping,
fog, and all the fragment operations are applied before the fragments are written to the
frame buffer.

GL_RED

Each pixel is a single red component. This component is converted to the internal
floating-point format in the same way the red component of an RGBA pixel is. It is then
converted to an RGBA pixel with green and blue set to 0, and alpha set to 1. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

GL_GREEN

Each pixel is a single green component. This component is converted to the internal
floating-point format in the same way the green component of an RGBA pixel is. It is
then converted to an RGBA pixel with red and blue set to 0, and alpha set to 1. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

GL_BLUE

Each pixel is a single blue component. This component is converted to the internal
floating-point format in the same way the blue component of an RGBA pixel is. It is then
converted to an RGBA pixel with red and green set to 0, and alpha set to 1. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

GL_ALPHA

Each pixel is a single alpha component. This component is converted to the internal
floating-point format in the same way the alpha component of an RGBA pixel is. It is
then converted to an RGBA pixel with red, green, and blue set to 0. After this conversion,
the pixel is treated as if it had been read as an RGBA pixel.

GL_RGB

Each pixel is a three-component group: red first, followed by green, followed by blue.
Each component is converted to the internal floating-point format in the same way the
red, green, and blue components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1. After this conversion, the pixel is treated as if it had
been read as an RGBA pixel.

 GL_LUMINANCE

Each pixel is a single luminance component. This component is converted to the internal
floating-point format in the same way the red component of an RGBA pixel is. It is then
converted to an RGBA pixel with red, green, and blue set to the converted luminance
value, and alpha set to 1. After this conversion, the pixel is treated as if it had been read
as an RGBA pixel.

GL_LUMINANCE_ALPHA

Each pixel is a two-component group: luminance first, followed by alpha. The two
components are converted to the internal floating-point format in the same way the red
component of an RGBA pixel is. They are then converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to the converted
alpha value. After this conversion, the pixel is treated as if it had been read as an RGBA
pixel.
Chapter 4124

D
glDrawPixels
The following table summarizes the meaning of the valid constants for the type
parameter:

The rasterization described so far assumes pixel zoom factors of 1. If glPixelZoom is used
to change the x and y pixel zoom factors, pixels are converted to fragments as follows. If
(xr, yr) is the current raster position, and a given pixel is in the nth column and mth row
of the pixel rectangle, then fragments are generated for pixels whose centers are in the
rectangle with corners at

 (xr + zoomxn, yr + zoomy m)

(xr + zoomx (n + 1), yr + zoomy (m + 1))

where zoomx is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Errors

• GL_INVALID_VALUE is generated if either width or height is negative.

• GL_INVALID_ENUM is generated if format or type is not one of the accepted values.

• GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA, and the GL is in color index mode.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not either
GL_COLOR_INDEX or GL_STENCIL_INDEX.

• GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and
there is no stencil buffer.

• GL_INVALID_OPERATION is generated if glDrawPixels is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

Table 4-1

Type Corresponding Type

GL_UNSIGNED_BYTE Unsigned 8-bit integer

GL_BYTE Signed 8-bit integer

GL_BITMAP Single bits in unsigned 8-bit integers

GL_UNSIGNED_SHORT Unsigned 16-bit integers

GL_SHORT Signed 16-bit integers

GL_UNSIGNED_INT Unsigned 32-bit integers

GL_INT 32-bit integer

GL_FLOAT Single-precision floating-point
Chapter 4 125

D
glDrawPixels
See Also

glAlphaFunc,
glBlendFunc,
glCopyPixels,
glDepthFunc,
glLogicOp,
glPixelMap,
glPixelStore,
glPixelTransfer,
glPixelZoom,
glRasterPos,
glReadPixels,
glScissor,
glStencilFunc
Chapter 4126

5 E
Chapter 5 127

E
glEdgeFlag
glEdgeFlag
glEdgeFlag, glEdgeFlagv : flag edges as either boundary or non-boundary.

C Specification

void glEdgeFlag(
GLboolean flag)

void glEdgeFlagv(

const GLboolean *flag)

Parameters

flag Specifies the current edge flag value, either GL_TRUE or GL_FALSE.
The initial value is GL_TRUE.

flag Specifies a pointer to an array that contains a single boolean element,
which replaces the current edge flag value.

Description

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between
a glBegin/glEnd pair is marked as the start of either a boundary or non-boundary edge.
If the current edge flag is true when the vertex is specified, the vertex is marked as the
start of a boundary edge. Otherwise, the vertex is marked as the start of a non-boundary
edge. glEdgeFlag sets the edge flag bit to GL_TRUE if flag is GL_TRUE, and to
GL_FALSE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as
boundary, regardless of the value of the edge flag.

Boundary and non-boundary edge flags on vertices are significant only if
GL_POLYGON_MODE is set toGL_POINT or GL_LINE. See glPolygonMode.

Notes

The current edge flag can be updated at any time. In particular, glEdgeFlag can be called
between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_EDGE_FLAG

See Also

glBegin,
glEdgeFlagPointer,
glPolygonMode
Chapter 5128

E
glEdgeFlagPointer
glEdgeFlagPointer
glEdgeFlagPointer : define an array of edge flags.

C Specification

void glEdgeFlagPointer(
GLsizei stride

const GLvoid *pointer)

Parameters

stride Specifies the byte offset between consecutive edge flags. If stride is 0
(the initial value), the edge flags are understood to be tightly packed in
the array.

pointer Specifies a pointer to the first edge flag in the array.

Description

glEdgeFlagPointer specifies the location and data format of an array of boolean edge
flags to use when rendering. stride specifies the byte stride from one edge flag to the next
allowing vertexes and attributes to be packed into a single array or stored in separate
arrays. (Single-array storage may be more efficient on some implementations; see
glInterleavedArrays.)

When an edge flag array is specified, stride and pointer are saved as client-side state.

To enable and disable the edge flag array, call glEnableClientState and
glDisableClientState with the argument GL_EDGE_FLAG_ARRAY. If enabled, the edge
flag array is used when glDrawArrays, glDrawElements, or glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from
pre-specified vertex and vertex attribute arrays. Use glArrayElement to specify
primitives by indexing vertexes and vertex attributes and glDrawElements to construct
a sequence of primitives by indexing vertexes and vertex attributes.

Notes

glEdgeFlagPointer is available only if the GL version is 1.1 or greater.

The edge flag array is initially disabled and it won’t be accessed when glArrayElement,
glDrawElements or glDrawArrays is called.

Execution of glEdgeFlagPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error
is generated, the operation is undefined.

glEdgeFlagPointer is typically implemented on the client side.

Edge flag array parameters are client-side state and are therefore not saved or restored
by glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.
Chapter 5 129

E
glEdgeFlagPointer
Errors

• GL_INVALID_ENUM is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_EDGE_FLAG_ARRAY
glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE
glGetPointer with argument GL_EDGE_FLAG_ARRAY_POINTER

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEnable,
glGetPointer,
glIndexPointer,
glNormalPointer,
glPopClientAttrib,
glPushClientAttrib,
glTexCoordPointer,
glVertexPointer
Chapter 5130

E
glEnable
glEnable
glEnable, glDisable : enable or disable server-side GL capabilities.

C Specification

void glEnable(
GLenum cap)

void glDisable(

GLenum cap)

Parameters

cap Specifies a symbolic constant indicating a GL capability.

Description

 glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or
glGet to determine the current setting of any capability. The initial value for each
capability with the exception of GL_DITHER is GL_FALSE. The initial value for
GL_DITHER is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the
following values:

GL_ALPHA_TEST

If enabled, do alpha testing. See glAlphaFunc.

GL_AUTO_NORMAL

If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 is used to generate vertices. See glMap2.

GL_BLEND

If enabled, blend the incoming RGBA color values with the values in the color buffers.
See glBlendFunc.

GL_CLIP_PLANEi

If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.

GL_COLOR_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming RGBA color and
color buffer values. See glLogicOp.

GL_COLOR_MATERIAL

If enabled, have one or more material parameters track the current color. See
glColorMaterial.

GL_CULL_FACE

If enabled, cull polygons based on their winding in window coordinates. See glCullFace.

GL_DEPTH_TEST
Chapter 5 131

E
glEnable
If enabled, do depth comparisons and update the depth buffer. Note that even if the
depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the
depth test is disabled. See glDepthFunc and glDepthRange.

 GL_DITHER

If enabled, dither color components or indices before they are written to the color buffer.

GL_FOG

If enabled, blend a fog color into the post texturing color. See glFog.

GL_INDEX_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming index and color
buffer indices. See glLogicOp.

 GL_LIGHTi

If enabled, include light i in the evaluation of the lighting equation. See glLightModel
and glLight.

GL_LIGHTING

If enabled, use the current lighting parameters to compute the vertex color or index.
Otherwise, simply associate the current color or index with each vertex. See glMaterial,
glLightModel, and glLight.

GL_LINE_SMOOTH

If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See
glLineWidth.

GL_LINE_STIPPLE

If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.

GL_MAP1_COLOR_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate RGBA
values. See glMap1.

GL_MAP1_INDEX

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate color indices.
See glMap1.

GL_MAP1_NORMAL

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate normals. See
glMap1.

GL_MAP1_TEXTURE_COORD_1

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s texture
coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_2

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s and t
texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, and r
texture coordinates. See glMap1.
Chapter 5132

E
glEnable
 GL_MAP1_TEXTURE_COORD_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, r, and q
texture coordinates. See glMap1.

GL_MAP1_VERTEX_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate x, y, and z
vertex coordinates. See glMap1.

GL_MAP1_VERTEX_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate homogeneous
x, y, z, and w vertex coordinates. See glMap1.

GL_MAP2_COLOR_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate RGBA
values. See glMap2.

GL_MAP2_INDEX

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate color indices.
See glMap2.

GL_MAP2_NORMAL

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate normals. See
glMap2.

GL_MAP2_TEXTURE_COORD_1

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s

GL_MAP2_TEXTURE_COORD_2

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s and t
texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, and r
texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, r, and q
texture coordinates. See glMap2.

GL_MAP2_VERTEX_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate x, y, and z
vertex coordinates. See glMap2.

GL_MAP2_VERTEX_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate homogeneous
x, y, z, and w vertex coordinates. See glMap2.

 GL_NORMALIZE

If enabled, normal vectors specified with glNormal are scaled to unit length after
transformation. See glNormal.

GL_OCCLUSION_TEST_hp
Chapter 5 133

E
glEnable
This token enables HP’s occlusion-testing extension. If any geometry is rendered while
occlusion culling is enabled, and if that geometry would be visible (i.e., rendering it
would affect the Z-buffer), the occlusion test state bit is set, indicating that the rendered
object is visible. This is typically done to increase performance: if every pixel of a
bounding box would be “behind” the current Z-buffer values for those pixels (i.e., the
bounding box is entirely occluded), anything you would draw within that bounding box
would also be behind the current Z values, and therefore you can cull it (i.e., avoid
processing that geometry through the pipeline). Note that this enable has no effect on
the current render mode, or any other OpenGL state.

GL_POINT_SMOOTH

f enabled, draw points with proper filtering. Otherwise, draw aliased points. See
glPointSize.

 GL_POLYGON_OFFSET_FILL

If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_LINE

If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_POINT

If enabled, an offset is added to depth values of a polygon’s fragments before the depth
comparison is performed, if the polygon is rendered in GL_POINT mode. See
glPolygonOffset.

GL_POLYGON_SMOOTH

If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For
correct anti-aliased polygons, an alpha buffer is needed and the polygons must be sorted
front to back.

GL_POLYGON_STIPPLE

If enabled, use the current polygon stipple pattern when rendering polygons. See
glPolygonStipple.

 GL_RESCALE_NORMAL_EXT

When normal rescaling is enabled, a new operation is added to the transformation of the
normal vector into eye coordinates. The normal vector is rescaled after it is multiplied by
the inverse modelview matrix and before it is normalized. The rescale factor is chosen so
that in many cases normal vectors with unit length in object coordinates will not need to
be normalized as they are transformed into eye coordinates.

GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See glScissor.

GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and
glStencilOp.

GL_TEXTURE_1D
Chapter 5134

E
glEnable
If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is
also enabled). See glTexImage1D.

GL_TEXTURE_2D

If enabled, two-dimensional texturing is performed. See glTexImage2D.

GL_TEXTURE_3D_EXT

If supported and enabled, three-dimensional texturing is performed. See
glTexImage3DEXT.

GL_TEXTURE_GEN_Q

If enabled, the q texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current q texture coordinate is used. See
glTexGen.

 GL_TEXTURE_GEN_R

If enabled, the r texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current r texture coordinate is used. See
glTexGen.

GL_TEXTURE_GEN_S

If enabled, the s texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current s texture coordinate is used. See
glTexGen.

GL_TEXTURE_GEN_T

If enabled, the t texture coordinate is computed using the texture generation function
defined with glTexGen. Otherwise, the current t texture coordinate is used. See
glTexGen.

Notes

GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_COLOR_LOGIC_OP, and
GL_INDEX_LOGIC_OP are only available if the GL version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

• GL_INVALID_OPERATION is generated if glEnable or glDisable is executed
between the execution of glBegin and the corresponding execution of glEnd.

See Also

glAlphaFunc,
glBlendFunc,
glClipPlane,
glColorMaterial,
glCullFace,
glDepthFunc,
glDepthRange,
glEnableClientState,
Chapter 5 135

E
glEnable
glFog,
glGet,
glIsEnabled,
glLight,
glLightModel,
glLineWidth,
glLineStipple,
glLogicOp,
glMap1,
glMap2,
glMaterial,
glNormal,
glPointSize,
glPolygonMode,
glPolygonOffset,
glPolygonStipple,
glScissor,
glStencilFunc,
glStencilOp,
glTexGen,
glTexImage1D,
glTexImage2D
Chapter 5136

E
glEnableClientState
glEnableClientState
glEnableClientState, glDisableClientState : enable or disable client-side
capability.

C Specification

void glEnableClientState(
GLenum cap)

void glDisableClientState(

GLenum cap)

Parameters

cap Specifies the capability to enable. Symbolic
constants GL_COLOR_ARRAY,
GL_EDGE_FLAG_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, and
GL_VERTEX_ARRAY are accepted.

cap Specifies the capability to disable.

Description

glEnableClientState and glDisableClientState enable or disable individual client-side
capabilities. By default, all client-side capabilities are disabled. Both
glEnableClientState and glDisableClientState take a single argument, cap, which can
assume one of the following values:

 GL_COLOR_ARRAY

If enabled, the color array is enabled for writing and used during rendering when
glDrawArrays or glDrawElements is called. See glColorPointer.

GL_EDGE_FLAG_ARRAY

If enabled, the edge flag array is enabled for writing and used during rendering when
glDrawArrays or glDrawElements is called. See glEdgeFlagPointer.

 GL_INDEX_ARRAY

If enabled, the index array is enabled for writing and used during rendering when
glDrawArrays or glDrawElements is called. See glIndexPointer.

GL_NORMAL_ARRAY

If enabled, the normal array is enabled for writing and used during rendering when
glDrawArrays or glDrawElements is called. See glNormalPointer.

GL_TEXTURE_COORD_ARRAY

If enabled, the texture coordinate array is enabled for writing and used for rendering
when glDrawArrays or glDrawElements is called. See glTexCoordPointer.

GL_VERTEX_ARRAY
Chapter 5 137

E
glEnableClientState
If enabled, the vertex array is enabled for writing and used during rendering when
glDrawArrays or glDrawElements is called. See glVertexPointer.

Notes

glEnableClientState is available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if cap is not an accepted value.
glEnableClientState is not allowed between the execution of glBegin and the
corresponding glEnd, but an error may or may not be generated. If no error is
generated, the behavior is undefined.

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 5138

E
glErrorString
glErrorString
gluErrorString : produce an error string from a GL or GLU error code.

C Specification

constGLubyte *gluErrorString(

GLenum error)

Parameters

error Specifies a GL or GLU error code.

Description

gluErrorString produces an error string from a GL or GLU error code. The string is in
ISO Latin 1 format. For example, gluErrorString (GL_OUT_OF_MEMORY) returns the
string out of memory.

The standard GLU error codes are GLU_INVALID_ENUM, GLU_INVALID_VALUE,
and GLU_OUT_OF_MEMORY. Certain other GLU functions can return specialized
error codes through callbacks. See the glGetError reference page for the list of GL error
codes.

See Also

glGetError,
gluNurbsCallback,
luQuadricCallback,
gluTessCallback
Chapter 5 139

E
glEvalCoord
glEvalCoord
glEvalCoord1d, glEvalCoord1f, glEvalCoord2d, glEvalCoord2f,
glEvalCoord1dv, glEvalCoord1fv, glEvalCoord2dv, glEvalCoord2fv :
evaluate enabled one- and two-dimensional maps.

C Specification

void glEvalCoord1d(
GLdouble u)

void glEvalCoord1f(
GLfloat u)

void glEvalCoord2d(
GLdouble u,
GLdouble v)

void glEvalCoord2f(
GLfloat u,
GLfloat v)

void glEvalCoord1dv(
const GLdouble *u)

void glEvalCoord1fv(
const GLfloat *u)

void glEvalCoord2dv(
const GLdouble *u)

void glEvalCoord2fv(

const GLfloat *u)

Parameters

u Specifies a value that is the domain coordinate u to the basis function
defined in a previous glMap1 or glMap2 command.

v Specifies a value that is the domain coordinate v to the basis function
defined in a previous glMap2 command. This argument is not present
in a glEvalCoord1 command.

u Specifies a pointer to an array containing either one or two domain
coordinates. The first coordinate is u. The second coordinate is v, which
is present only in glEvalCoord2 versions.

Description

glEvalCoord1 evaluates enabled one-dimensional maps at argument u. glEvalCoord2
does the same for two-dimensional maps using two domain values, u and v. To define a
map, call glMap1 and glMap2; to enable and disable it, call glEnable and glDisable.

When one of the glEvalCoord commands is issued, all currently enabled maps of the
indicated dimension are evaluated. Then, for each enabled map, it is as if the
corresponding GL command had been issued with the computed value. That is, if
GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glIndex command is simulated. If
GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor command is
simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector
Chapter 5140

E
glEvalCoord
is produced, and if any of GL_MAP1_TEXTURE_COORD_1,
GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3,
GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or
GL_MAP2_TEXTURE_COORD_4 is enabled, then an appropriate glTexCoord command
is simulated.

For color, color index, normal, and texture coordinates the GL uses evaluated values
instead of current values for those evaluations that are enabled, and current values
otherwise, However, the evaluated values do not update the current values. Thus, if
glVertex commands are interspersed with glEvalCoord commands, the color, normal, and
texture coordinates associated with the glVertex commands are not affected by the
values generated by the glEvalCoord commands, but only by the most recent glColor,
glIndex, glNormal, and glTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture
evaluation is enabled for a particular dimension (for example,
GL_MAP2_TEXTURE_COORD_1 and GL_MAP2_TEXTURE_COORD_2), then only the
evaluation of the map that produces the larger number of coordinates (in this case,
GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4 overrides
GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3, in
the same manner. If neither a three- nor a four-component vertex map is enabled for the
specified dimension, the glEvalCoord command is ignored.

 If you have enabled automatic normal generation, by calling glEnable with argument
GL_AUTO_NORMAL, glEvalCoord2 generates surface normals analytically, regardless
of the contents or enabling of the GL_MAP2_NORMAL map. Let

Then the generated normal n is

If automatic normal generation is disabled, the corresponding normal map
GL_MAP2_NORMAL, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map is enabled, no normal is generated for
glEvalCoord2 commands.

Associated Gets

glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4

m
∂p
∂u
------ ∂p

∂v
------×=

n m
m

----------=
Chapter 5 141

E
glEvalCoord
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4
glIsEnabled with argument GL_AUTO_NORMAL
glGetMap

See Also

glBegin,
glColor,
glEnable,
glEvalMesh,
glEvalPoint,
glIndex,
glMap1,
glMap2,
glMapGrid,
glNormal,
glTexCoord,
glVertex
Chapter 5142

E
glEvalMesh
glEvalMesh
glEvalMesh1, glEvalMesh2 : compute a one- or two-dimensional grid of points or
lines.

C Specification

void glEvalMesh1(
GLenum mode,
GLint i1,
GLint i2)

void glEvalMesh2(
GLenum mode,
GLint i1,
GLint i2,
GLint j1,

GLint j2)

Parameters

mode In glEvalMesh1, specifies whether to compute a one-dimensional mesh
of points or lines. Symbolic constants GL_POINT and GL_LINE are
accepted.

i1, i2 Specify the first and last integer values for grid domain variable i.

mode In glEvalMesh2, specifies whether to compute a two-dimensional mesh
of points, lines, or polygons. Symbolic constants GL_POINT, GL_LINE,
and GL_FILL are accepted.

i1, i2 Specify the first and last integer values for grid domain variable i.

j1, j2 Specify the first and last integer values for grid domain variable j.

Description

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a
series of evenly-spaced map domain values. glEvalMesh steps through the integer
domain of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2. mode determines whether the resulting vertices
are connected as points, lines, or filled polygons.

In the one-dimensional case, glEvalMesh1, the mesh is generated as if the following code
fragment were executed:

glBegin (type);
for (i = i1; i ≤ i2; i += 1)

glEvalCoord1(i-∆u + u1)
glEnd();

where

∆u = (u2 − u1) / n
Chapter 5 143

E
glEvalMesh
and n, u1, and u2 are the arguments to the most recent glMapGrid1 command. type is
GL_POINTS if mode is GL_POINT, or GL_LINES if mode is GL_LINE. The one absolute
numeric requirement is that if i=n, then the value computed from i−∆u + u1 is exactly u2.

In the two-dimensional case, glEvalMesh2, let

∆u = (u2 − u1) / n
∆v = (v2 − v1) / m,

where n, u1, u2, m, v1, and v2 are the arguments to the most recent glMapGrid2
command. Then, if mode is GL_FILL, the glEvalMesh2 command is equivalent to:

for (j = j1; j < j2; j += 1) {
glBegin (GL_QUAD_STRIP);

for (i = i1; i ≤ i2; i += 1) {
glEvalCoord2(i − ∆u + u1, j−∆v + v1);
glEvalCoord2(i − ∆u + u1, (j + 1) − ∆v + v1);

}
glEnd();

}

If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:

for (j = j1; j ≤ j2; j += 1) {
glBegin(GL_LINE_STRIP);
for (i = i1; i ≤ i2; i += 1)

glEvalCoord2(i−∆u + u1, j−∆v + v1);
glEnd();

}
for (i = i1; i ≤i2; i += 1) {

glBegin(GL_LINE_STRIP);
for (j = j1; j ≤ j1; j += 1)

glEvalCoord2(i − ∆u + u1, j−∆v + v1);
glEnd();

}

And finally, if mode is GL_POINT, then a call to glEvalMesh2 is equivalent to:

glBegin(GL_POINTS);
for (j = j1; j ≤ j2; j += 1) {

for (i = i1; i ≤ i2; i += 1) {
glEvalCoord2(i − ∆u + u1, j − ∆v + v1);

}
}
glEnd();

In all three cases, the only absolute numeric requirements are that if i=n, then the value
computed from i − ∆u + u1 is exactly u2, and if j=m, then the value computed from j − ∆v
+ v1 is exactly v2.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.
Chapter 5144

E
glEvalMesh
• GL_INVALID_OPERATION is generated if glEvalMesh is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glBegin,
glEvalCoord,
glEvalPoint,
glMap1,
glMap2,
glMapGrid
Chapter 5 145

E
glEvalPoint
glEvalPoint
glEvalPoint1, glEvalPoint2 : generate and evaluate a single point in a mesh.

C Specification

void glEvalPoint1(
GLint i)

void glEvalPoint2(
GLint i,

GLint j)

Parameters

i Specifies the integer value for grid domain variable i.

j Specifies the integer value for grid domain variable j (glEvalPoint2
only).

Description

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. glEvalPoint can be used to evaluate a single
grid point in the same grid space that is traversed by glEvalMesh. Calling glEvalPoint1
is equivalent to calling

glEvalCoord1(i − ∆u + u1);

where

∆u = (u2 - u1) / n

and n, u1, and u2 are the arguments to the most recentglMapGrid1 command. The one
absolute numeric requirement is that if i=n, then the value computed from i − ∆u + u1 is
exactly u2.

In the two-dimensional case, glEvalPoint2, let

∆u = (u2 - u1) / n

∆v = (v2 - v1) / m

where n, u1, u2, m, v1, and v2 are the arguments to the most recent glMapGrid2
command. Then the glEvalPoint2 command is equivalent to calling

glEvalCoord2(i − ∆u + u1, j − ∆v + v1);

The only absolute numeric requirements are that if i=n, then the value computed from i
− ∆u + u1 is exactly u2, and if j=m, then the value computed from j − ∆v + v1 is exactly v2.
Chapter 5146

E
glEvalPoint
Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glEvalCoord,
glEvalMesh,
glMap1,
glMap2,
glMapGrid
Chapter 5 147

E
glEvalPoint
Chapter 5148

6 F
Chapter 6 149

F
glFeedbackBuffer
glFeedbackBuffer
glFeedbackBuffer : controls feedback mode.

C Specification

void glFeedbackBuffer(
GLsizei size,
GLenum type,

GLfloat *buffer)

Parameters

size Specifies the maximum number of values that can be written into
buffer.

type Specifies a symbolic constant that describes the information that will
be returned for each vertex. GL_2D, GL_3D, GL_3D_COLOR,
GL_3D_COLOR_TEXTURE, and GL_4D_COLOR_TEXTURE are
accepted.

size Returns the feedback data.

Description

The glFeedbackBuffer function controls feedback. Feedback, like selection, is a GL mode.
The mode is selected by calling glRenderMode with GL_FEEDBACK. When the GL is in
feedback mode, no pixels are produced by rasterization. Instead, information about
primitives that would have been rasterized is fed back to the application using the GL.

glFeedbackBuffer has three arguments: buffer is a pointer to an array of floating-point
values into which feedback information is placed. size indicates the size of the array. type
is a symbolic constant describing the information that is fed back for each vertex.
glFeedbackBuffer must be issued before feedback mode is enabled (by calling
glRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK without
establishing the feedback buffer, or calling glFeedbackBuffer while the GL is in feedback
mode, is an error.

 When glRenderMode is called while in feedback mode, it returns the number of entries
placed in the feedback array, and resets the feedback array pointer to the base of the
feedback buffer. The returned value never exceeds size. If the feedback data required
more room than was available in buffer, glRenderMode returns a negative value. To take
the GL out of feedback mode, call glRenderMode with a parameter value other than
GL_FEEDBACK.

 While in feedback mode, each primitive, bitmap, or pixel rectangle that would be
rasterized generates a block of values that are copied into the feedback array. If doing so
would cause the number of entries to exceed the maximum, the block is partially written
so as to fill the array (if there is any room left at all), and an overflow flag is set. Each
block begins with a code indicating the primitive type, followed by values that describe
the primitive’s vertices and associated data. Entries are also written for bitmaps and
pixel rectangles. Feedback occurs after polygon culling and glPolygonMode
interpretation of polygons has taken place, so polygons that are culled are not returned
Chapter 6150

F
glFeedbackBuffer
in the feedback buffer. It can also occur after polygons with more than three edges are
broken up into triangles, if the GL implementation renders polygons by performing this
decomposition.

The glPassThrough command can be used to insert a marker into the feedback buffer.
See glPassThrough.

Following is the grammar for the blocks of values written into the feedback buffer. Each
primitive is indicated with a unique identifying value followed by some number of
vertices. Polygon entries include an integer value indicating how many vertices follow. A
vertex is fed back as some number of floating-point values, as determined by type. Colors
are fed back as four values in RGBA mode and one value in color index mode.

feedbackList ← feedbackItem feedbackList | feedbackItem

feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru

point ← GL_POINT_TOKEN vertex

lineSegment ← GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex
vertex

polygon ← GL_POLYGON_TOKEN n polySpec

polySpec ← polySpec vertex | vertex vertex vertex

bitmap ← GL_BITMAP_TOKEN vertex

pixelRectangle ← GL_DRAW_PIXEL_TOKEN vertex |GL_COPY_PIXEL_TOKEN
vertex

passThru ← GL_PASS_THROUGH_TOKEN value

vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

2d ← value value

3d ← value value value

3dColor ← value value value color

3dColorTexture ← value value value color tex

4dColorTexture ← value value value value color tex

color ← rgba | index

rgba ← value value value value

index ← value

tex ← value value value value

value is a floating-point number, and n is a floating-point integer giving the number of
vertices in the polygon. GL_POINT_TOKEN, GL_LINE_TOKEN,
GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN, GL_BITMAP_TOKEN,
GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN and
GL_PASS_THROUGH_TOKEN are symbolic floating-point constants.
GL_LINE_RESET_TOKEN is returned whenever the line stipple pattern is reset. The
data returned as a vertex depends on the feedback type.
Chapter 6 151

F
glFeedbackBuffer
The following table gives the correspondence between type and the number of values per
vertex. k is 1 in color index mode and 4 in RGBA mode.

Feedback vertex coordinates are in window coordinates, except w, which is in clip
coordinates. Feedback colors are lighted, if lighting is enabled. Feedback texture
coordinates are generated, if texture coordinate generation is enabled. They are always
transformed by the texture matrix.

Notes

glFeedbackBuffer, when used in a display list, is not compiled into the display list but is
executed immediately.

Errors

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if size is negative.

• GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the
render mode is GL_FEEDBACK, or if glRenderMode is called with argument
GL_FEEDBACK before glFeedbackBuffer is called at least once.

• GL_INVALID_OPERATION is generated if glFeedbackBuffer is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE

See Also

glBegin,
glLineStipple,
glPassThrough,
glPolygonMode,
glRenderMode,
glSelectBuffer

Table 6-1

type Coordinates Color Texture Total number
of values

GL_2D x, y 2

 GL_3D x, y, z 3

GL_3D_COLOR x, y, z k 3+k

GL_3D_COLOR_TEXTURE x, y, z k 4 7+k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8+k
Chapter 6152

F
glFinish
glFinish
glFinish : block until all GL execution is complete.

C Specification

void glFinish(void)

Description

glFinish does not return until the effects of all previously called GL commands are
complete. Such effects include all changes to GL state, all changes to connection state,
and all changes to the frame buffer contents.

Notes

glFinish requires a round trip to the server.

Errors

• GL_INVALID_OPERATION is generated if glFinish is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

 glFlush
Chapter 6 153

F
glFlush
glFlush
glFlush : force execution of GL commands in finite time.

C Specification

void glFlush(void)

Description

Different GL implementations buffer commands in several different locations, including
network buffers and the graphics accelerator itself. glFlush empties all of these buffers,
causing all issued commands to be executed as quickly as they are accepted by the actual
rendering engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that
buffers commands, all programs should call glFlush whenever they count on having all
of their previously issued commands completed. For example, call glFlush before waiting
for user input that depends on the generated image.

Notes

glFlush can return at any time. It does not wait until the execution of all previously
issued GL commands is complete.

Errors

• GL_INVALID_OPERATION is generated if glFlush is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glFinish
Chapter 6154

F
glFog
glFog
glFogf, glFogi, glFogfv, glFogiv : specify fog parameters.

C Specification

void glFogf(
GLenum pname,
GLfloat param)

void glFogi(
GLenum pname,
GLint param)

void glFogfv(
GLenum pname,
const GLfloat *params)

void glFogiv(
GLenum pname,

const GLint *params)

Parameters

pname Specifies a single-valued fog parameter. GL_FOG_MODE,
GL_FOG_DENSITY, GL_FOG_START, GL_FOG_END, and
GL_FOG_INDEX are accepted.

param Specifies the value that pname will be set to.

pname Specifies a fog parameter. GL_FOG_MODE, GL_FOG_DENSITY,
GL_FOG_START, GL_FOG_END, GL_FOG_INDEX, and
GL_FOG_COLOR are accepted.

params Specifies the value or values to be assigned to pname.
GL_FOG_COLOR requires an array of four values. All other
parameters accept an array containing only a single value.

Description

Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and
pixel blocks, but not buffer clear operations. To enable and disable fog, call glEnable and
glDisable with argument GL_FOG.

glFog assigns the value or values in params to the fog parameter specified by pname.
The following values are accepted for pname:

GL_FOG_MODE

params is a single integer or floating-point value that specifies the equation to be used to
compute the fog blend factor, f. Three symbolic constants are accepted: GL_LINEAR,
GL_EXP, and GL_EXP2. The equations corresponding to these symbolic constants are
defined below. The initial fog mode is GL_EXP.

GL_FOG_DENSITY
Chapter 6 155

F
glFog
params is a single integer or floating-point value that specifies density, the fog density
used in both exponential fog equations. Only nonnegative densities are accepted. The
initial fog density is 1.

GL_FOG_START

params is a single integer or floating-point value that specifies start, the near distance
used in the linear fog equation. The initial near distance is 0.

GL_FOG_END

params is a single integer or floating-point value that specifies end, the far distance used
in the linear fog equation. The initial far distance is 1.

 GL_FOG_INDEX

params is a single integer or floating-point value that specifies if, the fog color index. The
initial fog index is 0.

GL_FOG_COLOR

params contains four integer or floating-point values that specify Cf, the fog color.
Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to - 1.0. Floating-point
values are mapped directly. After conversion, all color components are clamped to the
range [0, 1]. The initial fog color is (0, 0, 0, 0).

Fog blends a fog color with each rasterized pixel fragment’s post texturing color using a
blending factor f. Factor f is computed in one of three ways, depending on the fog mode.
Let z be the distance in eye coordinates from the origin to the fragment being fogged. The
equation for GL_LINEAR fog is

f = (end - z) / (end - start)

The equation for GL_EXP fog is

f = e - (density · z)

The equation for GL_EXP2 fog is

 f = e-(density · z)2

Regardless of the fog mode, f is clamped to the range [0, 1] after it is computed. Then, if
the GL is in RGBA color mode, the fragment’s color Cr is replaced by

Cr’ = f Cr + (1- f) Cf

In color index mode, the fragment’s color index ir is replaced by

 ir’ = ir + (1 - f) if

Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value, or if pname is
GL_FOG_MODE and params is not an accepted value.

• GL_INVALID_VALUE is generated if pname is GL_FOG_DENSITY, and params is
negative.

• GL_INVALID_OPERATION is generated if glFog is executed between the execution
of glBegin and the corresponding execution of glEnd.
Chapter 6156

F
glFog
Associated Gets

glIsEnabled with argument GL_FOG
glGet with argument GL_FOG_COLOR
glGet with argument GL_FOG_INDEX
glGet with argument GL_FOG_DENSITY
glGet with argument GL_FOG_START
glGet with argument GL_FOG_END
glGet with argument GL_FOG_MODE

See Also

glEnable
Chapter 6 157

F
glFrontFace
glFrontFace
glFrontFace : define front- and back-facing polygons.

C Specification

void glFrontFace(

GLenum mode)

Parameters

mode Specifies the orientation of front-facing polygons. GL_CW and
GL_CCW are accepted. The initial value is GL_CCW.

Description

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never
visible. Eliminating these invisible polygons has the obvious benefit of speeding up the
rendering of the image. To enable and disable elimination of back-facing polygons, call
glEnable and glDisable with argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an
imaginary object following the path from its first vertex, its second vertex, and so on, to
its last vertex, and finally back to its first vertex, moves in a clockwise direction about
the interior of the polygon. The polygon’s winding is said to be counterclockwise if the
imaginary object following the same path moves in a counterclockwise direction about
the interior of the polygon. glFrontFace specifies whether polygons with clockwise
winding in window coordinates, or counterclockwise winding in window coordinates, are
taken to be front-facing. Passing GL_CCW to mode selects counterclockwise polygons as
front-facing; GL_CW selects clockwise polygons as front-facing. By default,
counterclockwise polygons are taken to be front-facing.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glFrontFace is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_FRONT_FACE

See Also

glCullFace,
glLightModel
Chapter 6158

F
glFrustum
glFrustum
glFrustum : multiply the current matrix by a perspective matrix.

C Specification

void glFrustum(
GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble zNear,

GLdouble zFar)

Parameters

left, right Specify the coordinates for the left and right vertical clipping planes.

bottom, top Specify the coordinates for the bottom and top horizontal clipping
planes.

zNear, zFar Specify the distances to the near and far depth clipping planes. Both
distances must be positive.

Description

glFrustum describes a perspective matrix that produces a perspective projection. The
current matrix (see glMatrixMode) is multiplied by this matrix and the result replaces
the current matrix, as if glMultMatrix were called with the following matrix as its
argument:

E 0 A 0
0 F B 0
0 0 C D
0 0 -1 0

where:

A = (right + left) / (right - left)

B = (top + bottom) / (top - bottom)

C = (far + near) / (far- near)

D = (2×far×near) / (far- near)

E = (2×near) / (right - left)

F = (2×near) / (top - bottom)

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, -zNear) and (right,
top, -zNear) specify the points on the near clipping plane that are mapped to the lower
left and upper right corners of the window, assuming that the eye is located at (0, 0, 0).
-zFar specifies the location of the far clipping plane. Both zNear and zFar must be
positive.
Chapter 6 159

F
glFrustum
Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Notes

Depth buffer precision is affected by the values specified for zNear and zFar. The greater
the ratio of zFar to zNear is, the less effective the depth buffer will be at distinguishing
between surfaces that are near each other. If

 r = zFar / zNear

roughly log2 r bits of depth-buffer precision are lost. Because r approaches infinity as
zNear approaches 0, zNear must never be set to 0.

Errors

• GL_INVALID_VALUE is generated if zNear or zFar is not positive.

• GL_INVALID_OPERATION is generated if glFrustum is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glOrtho,
glMatrixMode,
glMultMatrix,
glPushMatrix
glViewport
Chapter 6160

7 G
Chapter 7 161

G
glGenLists
glGenLists
glGenLists : generate a contiguous set of empty display lists.

C Specification

GLuint glGenLists(

GLsizei range)

Parameters

range Specifies the number of contiguous empty display lists to be generated.

Description

glGenLists has one argument, range. It returns an integer n such that range contiguous
empty display lists, named n, n + 1, . . ., n + range - 1, are created. If range is 0, if there is
no group of range contiguous names available, or if any error is generated, no display
lists are generated, and 0 is returned.

Errors

• GL_INVALID_VALUE is generated if range is negative.

• GL_INVALID_OPERATION is generated if glGenLists is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glIsList

See Also

glCallList,
glCallLists,
glDeleteLists,
glNewList
Chapter 7162

G
glGenTextures
glGenTextures
glGenTextures : generate texture names.

C Specification

void glGenTextures(
GLsizei n,

GLuint *textures)

Parameters

n Specifies the number of texture names to be generated.

textures Specifies an array in which the generated texture names are stored.

Description

glGenTextures returns n texture names in textures. There is no guarantee that the
names form a contiguous set of integers; however, it is guaranteed that none of the
returned names was in use immediately before the call to glGenTextures.

 The generated textures have no dimensionality; they assume the dimensionality of the
texture target to which they are first bound (see glBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent calls,
unless they are first deleted with glDeleteTextures.

Notes

 glGenTextures is available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_VALUE is generated if n is negative.

• GL_INVALID_OPERATION is generated if glGenTextures is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTexture

See Also

glBindTexture,
glCopyTexImage1D,
glCopyTexImage2D,
glDeleteTextures,
glGet,
glGetTexParameter,
Chapter 7 163

G
glGenTextures
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 7164

G
glGet
glGet
glGetBooleanv, glGetDoublev, glGetFloatv, glGetIntegerv : return the
value or values of a selected parameter.

C Specification

void glGetBooleanv(
GLenum pname,
GLboolean *params)

void glGetDoublev(
GLenum pname,
GLdouble *params)

void glGetFloatv(
GLenum pname,
GLfloat *params)

void glGetIntegerv(
GLenum pname,

GLint *params)

Parameters

pname Specifies the parameter value to be returned. The symbolic constants
in the list below are accepted.

params Returns the value or values of the specified parameter.

Description

These four commands return values for simple state variables in GL. pname is a
symbolic constant indicating the state variable to be returned, and params is a pointer
to an array of the indicated type in which to place the returned data.

Type conversion is performed if params has a different type than the state variable
value being requested. If glGetBooleanv is called, a floating-point (or integer) value is
converted to GL_FALSE if and only if it is 0.0 (or 0). Otherwise, it is converted to
GL_TRUE. If glGetIntegerv is called, boolean values are returned as GL_TRUE or
GL_FALSE, and most floating-point values are rounded to the nearest integer value.
Floating-point colors and normals, however, are returned with a linear mapping that
maps 1.0 to the most positive representable integer value, and - 1.0 to the most negative
representable integer value. If glGetFloatv or glGetDoublev is called, boolean values are
returned as GL_TRUE or GL_FALSE, and integer values are converted to floating-point
values.

The following symbolic constants are accepted by pname:

GL_ACCUM_ALPHA_BITS

params returns one value, the number of alpha bitplanes in the accumulation buffer.

GL_ACCUM_BLUE_BITS

params returns one value, the number of blue bitplanes in the accumulation buffer.
Chapter 7 165

G
glGet
GL_ACCUM_CLEAR_VALUE

params returns four values: the red, green, blue, and alpha values used to clear the
accumulation buffer. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive representable
integer value, and - 1.0 returns the most negative representable integer value. The
initial value is (0, 0, 0, 0). See glClearAccum.

GL_ACCUM_GREEN_BITS

params returns one value, the number of green bitplanes in the accumulation buffer.

GL_ACCUM_RED_BITS

params returns one value, the number of red bitplanes in the accumulation buffer.

GL_ALPHA_BIAS

params returns one value, the alpha bias factor used during pixel transfers. The initial
value is 0.See glPixelTransfer.

GL_ALPHA_BITS

params returns one value, the number of alpha bitplanes in each color buffer.

GL_ALPHA_SCALE

params returns one value, the alpha scale factor used during pixel transfers. The initial
value is 1. See glPixelTransfer.

GL_ALPHA_TEST

params returns a single boolean value indicating whether alpha testing of fragments is
enabled. The initial value is GL_FALSE. See glAlphaFunc.

GL_ALPHA_TEST_FUNC

params returns one value, the symbolic name of the alpha test function. The initial
value is GL_ALWAYS. See glAlphaFunc.

GL_ALPHA_TEST_REF

params returns one value, the reference value for the alpha test. The initial value is 0.
See glAlphaFunc. An integer value, if requested, is linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive representable
integer value, and - 1.0 returns the most negative representable integer value.

GL_ATTRIB_STACK_DEPTH

params returns one value, the depth of the attribute stack. If the stack is empty, 0 is
returned. The initial value is 0. See glPushAttrib.

GL_AUTO_NORMAL

params returns a single boolean value indicating whether 2D map evaluation
automatically generates surface normals. The initial value is GL_FALSE. See glMap2.

GL_AUX_BUFFERS

params returns one value, the number of auxiliary color buffers. The initial value is 0.

GL_BLEND

params returns a single boolean value indicating whether blending is enabled. The
initial value is GL_FALSE. See glBlendFunc.
Chapter 7166

G
glGet
GL_BLEND_DST

params returns one value, the symbolic constant identifying the destination blend
function. The initial value is GL_ZERO. See glBlendFunc.

GL_BLEND_SRC

params returns one value, the symbolic constant identifying the source blend function.
The initial value is GL_ONE. See glBlendFunc.

GL_BLUE_BIAS

params returns one value, the blue bias factor used during pixel transfers. The initial
value is 0. See glPixelTransfer.

GL_BLUE_BITS

params returns one value, the number of blue bitplanes in each color buffer.

GL_BLUE_SCALE

params returns one value, the blue scale factor used during pixel transfers. The initial
value is 1. See glPixelTransfer.

GL_BUFFER_SWAP_MODE_HINT_hp

params returns one value, a symbolic constant indicating the mode of the buffer-swap
mode hint. The initial value is GL_FASTEST. See glHint.

GL_CLIENT_ATTRIB_STACK_DEPTH

params returns one value indicating the depth of the attribute stack. The initial value is
0. See glPushClientAttrib. GL_CLIP_PLANEi params returns a single boolean value
indicating whether the specified clipping plane is enabled. The initial value is
GL_FALSE. See glClipPlane.

GL_COLOR_ARRAY

params returns a single boolean value indicating whether the color array is enabled. The
initial value is GL_FALSE. See glColorPointer.

GL_COLOR_ARRAY_SIZE

params returns one value, the number of components per color in the color array. The
initial value is 4. See glColorPointer.

GL_COLOR_ARRAY_STRIDE

params returns one value, the byte offset between consecutive colors in the color array.
The initial value is 0. See glColorPointer.

GL_COLOR_ARRAY_TYPE

params returns one value, the data type of each component in the color array. The initial
value is GL_FLOAT. See glColorPointer.

 GL_COLOR_CLEAR_VALUE

params returns four values: the red, green, blue, and alpha values used to clear the color
buffers. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -
1.0 returns the most negative representable integer value. The initial value is (0, 0, 0, 0).
See glClearColor.

GL_COLOR_LOGIC_OP
Chapter 7 167

G
glGet
params returns a single boolean value indicating whether a fragment’s RGBA color
values are merged into the frame buffer using a logical operation. The initial value is
GL_FALSE. See glLogicOp.

GL_COLOR_MATERIAL

params returns a single boolean value indicating whether one or more material
parameters are tracking the current color. The initial value is GL_FALSE. See
glColorMaterial.

GL_COLOR_MATERIAL_FACE

params returns one value, a symbolic constant indicating which materials have a
parameter that is tracking the current color. The initial value is
GL_FRONT_AND_BACK. See glColorMaterial.

GL_COLOR_MATERIAL_PARAMETER

params returns one value, a symbolic constant indicating which material parameters
are tracking the current color. The initial value is GL_AMBIENT_AND_DIFFUSE. See
glColorMaterial.

GL_COLOR_WRITEMASK

params returns four boolean values: the red, green, blue, and alpha write enables for the
color buffers. The initial value is (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE). See
glColorMask.

GL_CULL_FACE

params returns a single boolean value indicating whether polygon culling is enabled.
The initial value is GL_FALSE. See glCullFace.

GL_CULL_FACE_MODE

params returns one value, a symbolic constant indicating which polygon faces are to be
culled. The initial value is GL_BACK. See glCullFace.

GL_CURRENT_COLOR

params returns four values: the red, green, blue, and alpha values of the current color.
Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -
1.0 returns the most negative representable integer value. See glColor. The initial value
is (1, 1, 1, 1).

GL_CURRENT_INDEX

params returns one value, the current color index. The initial value is 1. See glIndex.

GL_CURRENT_NORMAL

params returns three values: the x, y, and z values of the current normal. Integer values,
if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and - 1.0 returns the most
negative representable integer value. The initial value is (0, 0, 1). See glNormal.

GL_CURRENT_RASTER_COLOR
Chapter 7168

G
glGet
params returns four values: the red, green, blue, and alpha values of the current raster
position. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive representable
integer value, and - 1.0 returns the most negative representable integer value. The
initial value is (1, 1, 1, 1). See glRasterPos.

GL_CURRENT_RASTER_DISTANCE

params returns one value, the distance from the eye to the current raster position. The
initial value is 0. See glRasterPos.

GL_CURRENT_RASTER_INDEX

params returns one value, the color index of the current raster position. The initial value
is 1. See glRasterPos.

GL_CURRENT_RASTER_POSITION

params returns four values: the x, y, z, and w components of the current raster position.
x, y, and z are in window coordinates, and w is in clip coordinates. The initial value is (0,
0, 0, 1). See glRasterPos.

GL_CURRENT_RASTER_POSITION_VALID

params returns a single boolean value indicating whether the current raster position is
valid. The initial value is GL_TRUE. See glRasterPos.

GL_CURRENT_RASTER_TEXTURE_COORDS

params returns four values: the s, t, r, and q current raster texture coordinates. The
initial value is (0, 0, 0, 1). See glRasterPos and glTexCoord.

GL_CURRENT_TEXTURE_COORDS

params returns four values: the s, t, r, and q current texture coordinates. The initial
value is (0, 0, 0, 1). See glTexCoord.

GL_DEPTH_BIAS

params returns one value, the depth bias factor used during pixel transfers. The initial
value is 0. See glPixelTransfer.

GL_DEPTH_BITS

params returns one value, the number of bitplanes in the depth buffer.

GL_DEPTH_CLEAR_VALUE

params returns one value, the value that is used to clear the depth buffer. Integer
values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and - 1.0 returns the
most negative representable integer value. The initial value is 1. See glClearDepth.

GL_DEPTH_FUNC

params returns one value, the symbolic constant that indicates the depth comparison
function. The initial value is GL_LESS. See glDepthFunc.

GL_DEPTH_RANGE

params returns two values: the near and far mapping limits for the depth buffer. Integer
values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and - 1.0 returns the
most negative representable integer value. The initial value is (0, 1). See glDepthRange.
Chapter 7 169

G
glGet
GL_DEPTH_SCALE

params returns one value, the depth scale factor used during pixel transfers. The initial
value is 1. See glPixelTransfer.

GL_DEPTH_TEST

params returns a single boolean value indicating whether depth testing of fragments is
enabled. The initial value is GL_FALSE. See glDepthFunc and glDepthRange.

GL_DEPTH_WRITEMASK

params returns a single boolean value indicating if the depth buffer is enabled for
writing. The initial value is GL_TRUE. See glDepthMask.

GL_DITHER

params returns a single boolean value indicating whether dithering of fragment colors
and indices is enabled. The initial value is GL_TRUE.

GL_DOUBLEBUFFER

params returns a single boolean value indicating whether double buffering is supported.

GL_DRAW_BUFFER

params returns one value, a symbolic constant indicating which buffers are being drawn
to. See glDrawBuffer. The initial value is GL_BACK if there are back buffers, otherwise
it is GL_FRONT.

GL_EDGE_FLAG

params returns a single boolean value indicating whether the current edge flag is
GL_TRUE or GL_FALSE. The initial value is GL_TRUE. See glEdgeFlag.

GL_EDGE_FLAG_ARRAY

params returns a single boolean value indicating whether the edge flag array is enabled.
The initial value is GL_FALSE. See glEdgeFlagPointer.

GL_EDGE_FLAG_ARRAY_STRIDE

params returns one value, the byte offset between consecutive edge flags in the edge flag
array. The initial value is 0. See glEdgeFlagPointer.

GL_EXT_DEPTH_TEXTURE

params returns a single boolean value indicating whether texture-depth is enabled. The
initial value is GL_FALSE. See glTexImage3DEXT.

GL_EXT_SHADOW

params returns a single boolean value indicating whether shadowing is enabled. The
initial value is GL_FALSE. See glTexImage3DEXT.

GL_EXT_TEXTURE_BORDER_CLAMP

params returns a single boolean value indicating whether border clamping is enabled.
The initial value is GL_FALSE. See glTexImage3DEXT.

GL_EXT_TEXTURE3D

params returns a single boolean value indicating whether 3D texturing is enabled. The
initial value is GL_FALSE. See glTexImage3DEXT.

GL_EXT_TEXTURE_EDGE_CLAMP
Chapter 7170

G
glGet
params returns a single boolean value indicating whether edge clamping is enabled. The
initial value is GL_FALSE. See glTexImage3DEXT.

GL_FOG

params returns a single boolean value indicating whether fogging is enabled. The initial
value is GL_FALSE. See glFog.

GL_FOG_COLOR

params returns four values: the red, green, blue and alpha components of the fog color.
Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -
1.0 returns the most negative representable integer value. The initial value is (0, 0, 0, 0).
See glFog.

GL_FOG_DENSITY

params returns one value, the fog density parameter. The initial value is 1. See glFog.

GL_FOG_END

params returns one value, the end factor for the linear fog equation. The initial value is
1. See glFog.

GL_FOG_HINT

params returns one value, a symbolic constant indicating the mode of the fog hint. The
initial value is GL_DONT_CARE. See glHint.

GL_FOG_INDEX

params returns one value, the fog color index. The initial value is 0. See glFog.

GL_FOG_MODE

params returns one value, a symbolic constant indicating which fog equation is selected.
The initial value is GL_EXP. See glFog.

GL_FOG_START

params returns one value, the start factor for the linear fog equation. The initial value is
0. See glFog.

GL_FRONT_FACE

params returns one value, a symbolic constant indicating whether clockwise or
counterclockwise polygon winding is treated as front-facing. The initial value is
GL_CCW. See glFrontFace.

GL_GREEN_BIAS

params returns one value, the green bias factor used during pixel transfers. The initial
value is 0.

GL_GREEN_BITS

params returns one value, the number of green bitplanes in each color buffer.

GL_GREEN_SCALE

params returns one value, the green scale factor used during pixel transfers. The initial
value is 1. See glPixelTransfer.

GL_hp_TEXTURING_LIGHTING
Chapter 7 171

G
glGet
params returns a single boolean value indicating whether texture lighting is enabled.
The initial value is GL_FALSE. See glTexImage3DEXT.

GL_INDEX_ARRAY

params returns a single boolean value indicating whether the color index array is
enabled. The initial value is GL_FALSE. See glIndexPointer.

GL_INDEX_ARRAY_STRIDE

params returns one value, the byte offset between consecutive color indexes in the color
index array. The initial value is 0. See glIndexPointer.

 GL_INDEX_ARRAY_TYPE

params returns one value, the data type of indexes in the color index array. The initial
value is GL_FLOAT. See glIndexPointer.

GL_INDEX_BITS

params returns one value, the number of bitplanes in each color index buffer.

 GL_INDEX_CLEAR_VALUE

params returns one value, the color index used to clear the color index buffers. The
initial value is 0. See glClearIndex.

GL_INDEX_LOGIC_OP

params returns a single boolean value indicating whether a fragment’s index values are
merged into the frame buffer using a logical operation. The initial value is GL_FALSE.
See glLogicOp.

GL_INDEX_MODE

params returns a single boolean value indicating whether the GL is in color index mode
(GL_TRUE) or RGBA mode (GL_FALSE).

GL_INDEX_OFFSET

params returns one value, the offset added to color and stencil indices during pixel
transfers. The initial value is 0. See glPixelTransfer.

 GL_INDEX_SHIFT

params returns one value, the amount that color and stencil indices are shifted during
pixel transfers. The initial value is 0. See glPixelTransfer.

GL_INDEX_WRITEMASK

params returns one value, a mask indicating which bitplanes of each color index buffer
can be written. The initial value is all 1s. See glIndexMask. GL_LIGHTi params returns
a single boolean value indicating whether the specified light is enabled. The initial value
is GL_FALSE. See glLight and glLightModel.

 GL_LIGHTING

params returns a single boolean value indicating whether lighting is enabled. The initial
value is GL_FALSE. See glLightModel.

 GL_LIGHT_MODEL_AMBIENT
Chapter 7172

G
glGet
params returns four values: the red, green, blue, and alpha components of the ambient
intensity of the entire scene. Integer values, if requested, are linearly mapped from the
internal floating-point representation such that 1.0 returns the most positive
representable integer value, and - 1.0 returns the most negative representable integer
value. The initial value is (0.2, 0.2, 0.2, 1.0). See glLightModel.

GL_LIGHT_MODEL_LOCAL_VIEWER

params returns a single boolean value indicating whether specular reflection
calculations treat the viewer as being local to the scene. The initial value is GL_FALSE.
See glLightModel.

GL_LIGHT_MODEL_TWO_SIDE

params returns a single boolean value indicating whether separate materials are used to
compute lighting for front- and back-facing polygons. The initial value is GL_FALSE.
See glLightModel.

GL_LINE_SMOOTH

params returns a single boolean value indicating whether anti-aliasing of lines is
enabled. The initial value is GL_FALSE. See glLineWidth.

GL_LINE_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the line
anti-aliasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_LINE_STIPPLE

params returns a single boolean value indicating whether stippling of lines is enabled.
The initial value is GL_FALSE. See glLineStipple.

GL_LINE_STIPPLE_PATTERN

params returns one value, the 16-bit line stipple pattern. The initial value is all 1s. See
glLineStipple.

GL_LINE_STIPPLE_REPEAT

params returns one value, the line stipple repeat factor. The initial value is 1. See
glLineStipple.

GL_LINE_WIDTH

params returns one value, the line width as specified with glLineWidth. The initial value
is 1.

GL_LINE_WIDTH_GRANULARITY

params returns one value, the width difference between adjacent supported widths for
anti-aliased lines. See glLineWidth.

GL_LINE_WIDTH_RANGE

params returns two values: the smallest and largest supported widths for anti-aliased
lines. See glLineWidth.

GL_LIST_BASE

params returns one value, the base offset added to all names in arrays presented to
glCallLists. The initial value is 0. See glListBase.

GL_LIST_INDEX
Chapter 7 173

G
glGet
params returns one value, the name of the display list currently under construction. 0 is
returned if no display list is currently under construction. The initial value is 0. See
glNewList.

GL_LIST_MODE

params returns one value, a symbolic constant indicating the construction mode of the
display list currently under construction. The initial value is 0. See glNewList.

GL_LOGIC_OP_MODE

params returns one value, a symbolic constant indicating the selected logic operation
mode. The initial value is GL_COPY. See glLogicOp.

GL_MAP1_COLOR_4

params returns a single boolean value indicating whether 1D evaluation generates
colors. The initial value is GL_FALSE. See glMap1.

GL_MAP1_GRID_DOMAIN

params returns two values: the endpoints of the 1D map’s grid domain. The initial value
is (0, 1). See glMapGrid.

GL_MAP1_GRID_SEGMENTS

params returns one value, the number of partitions in the 1D map’s grid domain. The
initial value is 1. See glMapGrid.

GL_MAP1_INDEX

params returns a single boolean value indicating whether 1D evaluation generates color
indices. The initial value is GL_FALSE. See glMap1.

GL_MAP1_NORMAL

params returns a single boolean value indicating whether 1D evaluation generates
normals. The initial value is GL_FALSE. See glMap1.

GL_MAP1_TEXTURE_COORD_1

params returns a single boolean value indicating whether 1D evaluation generates 1D
texture coordinates. The initial value is GL_FALSE. See glMap1.

GL_MAP1_TEXTURE_COORD_2

params returns a single boolean value indicating whether 1D evaluation generates 2D
texture coordinates. The initial value is GL_FALSE. See glMap1.

GL_MAP1_TEXTURE_COORD_3

params returns a single boolean value indicating whether 1D evaluation generates 3D
texture coordinates. The initial value is GL_FALSE. See glMap1.

GL_MAP1_TEXTURE_COORD_4

params returns a single boolean value indicating whether 1D evaluation generates 4D
texture coordinates. The initial value is GL_FALSE. See glMap1.

GL_MAP1_VERTEX_3

params returns a single boolean value indicating whether 1D evaluation generates 3D
vertex coordinates. The initial value is GL_FALSE. See glMap1.

GL_MAP1_VERTEX_4
Chapter 7174

G
glGet
params returns a single boolean value indicating whether 1D evaluation generates 4D
vertex coordinates. The initial value is GL_FALSE. See glMap1. GL_MAP2_COLOR_4

params returns a single boolean value indicating whether 2D evaluation generates
colors. The initial value is GL_FALSE. See glMap2.

GL_MAP2_GRID_DOMAIN

params returns four values: the endpoints of the 2D map’s i and j grid domains. The
initial value is (0, 1; 0, 1). See glMapGrid.

GL_MAP2_GRID_SEGMENTS

params returns two values: the number of partitions in the 2D map’s i and j grid
domains. The initial value is (1, 1). See glMapGrid.

GL_MAP2_INDEX

params returns a single boolean value indicating whether 2D evaluation generates color
indices. The initial value is GL_FALSE. See glMap2.

GL_MAP2_NORMAL

params returns a single boolean value indicating whether 2D evaluation generates
normals. The initial value is GL_FALSE. See glMap2.

GL_MAP2_TEXTURE_COORD_1

params returns a single boolean value indicating whether 2D evaluation generates 1D
texture coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP2_TEXTURE_COORD_2

params returns a single boolean value indicating whether 2D evaluation generates 2D
texture coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP2_TEXTURE_COORD_3

params returns a single boolean value indicating whether 2D evaluation generates 3D
texture coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP2_TEXTURE_COORD_4

params returns a single boolean value indicating whether 2D evaluation generates 4D
texture coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP2_VERTEX_3

params returns a single boolean value indicating whether 2D evaluation generates 3D
vertex coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP2_VERTEX_4

params returns a single boolean value indicating whether 2D evaluation generates 4D
vertex coordinates. The initial value is GL_FALSE. See glMap2.

GL_MAP_COLOR

params returns a single boolean value indicating if colors and color indices are to be
replaced by table lookup during pixel transfers. The initial value is GL_FALSE. See
glPixelTransfer.

GL_MAP_STENCIL

params returns a single boolean value indicating if stencil indices are to be replaced by
table lookup during pixel transfers. The initial value is GL_FALSE. See glPixelTransfer.
Chapter 7 175

G
glGet
GL_MATRIX_MODE

params returns one value, a symbolic constant indicating which matrix stack is
currently the target of all matrix operations. The initial value is GL_MODELVIEW. See
glMatrixMode.

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

params returns one value indicating the maximum supported depth of the client
attribute stack. See glPushClientAttrib.

GL_MAX_ATTRIB_STACK_DEPTH

params returns one value, the maximum supported depth of the attribute stack. The
value must be at least 16. See glPushAttrib.

GL_MAX_CLIP_PLANES

params returns one value, the maximum number of application-defined clipping planes.
The value must be at least 6. See glClipPlane.

GL_MAX_EVAL_ORDER

params returns one value, the maximum equation order supported by 1D and 2D
evaluators. The value must be at least 8. See glMap1 and glMap2.

GL_MAX_LIGHTS

params returns one value, the maximum number of lights. The value must be at least 8.
See glLight.

GL_MAX_LIST_NESTING

params returns one value, the maximum recursion depth allowed during display-list
traversal. The value must be at least 64. See glCallList.

GL_MAX_MODELVIEW_STACK_DEPTH

params returns one value, the maximum supported depth of the model view matrix
stack. The value must be at least 32. See glPushMatrix.

GL_MAX_NAME_STACK_DEPTH

params returns one value, the maximum supported depth of the selection name stack.
he value must be at least 64. See glPushName.

GL_MAX_PIXEL_MAP_TABLE

params returns one value, the maximum supported size of a glPixelMap lookup table.
The value must be at least 32. See glPixelMap.

GL_MAX_PROJECTION_STACK_DEPTH

params returns one value, the maximum supported depth of the projection matrix stack.
The value must be at least 2. See glPushMatrix.

GL_MAX_TEXTURE_SIZE

params returns one value. The value gives a rough estimate of the largest texture that
the GL can handle. If the GL version is 1.1 or greater, use GL_PROXY_TEXTURE_1D or
GL_PROXY_TEXTURE_2D to determine if a texture is too large. See glTexImage1D and
glTexImage2D.

GL_MAX_TEXTURE_STACK_DEPTH
Chapter 7176

G
glGet
params returns one value, the maximum supported depth of the texture matrix stack.
The value must be at least 2. See glPushMatrix.

GL_MAX_VIEWPORT_DIMS

params returns two values: the maximum supported width and height of the viewport.
These must be at least as large as the visible dimensions of the display being rendered
to. See glViewport.

GL_MODELVIEW_MATRIX

params returns sixteen values: the modelview matrix on the top of the modelview matrix
stack. Initially this matrix is the identity matrix. See glPushMatrix.

GL_MODELVIEW_STACK_DEPTH

params returns one value, the number of matrices on the modelview matrix stack. The
initial value is 1. See glPushMatrix.

GL_NAME_STACK_DEPTH

params returns one value, the number of names on the selection name stack. The initial
value is 0. See glPushName.

GL_NORMAL_ARRAY

params returns a single boolean value, indicating whether the normal array is enabled.
The initial value is GL_FALSE. See glNormalPointer.

GL_NORMAL_ARRAY_STRIDE

params returns one value, the byte offset between consecutive normals in the normal
array. The initial value is 0. See glNormalPointer.

GL_NORMAL_ARRAY_TYPE

params returns one value, the data type of each coordinate in the normal array. The
initial value is GL_FLOAT. See glNormalPointer.

GL_NORMALIZE

params returns a single boolean value indicating whether normals are automatically
scaled to unit length after they have been transformed to eye coordinates. The initial
value is GL_FALSE. See glNormal.

GL_OCCLUSION_TEST_hp

params returns a single boolean value indicating whether HP’s occlusion-testing
extension is currently activated. See glEnable.

GL_OCCLUSION_TEST_RESULT_hp

params returns a single boolean value indicating whether the previously-rendered
geometry was entirely occluded. A side-effect of getting this value is that the flag is
cleared (in preparation for the next occlusion test). See glEnable.

GL_PACK_ALIGNMENT

params returns one value, the byte alignment used for writing pixel data to memory. The
initial value is 4. See glPixelStore.

GL_PACK_LSB_FIRST
Chapter 7 177

G
glGet
params returns a single boolean value indicating whether single-bit pixels being written
to memory are written first to the least significant bit of each unsigned byte. The initial
value is GL_FALSE. See glPixelStore.

GL_PACK_ROW_LENGTH

params returns one value, the row length used for writing pixel data to memory. The
initial value is 0. See glPixelStore.

GL_PACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped before the first pixel is
written into memory. The initial value is 0. See glPixelStore.

GL_PACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped before the first
pixel is written into memory. The initial value is 0. See glPixelStore.

GL_PACK_SWAP_BYTES

params returns a single boolean value indicating whether the bytes of two-byte and
four-byte pixel indices and components are swapped before being written to memory. The
initial value is GL_FALSE. See glPixelStore.

GL_PERSPECTIVE_CORRECTION_HINT

params returns one value, a symbolic constant indicating the mode of the perspective
correction hint. The initial value is GL_DONT_CARE. See glHint.

GL_PIXEL_MAP_A_TO_A_SIZE

params returns one value, the size of the alpha-to-alpha pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_B_TO_B_SIZE

params returns one value, the size of the blue-to-blue pixel translation table. The initial
value is 1. See glPixelMap.

GL_PIXEL_MAP_G_TO_G_SIZE

params returns one value, the size of the green-to-green pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_A_SIZE

params returns one value, the size of the index-to-alpha pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_B_SIZE

params returns one value, the size of the index-to-blue pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_G_SIZE

params returns one value, the size of the index-to-green pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_I_SIZE

params returns one value, the size of the index-to-index pixel translation table. The
initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_R_SIZE
Chapter 7178

G
glGet
params returns one value, the size of the index-to-red pixel translation table. The initial
value is 1. See glPixelMap.

GL_PIXEL_MAP_R_TO_R_SIZE

params returns one value, the size of the red-to-red pixel translation table. The initial
value is 1. See glPixelMap.

GL_PIXEL_MAP_S_TO_S_SIZE

params returns one value, the size of the stencil-to-stencil pixel translation table. The
initial value is 1. See glPixelMap.

GL_POINT_SIZE

params returns one value, the point size as specified by glPointSize. The initial value is
1.

GL_POINT_SIZE_GRANULARITY

params returns one value, the size difference between adjacent supported sizes for
anti-aliased points. See glPointSize.

GL_POINT_SIZE_RANGE

params returns two values: the smallest and largest supported sizes for anti-aliased
points. The smallest size must be at most 1, and the largest size must be at least 1. See
glPointSize.

GL_POINT_SMOOTH

params returns a single boolean value indicating whether anti-aliasing of points is
enabled. The initial value is GL_FALSE. See glPointSize.

GL_POINT_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the point
anti-aliasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_POLYGON_MODE

params returns two values: symbolic constants indicating whether front-facing and
back-facing polygons are rasterized as points, lines, or filled polygons. The initial value is
GL_FILL. See glPolygonMode.

GL_POLYGON_OFFSET_FACTOR

params returns one value, the scaling factor used to determine the variable offset that is
added to the depth value of each fragment generated when a polygon is rasterized. The
initial value is 0. See glPolygonOffset.

GL_POLYGON_OFFSET_UNITS

params returns one value. This value is multiplied by an implementation-specific value
and then added to the depth value of each fragment generated when a polygon is
rasterized. The initial value is 0. See glPolygonOffset.

GL_POLYGON_OFFSET_FILL

params returns a single boolean value indicating whether polygon offset is enabled for
polygons in fill mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_OFFSET_LINE
Chapter 7 179

G
glGet
params returns a single boolean value indicating whether polygon offset is enabled for
polygons in line mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_OFFSET_POINT

params returns a single boolean value indicating whether polygon offset is enabled for
polygons in point mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_SMOOTH

params returns a single boolean value indicating whether anti-aliasing of polygons is
enabled. The initial value is GL_FALSE. See glPolygonMode.

GL_POLYGON_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the polygon
anti-aliasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_POLYGON_STIPPLE

params returns a single boolean value indicating whether polygon stippling is enabled.
The initial value is GL_FALSE. See glPolygonStipple.

GL_PROJECTION_MATRIX

params returns sixteen values: the projection matrix on the top of the projection matrix
stack. Initially this matrix is the identity matrix. See glPushMatrix.

GL_PROJECTION_STACK_DEPTH

params returns one value, the number of matrices on the projection matrix stack. The
initial value is 1. See glPushMatrix.

GL_READ_BUFFER

params returns one value, a symbolic constant indicating which color buffer is selected
for reading. The initial value is GL_BACK if there is a back buffer, otherwise it is
GL_FRONT. See glReadPixels and glAccum.

GL_RED_BIAS

params returns one value, the red bias factor used during pixel transfers. The initial
value is 0.

GL_RED_BITS

params returns one value, the number of red bitplanes in each color buffer.

GL_RED_SCALE

params returns one value, the red scale factor used during pixel transfers. The initial
value is 1. See glPixelTransfer.

GL_RENDER_MODE

params returns one value, a symbolic constant indicating whether the GL is in render,
select, or feedback mode. The initial value is GL_RENDER. See glRenderMode.

GL_RGBA_MODE

params returns a single boolean value indicating whether the GL is in RGBA mode
(true) or color index mode (false). See glColor.

GL_SCISSOR_BOX
Chapter 7180

G
glGet
params returns four values: the x and y window coordinates of the scissor box, followed
by its width and height. Initially the x and y window coordinates are both 0 and the
width and height are set to the size of the window. See glScissor.

GL_SCISSOR_TEST

params returns a single boolean value indicating whether scissoring is enabled. The
initial value is GL_FALSE. See glScissor.

GL_SHADE_MODEL

params returns one value, a symbolic constant indicating whether the shading mode is
flat or smooth. The initial value is GL_SMOOTH. See glShadeModel.

GL_STENCIL_BITS

params returns one value, the number of bitplanes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE

params returns one value, the index to which the stencil bitplanes are cleared. The
initial value is 0. See glClearStencil.

GL_STENCIL_FAIL

params returns one value, a symbolic constant indicating what action is taken when the
stencil test fails. The initial value is GL_KEEP. See glStencilOp.

GL_STENCIL_FUNC

params returns one value, a symbolic constant indicating what function is used to
compare the stencil reference value with the stencil buffer value. The initial value is
GL_ALWAYS. See glStencilFunc.

GL_STENCIL_PASS_DEPTH_FAIL

params returns one value, a symbolic constant indicating what action is taken when the
stencil test passes, but the depth test fails. The initial value is GL_KEEP. See
glStencilOp.

GL_STENCIL_PASS_DEPTH_PASS

params returns one value, a symbolic constant indicating what action is taken when the
stencil test passes and the depth test passes. The initial value is GL_KEEP. See
glStencilOp.

GL_STENCIL_REF

params returns one value, the reference value that is compared with the contents of the
stencil buffer. The initial value is 0. See glStencilFunc.

GL_STENCIL_TEST

params returns a single boolean value indicating whether stencil testing of fragments is
enabled. The initial value is GL_FALSE. See glStencilFunc and glStencilOp.

GL_STENCIL_VALUE_MASK

params returns one value, the mask that is used to mask both the stencil reference value
and the stencil buffer value before they are compared. The initial value is all 1s. See
glStencilFunc.

GL_STENCIL_WRITEMASK
Chapter 7 181

G
glGet
params returns one value, the mask that controls writing of the stencil bitplanes. The
initial value is all 1s. See glStencilMask.

GL_STEREO

params returns a single boolean value indicating whether stereo buffers (left and right)
are supported.

GL_SUBPIXEL_BITS

params returns one value, an estimate of the number of bits of subpixel resolution that
are used to position rasterized geometry in window coordinates. The initial value is 4.

GL_TEXTURE_1D

params returns a single boolean value indicating whether 1D texture mapping is
enabled. The initial value is GL_FALSE. See glTexImage1D.

GL_TEXTURE_1D_BINDING

params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_1D. The initial value is 0. See glBindTexture.

GL_TEXTURE_2D

params returns a single boolean value indicating whether 2D texture mapping is
enabled. The initial value is GL_FALSE. See glTexImage2D.

GL_TEXTURE_2D_BINDING

params returns a single value, the name of the texture currently bound to the
targetGL_TEXTURE_2D. The initial value is 0. See glBindTexture.

GL_TEXTURE_COORD_ARRAY

params returns a single boolean value indicating whether the texture coordinate array
is enabled. The initial value is GL_FALSE. See glTexCoordPointer.

GL_TEXTURE_COORD_ARRAY_SIZE

params returns one value, the number of coordinates per element in the texture
coordinate array. The initial value is 4. See glTexCoordPointer.

GL_TEXTURE_COORD_ARRAY_STRIDE

params returns one value, the byte offset between consecutive elements in the texture
coordinate array. The initial value is 0. See glTexCoordPointer.

GL_TEXTURE_COORD_ARRAY_TYPE

params returns one value, the data type of the coordinates in the texture coordinate
array. The initial value is GL_FLOAT. See glTexCoordPointer.

GL_TEXTURE_GEN_Q

params returns a single boolean value indicating whether automatic generation of the q
texture coordinate is enabled. The initial value is GL_FALSE. See glTexGen.

GL_TEXTURE_GEN_R

params returns a single boolean value indicating whether automatic generation of the r
texture coordinate is enabled. The initial value is GL_FALSE. See glTexGen.

GL_TEXTURE_GEN_S
Chapter 7182

G
glGet
params returns a single boolean value indicating whether automatic generation of the S
texture coordinate is enabled. The initial value is GL_FALSE. See glTexGen.

GL_TEXTURE_GEN_T

params returns a single boolean value indicating whether automatic generation of the T
texture coordinate is enabled. The initial value is GL_FALSE. See glTexGen.

GL_TEXTURE_MATRIX

params returns sixteen values: the texture matrix on the top of the texture matrix stack.
Initially this matrix is the identity matrix. See glPushMatrix.

GL_TEXTURE_STACK_DEPTH

params returns one value, the number of matrices on the texture matrix stack. The
initial value is 1. See glPushMatrix.

GL_UNPACK_ALIGNMENT

params returns one value, the byte alignment used for reading pixel data from memory.
The initial value is 4. See glPixelStore.

GL_UNPACK_LSB_FIRST

params returns a single boolean value indicating whether single-bit pixels being read
from memory are read first from the least significant bit of each unsigned byte. The
initial value is GL_FALSE. See glPixelStore.

GL_UNPACK_ROW_LENGTH

params returns one value, the row length used for reading pixel data from memory. The
initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped before the first pixel is
read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped before the first
pixel is read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SWAP_BYTES

params returns a single boolean value indicating whether the bytes of two-byte and
four-byte pixel indices and components are swapped after being read from memory. The
initial value is GL_FALSE. See glPixelStore.

GL_VERTEX_ARRAY

params returns a single boolean value indicating whether the vertex array is enabled.
The initial value is GL_FALSE. See glVertexPointer.

GL_VERTEX_ARRAY_SIZE

params returns one value, the number of coordinates per vertex in the vertex array. The
initial value is 4. See glVertexPointer.

GL_VERTEX_ARRAY_STRIDE

params returns one value, the byte offset between consecutive vertexes in the vertex
array. The initial value is 0. See glVertexPointer.

GL_VERTEX_ARRAY_TYPE
Chapter 7 183

G
glGet
params returns one value, the data type of each coordinate in the vertex array. The
initial value is GL_FLOAT. See glVertexPointer.

GL_VIEWPORT

params returns four values: the x and y window coordinates of the viewport, followed by
its width and height. Initially the x and y window coordinates are both set to 0, and the
width and height are set to the width and height of the window into which the GL will do
its rendering. See glViewport.

GL_ZOOM_X

params returns one value, the x pixel zoom factor. The initial value is 1. See
glPixelZoom.

GL_ZOOM_Y

params returns one value, the y pixel zoom factor. The initial value is 1. See
glPixelZoom.

Many of the boolean parameters can also be queried more easily using glIsEnabled.

Notes

GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_COLOR_ARRAY_SIZE,
GL_COLOR_ARRAY_STRIDE, GL_COLOR_ARRAY_TYPE, GL_EDGE_FLAG_ARRAY,
GL_EDGE_FLAG_ARRAY_STRIDE, GL_INDEX_ARRAY,
GL_INDEX_ARRAY_STRIDE, GL_INDEX_ARRAY_TYPE, GL_INDEX_LOGIC_OP,
GL_NORMAL_ARRAY, GL_NORMAL_ARRAY_STRIDE, GL_NORMAL_ARRAY_TYPE,
GL_POLYGON_OFFSET_UNITS, GL_POLYGON_OFFSET_FACTOR,
GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY,
GL_TEXTURE_COORD_ARRAY_SIZE, GL_TEXTURE_COORD_ARRAY_STRIDE,
GL_TEXTURE_COORD_ARRAY_TYPE, GL_VERTEX_ARRAY,
GL_VERTEX_ARRAY_SIZE, GL_VERTEX_ARRAY_STRIDE, and
GL_VERTEX_ARRAY_TYPE are available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glGet is executed between the execution
of glBegin and the corresponding execution of glEnd.

See Also

glGetClipPlane,
glGetError,
glGetLight,
glGetMap,
glGetMaterial,
glGetPixelMap,
glGetPointer,
glGetPolygonStipple,
glGetString,
glGetTexEnv,
Chapter 7184

G
glGet
glGetTexGen,
glGetTexImage,
glGetTexLevelParameter,
glGetTexParameter,
glIsEnabled
Chapter 7 185

G
glXGetClientString
glXGetClientString
glXGetClientString : return a string describing the client.

C Specification

constchar *glXGetClientString(
Display *dpy,

int name)

Parameters

dpy Specifies the connection to the X server.

name Specifies which string is returned. One of GLX_VENDOR,
GLX_VERSION, or GLX_EXTENSIONS.

Description

glXGetClientString returns a string describing some aspect of the client library. The
possible values for name are GLX_VENDOR, GLX_VERSION, and GLX_EXTENSIONS.
If name is not set to one of these values, glXGetClientString returns NULL. The format
and contents of the vendor string is implementation dependent.

The extensions string is null-terminated and contains a space-separated list of extension
names. (The extension names never contain spaces.) If there are no extensions to GLX,
then the empty string is returned.

The version string is laid out as follows:

<major_version.minor_version><space><vendor-specific_info >

Both the major and minor portions of the version number are of arbitrary length. The
vendor-specific information is optional. However, if it is present, the format and contents
are implementation specific.

Notes

glXGetClientString is available only if the GLX version is 1.1 or greater.

If the GLX version is 1.1 or 1.0, the GL version must be 1.0. If the GLX version is 1.2,
then the GL version must be 1.1.

glXGetClientString only returns information about GLX extensions supported by the
client. Call glGetString to get a list of GL extensions supported by the server.

See Also

glXQueryVersion,
glXQueryExtensionsString,
glXQueryServerString
Chapter 7186

G
glXGetClipPlane
glXGetClipPlane
glGetClipPlane : return the coefficients of the specified clipping plane.

C Specification

void glGetClipPlane(
GLenum plane,

GLdouble *equation)

Parameters

plane Specifies a clipping plane. The number of clipping planes depends on
the implementation, but at least six clipping planes are supported.
They are identified by symbolic names of the form GL_CLIP_PLANEi
where 0 ≥ i < GL_MAX_CLIP_PLANES.

equation Returns four double-precision values that are the coefficients of the
plane equation of plane in eye coordinates. The initial value is (0, 0, 0,
0).

Description

glGetClipPlane returns in equation the four coefficients of the plane equation for plane.

Notes

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

If an error is generated, no change is made to the contents of equation.

Errors

• GL_INVALID_ENUM is generated if plane is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetClipPlane is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glClipPlane
Chapter 7 187

G
glXGetConfig
glXGetConfig
glXGetConfig : return information about GLX visuals.

C Specification

int glXGetConfig(
Display *dpy,
XVisualInfo *vis,
int attrib,

int *value)

Parameters

dpy Specifies the connection to the X server.

vis Specifies the visual to be queried. It is a pointer to an XVisualInfo
structure, not a visual ID or a pointer to a Visual.

attrib Specifies the visual attribute to be returned. value Returns the
requested value.

Description

glXGetConfig sets value to the attrib value of windows or GLX pixmaps created with
respect to vis. glXGetConfig returns an error code if it fails for an reason. Otherwise, zero
is returned.

attrib is one of the following:

GLX_USE_GL

True if OpenGL rendering is supported by this visual, False otherwise.

GLX_BUFFER_SIZE

Number of bits per color buffer. For RGBA visuals, GLX_BUFFER_SIZE is the sum of
GLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_SIZE, and GLX_ALPHA_SIZE. For
color index visuals, GLX_BUFFER_SIZE is the size of the color indexes.

GLX_LEVEL

Frame buffer level of the visual. Level zero is the default frame buffer. Positive levels
correspond to frame buffers that overlay the default buffer, and negative levels
correspond to frame buffers that underlay the default buffer.

GLX_RGBA

True if color buffers store red, green, blue, and alpha values. False if they store color
indexes.

 GLX_DOUBLEBUFFER

True if color buffers exist in front/back pairs that can be swapped, False otherwise.

GLX_STEREO

True if color buffers exist in left/right pairs, False otherwise.
Chapter 7188

G
glXGetConfig
GLX_AUX_BUFFERS

Number of auxiliary color buffers that are available. Zero indicates that no auxiliary
color buffers exist.

GLX_RED_SIZE

Number of bits of red stored in each color buffer. Undefined if GLX_RGBA is False.

GLX_GREEN_SIZE

Number of bits of green stored in each color buffer. Undefined if GLX_RGBA is False.

GLX_BLUE_SIZE

Number of bits of blue stored in each color buffer. Undefined if GLX_RGBA is False.

GLX_ALPHA_SIZE

Number of bits of alpha stored in each color buffer. Undefined if GLX_RGBA is False.

GLX_DEPTH_SIZE

Number of bits in the depth buffer.

GLX_STENCIL_SIZE

Number of bits in the stencil buffer.

GLX_ACCUM_RED_SIZE

Number of bits of red stored in the accumulation buffer.

GLX_ACCUM_GREEN_SIZE

Number of bits of green stored in the accumulation buffer.

GLX_ACCUM_BLUE_SIZE

Number of bits of blue stored in the accumulation buffer.

GLX_ACCUM_ALPHA_SIZE

Number of bits of alpha stored in the accumulation buffer.

The X protocol allows a single visual ID to be instantiated with different numbers of bits
per pixel. Windows or GLX pixmaps that will be rendered with OpenGL, however, must
be instantiated with a color buffer depth of GLX_BUFFER_SIZE.

Although a GLX implementation can export many visuals that support GL rendering, it
must support at least one RGBA visual. This visual must have at least one color buffer, a
stencil buffer of at least 1 bit, a depth buffer of at least 12 bits, and an accumulation
buffer. Alpha bitplanes are optional in this visual. However, its color buffer size must be
as great as that of the deepest TrueColor, DirectColor, PseudoColor, or StaticColor visual
supported on level zero, and it must itself be made available on level zero.

In addition, if the X server exports a PseudoColor or StaticColor visual on frame buffer
level 0, a color index visual is also required on that level. It must have at least one color
buffer, a stencil buffer of at least 1 bit, and depth buffer of at least 12 bits. This visual
must have as many color bitplanes as the deepest PseudoColor or StaticColor visual
supported on level 0.

Applications are best written to select the visual that most closely meets their
requirements. Creating windows or GLX pixmaps with unnecessary buffers can result in
reduced rendering performance as well as poor resource allocation.
Chapter 7 189

G
glXGetConfig
Notes

XVisualInfo is defined in Xutil.h. It is a structure that includes visual, visualID, screen,
and depth elements.

Errors

• GLX_NO_EXTENSION is returned if dpy does not support the GLX extension.

• GLX_BAD_SCREEN is returned if the screen of vis does not correspond to a screen.

• GLX_BAD_ATTRIBUTE is returned if attrib is not a valid GLX attribute.

• GLX_BAD_VISUAL is returned if vis doesn’t support GLX and an attribute other
than GLX_USE_GL is requested.

See Also

glXChooseVisual,
glXCreateContext
Chapter 7190

G
glXGetCurrentContext
glXGetCurrentContext
glXGetCurrentContext : return the current context.

C Specification

GLXContext glXGetCurrentContext(void)

Description

glXGetCurrentContext returns the current context, as specified by glXMakeCurrent. If
there is no current context, NULL is returned. glXGetCurrentContext returns
client-side information. It does not make a round trip to the server.

See Also

glXCreateContext,
glXMakeCurrent
Chapter 7 191

G
glXGetCurrentDisplay
glXGetCurrentDisplay
glXGetCurrentDisplay : get display for current context.

C Specification

Display *glXGetCurrentDisplay(void)

Description

glXGetCurrentDisplay returns the display for the current context. If no context is
current, NULL is returned.

glXGetCurrentDisplay returns client-side information. It does not make a round trip to
the server, and therefore does not flush any pending events.

Notes

glXGetCurrentDisplay is only supported if the GLX version is 1.2 or greater.

See Also

glXQueryVersion,
glXQueryExtensionsString
Chapter 7192

G
glXGetCurrentDrawable
glXGetCurrentDrawable
glXGetCurrentDrawable : return the current drawable.

C Specification

GLXDrawable glXGetCurrentDrawable(void)

Description

glXGetCurrentDrawable returns the current drawable, as specified by glXMakeCurrent.
If there is no current drawable, None is returned.

glXGetCurrentDrawable returns client-side information. It does not make a round trip
to the server.

See Also

glXCreateGLXPixmap,
glXMakeCurrent
Chapter 7 193

G
glGetError
glGetError
glGetError : return error information.

C Specification

GLenum glGetError(void)

Description

glGetError returns the value of the error flag. Each detectable error is assigned a
numeric code and symbolic name. When an error occurs, the error flag is set to the
appropriate error code value. No other errors are recorded until glGetError is called, the
error code is returned, and the flag is reset to GL_NO_ERROR. If a call to glGetError
returns GL_NO_ERROR, there has been no detectable error since the last call to
glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single
error flag has recorded an error, the value of that flag is returned and that flag is reset to
GL_NO_ERROR when glGetError is called. If more than one flag has recorded an error,
glGetError returns and clears an arbitrary error flag value. Thus, glGetError should
always be called in a loop, until it returns GL_NO_ERROR, if all error flags are to be
reset.

Initially, all error flags are set to GL_NO_ERROR.

The following errors are currently defined:

 GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guaranteed to be 0.

GL_INVALID_ENUM

An unacceptable value is specified for an enumerated argument. The offending
command is ignored, and has no other side effect than to set the error flag.

GL_INVALID_VALUE

A numeric argument is out of range. The offending command is ignored, and has no
other side effect than to set the error flag.

GL_INVALID_OPERATION

The specified operation is not allowed in the current state. The offending command is
ignored, and has no other side effect than to set the error flag.

GL_STACK_OVERFLOW

This command would cause a stack overflow. The offending command is ignored, and has
no other side effect than to set the error flag.

GL_STACK_UNDERFLOW

This command would cause a stack underflow. The offending command is ignored, and
has no other side effect than to set the error flag.

GL_OUT_OF_MEMORY
Chapter 7194

G
glGetError
There is not enough memory left to execute the command. The state of the GL is
undefined, except for the state of the error flags, after this error is recorded.

When an error flag is set, results of a GL operation are undefined only if
GL_OUT_OF_MEMORY has occurred. In all other cases, the command generating the
error is ignored and has no effect on the GL state or frame buffer contents. If the
generating command returns a value, it returns 0. If glGetError itself generates an
error, it returns 0.

Errors

• GL_INVALID_OPERATION is generated if glGetError is executed between the
execution of glBegin and the corresponding execution of glEnd. In this case
glGetError returns 0.
Chapter 7 195

G
glGetLight
glGetLight
glGetLightfv, glGetLightiv : return light source parameter values.

C Specification

void glGetLightfv(
 GLenum light,

GLenum pname,
GLfloat *params)

void glGetLightiv(
GLenum light,
GLenum pname,

GLint *params)

Parameters

light Specifies a light source. The number of possible lights depends on the
implementation, but at least eight lights are supported. They are
identified by symbolic names of the form GL_LIGHTi where 0 ≥ i <
GL_MAX_LIGHTS.

pname Specifies a light source parameter for light. Accepted symbolic names
are GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION.

params Returns the requested data.

Description

glGetLight returns in params the value or values of a light source parameter. light
names the light and is a symbolic name of the form GL_LIGHTi for 0 ≥ i <
GL_MAX_LIGHTS, where GL_MAX_LIGHTS is an implementation-dependent constant
that is greater than or equal to eight. pname specifies one of ten light source parameters,
again by symbolic name.

The following parameters are defined:

GL_AMBIENT

params returns four integer or floating-point values representing the ambient intensity
of the light source. Integer values, when requested, are linearly mapped from the
internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and - 1.0 maps to the most negative representable integer
value. If the internal value is outside the range [- 1, 1], the corresponding integer return
value is undefined. The initial value is (0, 0, 0, 1).

GL_DIFFUSE
Chapter 7196

G
glGetLight
params returns four integer or floating-point values representing the diffuse intensity of
the light source. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable
integer value, and - 1.0 maps to the most negative representable integer value. If the
internal value is outside the range [- 1, 1], the corresponding integer return value is
undefined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial
value is (0, 0, 0, 0).

GL_SPECULAR

params returns four integer or floating-point values representing the specular intensity
of the light source. Integer values, when requested, are linearly mapped from the
internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and - 1.0 maps to the most negative representable integer
value. If the internal value is outside the range [- 1, 1], the corresponding integer return
value is undefined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the
initial value is (0, 0, 0, 0).

GL_POSITION

params returns four integer or floating-point values representing the position of the
light source. Integer values, when requested, are computed by rounding the internal
floating-point values to the nearest integer value. The returned values are those
maintained in eye coordinates. They will not be equal to the values specified using
glLight, unless the modelview matrix was identity at the time glLight was called. The
initial value is (0, 0, 1, 0).

GL_SPOT_DIRECTION

params returns three integer or floating-point values representing the direction of the
light source. Integer values, when requested, are computed by rounding the internal
floating-point values to the nearest integer value. The returned values are those
maintained in eye coordinates. They will not be equal to the values specified using
glLight, unless the modelview matrix was identity at the time glLight was called.
Although spot direction is normalized before being used in the lighting equation, the
returned values are the transformed versions of the specified values prior to
normalization. The initial value is (0, 0, - 1).

GL_SPOT_EXPONENT

params returns a single integer or floating-point value representing the spot exponent of
the light. An integer value, when requested, is computed by rounding the internal
floating-point representation to the nearest integer. The initial value is 0.

GL_SPOT_CUTOFF

params returns a single integer or floating-point value representing the spot cutoff angle
of the light. An integer value, when requested, is computed by rounding the internal
floating-point representation to the nearest integer. The initial value is 180.

GL_CONSTANT_ATTENUATION

params returns a single integer or floating-point value representing the constant (not
distance-related) attenuation of the light. An integer value, when requested, is computed
by rounding the internal floating-point representation to the nearest integer. The initial
value is 1.

GL_LINEAR_ATTENUATION
Chapter 7 197

G
glGetLight
params returns a single integer or floating-point value representing the linear
attenuation of the light. An integer value, when requested, is computed by rounding the
internal floating-point representation to the nearest integer. The initial value is 0.

GL_QUADRATIC_ATTENUATION

params returns a single integer or floating-point value representing the quadratic
attenuation of the light. An integer value, when requested, is computed by rounding the
internal floating-point representation to the nearest integer. The initial value is 0.

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

If an error is generated, no change is made to the contents of params.

Errors

• GL_INVALID_ENUM is generated if light or pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetLight is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glLight
Chapter 7198

G
glGetMap
glGetMap
glGetMapdv, glGetMapfv, glGetMapiv : return evaluator parameters.

C Specification

void glGetMapdv(
GLenum target,
GLenum query,
GLdouble *v)

void glGet
GLenum target,
GLenum query,
GLfloat *v)

void glGetMapiv(
GLenum target,
GLenum query,

GLint *v)

Parameters

target Specifies the symbolic name of a map. Accepted values are
GL_MAP1_COLOR_4, GL_MAP1_INDEX, GL_MAP1_NORMAL,
GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4,
GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4, GL_MAP2_COLOR_4,
GL_MAP2_INDEX, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, GL_MAP2_TEXTURE_COORD_4,
GL_MAP2_VERTEX_3, and GL_MAP2_VERTEX_4.

query Specifies which parameter to return. Symbolic names GL_COEFF,
GL_ORDER, and GL_DOMAIN are accepted.

v Returns the requested data.

Description

glMap1 and glMap2 define evaluators. glGetMap returns evaluator parameters. target
chooses a map, query selects a specific parameter, and v points to storage where the
values will be returned.

The acceptable values for the target parameter are described in the glMap1 and glMap2
reference pages.

 query can assume the following values:

 GL_COEFF

v returns the control points for the evaluator function. One-dimensional evaluators
return order control points, and two-dimensional evaluators return uorder times vorder
control points. Each control point consists of one, two, three, or four integer,
single-precision floating-point, or double-precision floating-point values, depending on
Chapter 7 199

G
glGetMap
the type of the evaluator. The GL returns two-dimensional control points in row-major
order, incrementing the uorder index quickly and the vorder index after each row.
Integer values, when requested, are computed by rounding the internal floating-point
values to the nearest integer values.

 GL_ORDER

v returns the order of the evaluator function. One-dimensional evaluators return a
single value, order. The initial value is 1. Two-dimensional evaluators return two values,
uorder and vorder. The initial value is 1,1.

 GL_DOMAIN

v returns the linear u and v mapping parameters. One-dimensional evaluators return
two values, u1 and u2, as specified by glMap1. Two-dimensional evaluators return four
values (u1, u2, v1, and v2) as specified by glMap2. Integer values, when requested, are
computed by rounding the internal floating-point values to the nearest integer values.

Notes

If an error is generated, no change is made to the contents of v.

Errors

• GL_INVALID_ENUM is generated if either target or query is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetMap is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glEvalCoord,
glMap1,
glMap2
Chapter 7200

G
glGetMaterial
glGetMaterial
glGetMaterialfv, glGetMaterialiv : return material parameters.

C Specification

void glGetMaterialfv(
GLenum face,
GLenum pname,
GLfloat *params)

void glGetMaterialiv(
GLenum face,
GLenum pname,

GLint *params)

Parameters

face Specifies which of the two materials is being queried. GL_FRONT or
GL_BACK are accepted, representing the front and back materials,
respectively.

pname Specifies the material parameter to return. GL_AMBIENT,
GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS,
and GL_COLOR_INDEXES are accepted.

params Returns the requested data.

Description

glGetMaterial returns in params the value or values of parameter pname of material
face. Six parameters are defined:

GL_AMBIENT

params returns four integer or floating-point values representing the ambient
reflectance of the material. Integer values, when requested, are linearly mapped from
the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and- 1.0 maps to the most negative representable integer
value. If the internal value is outside the range [- 1, 1], the corresponding integer return
value is undefined. The initial value is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE

params returns four integer or floating-point values representing the diffuse reflectance
of the material. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable
integer value, and - 1.0 maps to the most negative representable integer value. If the
internal value is outside the range [- 1, 1], the corresponding integer return value is
undefined. The initial value is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR
Chapter 7 201

G
glGetMaterial
params returns four integer or floating-point values representing the specular
reflectance of the material. Integer values, when requested, are linearly mapped from
the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and - 1.0 maps to the most negative representable integer
value. If the internal value is outside the range [- 1, 1], the corresponding integer return
value is undefined. The initial value is (0, 0, 0, 1).

GL_EMISSION

params returns four integer or floating-point values representing the emitted light
intensity of the material. Integer values, when requested, are linearly mapped from the
internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and - 1.0 maps to the most negative representable integer
value. If the internal value is outside the range [-1, 1.0], the corresponding integer
return value is undefined. The initial value is (0, 0, 0, 1).

GL_SHININESS

params returns one integer or floating-point value representing the specular exponent of
the material. Integer values, when requested, are computed by rounding the internal
floating-point value to the nearest integer value. The initial value is 0.

GL_COLOR_INDEXES

params returns three integer or floating-point values representing the ambient, diffuse,
and specular indices of the material. These indices are used only for color index lighting.
(All the other parameters are used only for RGBA lighting.) Integer values, when
requested, are computed by rounding the internal floating-point values to the nearest
integer values.

Notes

If an error is generated, no change is made to the contents of params.

Errors

• GL_INVALID_ENUM is generated if face or pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetMaterial is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

 glMaterial
Chapter 7202

G
gluGetNurbsProperty
gluGetNurbsProperty
gluGetNurbsProperty : get a NURBS property.

C Specification

void gluGetNurbsProperty(
GLUnurbs* nurb,
GLenum property,
GLfloat* data)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

property Specifies the property whose value is to be fetched. Valid values are
GLU_CULLING, GLU_SAMPLING_TOLERANCE,
GLU_DISPLAY_MODE, GLU_AUTO_LOAD_MATRIX,
GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
GLU_U_STEP, and GLU_V_STEP.

data Specifies a pointer to the location into which the value of the named
property is written.

Description

gluGetNurbsProperty retrieves properties stored in a NURBS object. These properties
affect the way that NURBS curves and surfaces are rendered. See the gluNurbsProperty
reference page for information about what the properties are and what they do.

See Also

gluNewNurbsRenderer,
gluNurbsProperty
Chapter 7 203

G
glGetPixelMap
glGetPixelMap
glGetPixelMapfv, glGetPixelMapuiv, glGetPixelMapusv : return the specified
pixel map.

C Specification

void glGetPixelMapfv
GLenum map
GLfloat *values

void glGetPixelMapuiv
GLenum map
GLuint *values

void glGetPixelMapusv
GLenum map

GLushort *values)

Parameters

map Specifies the name of the pixel map to return. Accepted values are
GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S,
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A,
GL_PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G,
GL_PIXEL_MAP_B_TO_B, and GL_PIXEL_MAP_A_TO_A.

values Returns the pixel map contents.

Description

See the glPixelMap reference page for a description of the acceptable values for the map
parameter. glGetPixelMap returns in values the contents of the pixel map specified in
map. Pixel maps are used during the execution of glReadPixels, glDrawPixels,
glCopyPixels, glTexImage1D, and glTexImage2D to map color indices, stencil indices,
color components, and depth components to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or
floating-point representation such that 1.0 maps to the largest representable integer
value, and 0.0 maps to 0. Return unsigned integer values are undefined if the map value
was not in the range [0, 1].

To determine the required size of map, call glGet with the appropriate symbolic
constant.

Notes

If an error is generated, no change is made to the contents of values.

Errors

• GL_INVALID_ENUM is generated if map is not an accepted value.
Chapter 7204

G
glGetPixelMap
• GL_INVALID_OPERATION is generated if glGetPixelMap is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE

See Also

glCopyPixels,
glDrawPixels,
glPixelMap,
glPixelTransfer,
glReadPixels,
glTexImage1D,
glTexImage2D
Chapter 7 205

G
glGetPointer
glGetPointer
glGetPointer: return the address of the specified pointer.

C Specification

void glGetPointerv(
GLenum pname,

GLvoid* *params)

Parameters

pname Specifies the array or buffer pointer to be returned. Symbolic constants
GL_COLOR_ARRAY_POINTER,
GL_EDGE_FLAG_ARRAY_POINTER,
GL_FEEDBACK_BUFFER_POINTER,
GL_INDEX_ARRAY_POINTER, GL_NORMAL_ARRAY_POINTER,
GL_TEXTURE_COORD_ARRAY_POINTER,
GL_SELECTION_BUFFER_POINTER, and
GL_VERTEX_ARRAY_POINTER are accepted.

params Returns the pointer value specified by pname.

Description

glGetPointerv returns pointer information. pname is a symbolic constant indicating the
pointer to be returned, and params is a pointer to a location in which to place the
returned data.

Notes

glGetPointerv is available only if the GL version is 1.1 or greater.

The pointers are all client-side state.

The initial value for each pointer is 0.

Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value.

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glEdgeFlagPointer,
glFeedbackBuffer,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
Chapter 7206

G
glGetPointer
glSelectBuffer,
glTexCoordPointer,
glVertexPointer
Chapter 7 207

G
glGetPolygonStipple
glGetPolygonStipple
glGetPolygonStipple: return the polygon stipple pattern.

C Specification

void glGetPolygonStipple

GLubyte *mask)

Parameters

mask Returns the stipple pattern. The initial value is all 1’s.

Description

glGetPolygonStipple returns to mask a 32 × 32 polygon stipple pattern. The pattern is
packed into memory as if glReadPixels with both height and width of 32, type of
GL_BITMAP, and format of GL_COLOR_INDEX were called, and the stipple pattern
were stored in an internal 32 × 32 color index buffer. Unlike glReadPixels, however, pixel
transfer operations (shift, offset, pixel map) are not applied to the returned stipple
image.

Notes

If an error is generated, no change is made to the contents of mask.

Errors

• GL_INVALID_OPERATION is generated if glGetPolygonStipple is executed
between the execution of glBegin and the corresponding execution of glEnd.

See Also

glPixelStore,
glPixelTransfer,
glPolygonStipple,
glReadPixels
Chapter 7208

G
glGetString
glGetString
glGetString : return a string describing the current GL connection.

C Specification

constGLubyte *glGetString(

GLenum name)

Parameters

name Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER,
GL_VERSION, or GL_EXTENSIONS.

Description

glGetString returns a pointer to a static string describing some aspect of the current GL
connection. name can be one of the following:

GL_VENDOR

Returns the company responsible for this GL implementation. This name does not
change from release to release.

GL_RENDERER

Returns the name of the renderer. This name is typically specific to a particular
configuration of a hardware platform. It does not change from release to release.

 GL_VERSION

Returns a version or release number.

GL_EXTENSIONS

Returns a space-separated list of supported extensions to GL.

Because the GL does not include queries for the performance characteristics of an
implementation, some applications are written to recognize known platforms and modify
their GL usage based on known performance characteristics of these platforms. Strings
GL_VENDOR and GL_RENDERER together uniquely specify a platform. They do not
change from release to release and should be used by platform-recognition algorithms.

Some applications want to make use of features that are not part of the standard GL.
These features may be implemented as extensions to the standard GL. The
GL_EXTENSIONS string is a space-separated list of supported GL extensions.
(Extension names never contain a space character.)

The GL_VERSION string begins with a version number. The version number uses one of
these forms:

<major_number>.<minor_number>
<major_number>.<minor_number>.<release_number>

Vendor-specific information may follow the version number. Its format depends on the
implementation, but a space always separates the version number and the
vendor-specific information.
Chapter 7 209

G
glGetString
 All strings are null-terminated.

Notes

If an error is generated, glGetString returns 0. The client and server may support
different versions or extensions. glGetString always returns a compatible version
number or list of extensions. The release number always describes the server.

Errors

• GL_INVALID_ENUM is generated if name is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetString is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 7210

G
gluGetString
gluGetString
 gluGetString : return a string describing the GLU version or GLU extensions.

C Specification

constGLubyte *gluGetString(GLenum name)

Parameters

name Specifies a symbolic constant, one of GLU_VERSION, or
GLU_EXTENSIONS.

Description

gluGetString returns a pointer to a static string describing the GLU version or the GLU
extensions that are supported.

The version number is one of the following forms:

<major_number>.<minor_number>
<major_number>.<minor_number>.<release_number>

The version string is of the following form:

<version number>< space>< vendor-specific information>

Vendor-specific information is optional. Its format and contents depend on the
implementation.

The standard GLU contains a basic set of features and capabilities. If a company or
group of companies wish to support other features, these may be included as extensions
to the GLU. If name is GLU_EXTENSIONS, then gluGetString returns a
space-separated list of names of supported GLU extensions. (Extension names never
contain spaces.)

All strings are null-terminated.

Notes

gluGetString only returns information about GLU extensions. Call glGetString to get a
list of GL extensions.

gluGetString is an initialization routine. Calling it after a glNewList results in
undefined behavior.

Errors

• NULL is returned if name is not GLU_VERSION or GLU_EXTENSIONS.

See Also

glGetString
Chapter 7 211

G
gluGetTessProperty
gluGetTessProperty
gluGetTessProperty: get a tessellation object property.

C Specification

void gluGetTessProperty(
GLUtesselator* tess,
GLenum which,

GLdouble* data)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the property whose value is to be fetched. Valid values are
GLU_TESS_WINDING_RULE, GLU_TESS_BOUNDARY_ONLY, and
GLU_TESS_TOLERANCE.

data Specifies a pointer to the location into which the value of the named
property is written.

Description

gluGetTessProperty retrieves properties stored in a tessellation object. These properties
affect the way that tessellation objects are interpreted and rendered. See the
gluTessProperty reference page for information about the properties and what they do.

See Also

gluNewTess,
gluTessProperty
Chapter 7212

G
glGetTexEnv
glGetTexEnv
glGetTexEnvfv, glGetTexEnviv : return texture environment parameters.

C Specification

void glGetTexEnvfv(
GLenum target,
GLenum pname,
GLfloat *params)

void glGetTexEnviv(
GLenum target,
GLenum pname,

GLint *params)

Parameters

target Specifies a texture environment. Must be GL_TEXTURE_ENV.

pname Specifies the symbolic name of a texture environment parameter.
Accepted values are GL_TEXTURE_ENV_MODE
GL_TEXTURE_ENV_COLOR and
GL_TEXTURE_LIGHTING_MODE_hp.

params Returns the requested data.

Description

glGetTexEnv returns in params selected values of a texture environment that was
specified with glTexEnv. target specifies a texture environment. Currently, only one
texture environment is defined and supported: GL_TEXTURE_ENV.

pname names a specific texture environment parameter, as follows:

GL_TEXTURE_ENV_MODE

params returns the single-valued texture environment mode, a symbolic constant. The
initial value is GL_MODULATE.

GL_TEXTURE_ENV_COLOR

params returns four integer or floating-point values that are the texture environment
color. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable
integer, and - 1.0 maps to the most negative representable integer. The initial value is (0,
0, 0, 0).

GL_TEXTURE_LIGHTING_MODE_hp

params returns the single-valued texture lighting mode, a symbolic constant.

Notes

If an error is generated, no change is made to the contents of params.
Chapter 7 213

G
glGetTexEnv
GL_TEXTURE_LIGHTING_MODE_hp is only supported if the GL_hp_texture_lighting
extension is supported.

Errors

• GL_INVALID_ENUM is generated if target or pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetTexEnv is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

 glTexEnv
Chapter 7214

G
glGetTexGen
glGetTexGen
glGetTexGendv, glGetTexGenfv, glGetTexGeniv: return texture coordinate generation
parameters.

C Specification

void glGetTexGendv(
GLenum coord,
GLenum pname,
GLdouble *params)

void glGetTexGenfv(
GLenum coord,
GLenum pname,
GLfloat *params)

void glGetTexGeniv(
GLenum coord,
GLenum pname,

GLint *params)

Parameters

coord Specifies a texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.

pname Specifies the symbolic name of the value(s) to be returned. Must be
either GL_TEXTURE_GEN_MODE or the name of one of the texture
generation plane equations: GL_OBJECT_PLANE or
GL_EYE_PLANE.

params Returns the requested data.

Description

glGetTexGen returns in params selected parameters of a texture coordinate generation
function that was specified using glTexGen. coord names one of the (s, t, r, q) texture
coordinates, using the symbolic constant GL_S, GL_T, GL_R, or GL_Q.

pname specifies one of three symbolic names:

GL_TEXTURE_GEN_MODE

params returns the single-valued texture generation function, a symbolic constant. The
initial value is GL_EYE_LINEAR.

GL_OBJECT_PLANE

params returns the four plane equation coefficients that specify object linear-coordinate
generation. Integer values, when requested, are mapped directly from the internal
floating-point representation.

GL_EYE_PLANE
Chapter 7 215

G
glGetTexGen
params returns the four plane equation coefficients that specify eye linear-coordinate
generation. Integer values, when requested, are mapped directly from the internal
floating-point representation. The returned values are those maintained in eye
coordinates. They are not equal to the values specified using glTexGen, unless the
modelview matrix was identity when glTexGen was called.

Notes

If an error is generated, no change is made to the contents of params.

Errors

• GL_INVALID_ENUM is generated if coord or pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glGetTexGen is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glTexGen
Chapter 7216

G
glGetTexImage
glGetTexImage
glGetTexImage : return a texture image.

C Specification

void glGetTexImage(
GLenum target,
GLint level,
GLenum format,
GLenum type,

GLvoid *pixels)

Parameters

target Specifies which texture is to be obtained. GL_TEXTURE_1D and
GL_TEXTURE_2D are accepted.

level Specifies the level-of-detail number of the desired image. Level 0 is the
base image level. Level n is the nth mipmap reduction image.

format Specifies a pixel format for the returned data.

The supported formats are GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies a pixel type for the returned data. The supported types are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Returns the texture image. Should be a pointer to an array of the type
specified by type.

Description

glGetTexImage returns a texture image into pixels. target specifies whether the desired
texture image is one specified by glTexImage1D (GL_TEXTURE_1D) or by
glTexImage2D (GL_TEXTURE_2D). level specifies the level-of-detail number of the
desired image. format and type specify the format and type of the desired image array.
See the reference pages glTexImage1D and glDrawPixels for a description of the
acceptable values for the format and type parameters, respectively.

To understand the operation of glGetTexImage, consider the selected internal
four-component texture image to be an RGBA color buffer the size of the image. The
semantics of glGetTexImage are then identical to those of glReadPixels called with the
same format and type, with x and y set to 0, width set to the width of the texture image
(including border if one was specified), and height set to 1 for 1D images, or to the height
of the texture image (including border if one was specified) for 2D images.

Because the internal texture image is an RGBA image, pixel formats
GL_COLOR_INDEX, GL_STENCIL_INDEX, and GL_DEPTH_COMPONENT are not
accepted, and pixel type GL_BITMAP is not accepted.
Chapter 7 217

G
glGetTexImage
If the selected texture image does not contain four components, the following mappings
are applied. Single-component textures are treated as RGBA buffers with red set to the
single-component value, green set to 0, blue set to 0, and alpha set to 1. Two-component
textures are treated as RGBA buffers with red set to the value of component zero, alpha
set to the value of component one, and green and blue set to 0. Finally, three-component
textures are treated as RGBA buffers with red set to component zero, green set to
component one, blue set to component two, and alpha set to 1.

To determine the required size of pixels, use glGetTexLevelParameter to determine the
dimensions of the internal texture image, then scale the required number of pixels by
the storage required for each pixel, based on format and type. Be sure to take the pixel
storage parameters into account, especially GL_PACK_ALIGNMENT.

Notes

If an error is generated, no change is made to the contents of pixels.

Errors

• GL_INVALID_ENUM is generated if target, format, or type is not an accepted value.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than $log sub 2 max$,
where max is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_OPERATION is generated if glGetTexImage is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexLevelParameter with argument GL_TEXTURE_WIDTH
glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT
glGetTexLevelParameter with argument GL_TEXTURE_BORDER
glGetTexLevelParameter with argument GL_TEXTURE_COMPONENTS
glGet with arguments GL_PACK_ALIGNMENT and others

See Also

glDrawPixels,
glReadPixels,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 7218

G
glGetTexLevelParameter
glGetTexLevelParameter
glGetTexLevelParameterfv, glGetTexLevelParameteriv : return texture
parameter values for a specific level of detail.

C Specification

void glGetTexLevelParameterfv(
GLenum target,
GLint level,
GLenum pname
GLfloat *params)

void glGetTexLevelParameteriv(
GLenum target,
GLint level,
GLenum pname,

GLint *params)

Parameters

target Specifies the symbolic name of the target texture, either
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_PROXY_TEXTURE_1D,
or GL_PROXY_TEXTURE_2D.

level Specifies the level-of-detail number of the desired image. Level 0 is the
base image level. Level n is the nth mipmap reduction image.

pname Specifies the symbolic name of a texture parameter.
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_BORDER,
GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE, GL_TEXTURE_LUMINANCE_SIZE,
and GL_TEXTURE_INTENSITY_SIZE are accepted.

params Returns the requested data.

Description

glGetTexLevelParameter returns in params texture parameter values for a specific
level-of-detail value, specified as level. target defines the target texture, either
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_PROXY_TEXTURE_1D, or
GL_PROXY_TEXTURE_2D.

GL_MAX_TEXTURE_SIZE is not really descriptive enough. It has to report the largest
square texture image that can be accommodated with mipmaps and borders, but a long
skinny texture, or a texture without mipmaps and borders, may easily fit in texture
memory. The proxy targets allow the user to more accurately query whether the GL can
accommodate a texture of a given configuration. If the texture cannot be accommodated,
the texture state variables, which may be queried with glGetTexLevelParameter, are set
to 0. If the texture can be accommodated, the texture state values will be set as they
would be set for a non-proxy target.
Chapter 7 219

G
glGetTexLevelParameter
pname specifies the texture parameter whose value or values will be returned.

The accepted parameter names are as follows:

GL_TEXTURE_WIDTH

params returns a single value, the width of the texture image. This value includes the
border of the texture image. The initial value is 0.

GL_TEXTURE_HEIGHT

params returns a single value, the height of the texture image. This value includes the
border of the texture image. The initial value is 0.

GL_TEXTURE_INTERNAL_FORMAT

params returns a single value, the internal format of the texture image.

GL_TEXTURE_BORDER

params returns a single value, the width in pixels of the border of the texture image. The
initial value is 0.

GL_TEXTURE_RED_SIZE,GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_INTENSITY_SIZE

The internal storage resolution of an individual component. The resolution chosen by the
GL will be a close match for the resolution requested by the user with the component
argument of glTexImage1D or glTexImage2D. The initial value is 0.

Notes

If an error is generated, no change is made to the contents of params.

GL_TEXTURE_INTERNAL_FORMAT is only available if the GL version is 1.1 or
greater. In version 1.0, use GL_TEXTURE_COMPONENTS instead.

GL_PROXY_TEXTURE_1D and GL_PROXY_TEXTURE_2D are only available if the GL
version is 1.1 or greater.

Errors

• GL_INVALID_ENUM is generated if target or pname is not an accepted value.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than $ log sub 2$ max,
where max is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_OPERATION is generated if glGetTexLevelParameter is executed
between the execution of glBegin and the corresponding execution of glEnd.

See Also

glGetTexParameter,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
Chapter 7220

G
glGetTexLevelParameter
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 7 221

G
glGetTexParameter
glGetTexParameter
glGetTexParameterfv, glGetTexParameteriv : return texture parameter values.

C Specification

void glGetTexParameterfv(
GLenum target,
GLenum pname,
GLfloat *params)

void glGetTexParameteriv(
GLenum target,
GLenum pname,

GLint *params)

Parameters

target Specifies the symbolic name of the target texture. GL_TEXTURE_1D,
GL_TEXTURE_2D, and GL_TEXTURE_3D_EXT are accepted.

pname Specifies the symbolic name of a texture parameter.
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_WRAP_R_EXT, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_BORDER_COLOR,
GL_TEXTURE_PRIORITY, GL_GENERATE_MIPMAP_EXT,
GL_TEXTURE_COMPARE_EXT,
GL_TEXTURE_COMPARE_OPERATOR_EXT, and
GL_TEXTURE_RESIDENT are accepted.

params Returns the texture parameters.

Description

glGetTexParameter returns in params the value or values of the texture parameter
specified as pname. target defines the target texture, either GL_TEXTURE_1D or
GL_TEXTURE_2D, to specify one- or two-dimensional texturing. pname accepts the
same symbols as glTexParameter, with the same interpretations:

GL_TEXTURE_MAG_FILTER

Returns the single-valued texture magnification filter, a symbolic constant. The initial
value is GL_LINEAR.

 GL_TEXTURE_MIN_FILTER

Returns the single-valued texture minification filter, a symbolic constant. The initial
value is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_WRAP_R_EXT

Returns the single-valued wrapping function for texture coordinate r, a symbolic
constant.

GL_TEXTURE_WRAP_S
Chapter 7222

G
glGetTexParameter
Returns the single-valued wrapping function for texture coordinate s, a symbolic
constant. The initial value is GL_REPEAT.

 GL_TEXTURE_WRAP_T

Returns the single-valued wrapping function for texture coordinate t, a symbolic
constant. The initial value is GL_REPEAT.

 GL_TEXTURE_BORDER_COLOR

Returns four integer or floating-point numbers that comprise the RGBA color of the
texture border. Floating-point values are returned in the range [0, 1]. Integer values are
returned as a linear mapping of the internal floating-point representation such that 1.0
maps to the most positive representable integer and - 1.0 maps to the most negative
representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_PRIORITY

Returns the residence priority of the target texture (or the named texture bound to it).
The initial value is 1. See glPrioritizeTextures.

GL_GENERATE_MIPMAP_EXT

Returns the single-valued flag which determines whether automatic mip level
generation is in effect, either GL_TRUE or GL_FALSE.

 GL_TEXTURE_COMPARE_EXT

Returns the single-valued flag which determines whether depth texture comparison is
enabled, either GL_TRUE or GL_FALSE.

GL_TEXTURE_COMPARE_OPERATOR_EXT

Returns the single-valued depth texture comparison operator, a symbolic constant.

 GL_TEXTURE_RESIDENT

Returns the residence status of the target texture. If the value returned in params is
GL_TRUE, the texture is resident in texture memory. See glAreTexturesResident.

Notes

GL_TEXTURE_PRIORITY and GL_TEXTURE_RESIDENT are only available if the GL
version is 1.1 or greater.

GL_TEXTURE_WRAP_R_EXT and the target GL_TEXTURE_3D_EXT are only
supported if the extension GL_EXT_texture3D is supported.

GL_GENERATE_MIPMAP_EXT is only supported if the extension
GL_EXT_generate_mipmap is supported.

GL_TEXTURE_COMPARE_EXT and GL_TEXTURE_COMPARE_OPERATOR_EXT
are only supported if the extension GL_EXT_shadow is supported.

 If an error is generated, no change is made to the contents of params.

Errors

• GL_INVALID_ENUM is generated if target or pname is not an accepted value.

• GL_INVALID_OPERATION is generated ifglGetTexParameter is executed between
the execution of glBegin and the corresponding execution of glEnd.
Chapter 7 223

G
glGetTexParameter
See Also

glAreTexturesResident,
glPrioritizeTextures,
glTexParameter
Chapter 7224

8 H
Chapter 8 225

H
glHint
glHint
glHint : specify implementation-specific hints.

C Specification

void glHint(
GLenum target,

GLenum mode)

Parameters

target Specifies a symbolic constant indicating the behavior to be controlled.
GL_FOG_HINT, GL_LINE_SMOOTH_HINT,
GL_PERSPECTIVE_CORRECTION_HINT,
GL_POINT_SMOOTH_HINT, and GL_POLYGON_SMOOTH_HINT
are accepted.

mode Specifies a symbolic constant indicating the desired behavior.
GL_FASTEST, GL_NICEST, and GL_DONT_CARE are accepted.

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled
with hints. A hint is specified with two arguments. target is a symbolic constant
indicating the behavior to be controlled, and mode is another symbolic constant
indicating the desired behavior. The initial value for each target is GL_DONT_CARE.
mode can be one of the following:

 GL_FASTEST

The most efficient option should be chosen.

 GL_NICEST

The most correct, or highest quality, option should be chosen.

GL_DONT_CARE

No preference.

Though the implementation aspects that can be hinted are well defined, the
interpretation of the hints depends on the implementation. The hint aspects that can be
specified with target, along with suggested semantics, are as follows:

GL_FOG_HINT

Indicates the accuracy of fog calculation. If per-pixel fog calculation is not efficiently
supported by the GL implementation, hinting GL_DONT_CARE or GL_FASTEST can
result in per-vertex calculation of fog effects.

GL_LINE_SMOOTH_HINT

Indicates the sampling quality of anti-aliased lines. If a larger filter function is applied,
hinting GL_NICEST can result in more pixel fragments being generated during
rasterization,
Chapter 8226

H
glHint
GL_PERSPECTIVE_CORRECTION_HINT

Indicates the quality of color and texture coordinate interpolation. If
perspective-corrected parameter interpolation is not efficiently supported by the GL
implementation, hinting GL_DONT_CARE or GL_FASTEST can result in simple linear
interpolation of colors and/or texture coordinates.

GL_POINT_SMOOTH_HINT

Indicates the sampling quality of anti-aliased points. If a larger filter function is applied,
hinting GL_NICEST can result in more pixel fragments being generated during
rasterization,

GL_POLYGON_SMOOTH_HINT

Indicates the sampling quality of anti-aliased polygons. Hinting GL_NICEST can result
in more pixel fragments being generated during rasterization, if a larger filter function is
applied.

GL_BUFFER_SWAP_MODE_HINT_hp

GL_FASTEST switches to the faster double-buffering method, and GL_NICEST
switches to the slower double-buffering method.

Notes

The interpretation of hints depends on the implementation. Some implementations
ignore glHint settings.

Errors

• GL_INVALID_ENUM is generated if either target or mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glHint is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 8 227

H
glHint
Chapter 8228

9 I
Chapter 9 229

I
glIndex
glIndex
glIndexd, glIndexf, glIndexi, glIndexs, glIndexub, glIndexdv,
glIndexfv, glIndexiv, glIndexsv, glIndexubv : set the current color index.

C Specification

void glIndexd(
GLdouble c)

void glIndexf(
GLfloat c)

void glIndexi(
GLint c)

void glIndexs(
GLshort c)

void glIndexub(
GLubyte c)

void glIndexdv(
const GLdouble *c)

void glIndexfv(
const GLfloat *c)

void glIndexiv(
const GLint *c)

void glIndexsv(
const GLshort *c)

void glIndexubv(

const GLubyte *c)

Parameters

c Specifies the new value for the current color index.

c Specifies a pointer to a one-element array that contains the new value
for the current color index.

Description

glIndex updates the current (single-valued) color index.

It takes one argument, the new value for the current color index.

The current index is stored as a floating-point value.

Integer values are converted directly to floating-point values, with no special mapping.
The initial value is 1.

Index values outside the representable range of the color index buffer are not clamped.
However, before an index is dithered (if enabled) and written to the frame buffer, it is
converted to fixed-point format. Any bits in the integer portion of the resulting
fixed-point value that do not correspond to bits in the frame buffer are masked out.
Chapter 9230

I
glIndex
Notes

glIndexub and glIndexubv are available only if the GL version is 1.1 or greater.

The current index can be updated at any time. In particular, glIndex can be called
between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_INDEX

See Also

glColor,
glIndexPointer
Chapter 9 231

I
glIndexMask
glIndexMask
glIndexMask : control the writing of individual bits in the color index buffers.

C Specification

void glIndexMask(

GLuint mask)

Parameters

mask Specifies a bit mask to enable and disable the writing of individual bits
in the color index buffers. Initially, the mask is all 1’s.

Description

glIndexMask controls the writing of individual bits in the color index buffers. The least
significant n bits of mask, where n is the number of bits in a color index buffer, specify a
mask. Where a 1 (one) appears in the mask, it’s possible to write to the corresponding bit
in the color index buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is
write-protected.

This mask is used only in color index mode, and it affects only the buffers currently
selected for writing (see glDrawBuffer). Initially, all bits are enabled for writing.

Errors

• GL_INVALID_OPERATION is generated if glIndexMask is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_INDEX_WRITEMASK

See Also

glColorMask,
glDepthMask,
glDrawBuffer,
glIndex,
glIndexPointer,
glStencilMask
Chapter 9232

I
glIndexPointer
glIndexPointer
glIndexPointer : define an array of color indexes.

C Specification

void glIndexPointer(
GLenum type,
GLsizei stride,

const GLvoid *pointer)

Parameters

type Specifies the data type of each color index in the

array Symbolic constants GL_UNSIGNED_BYTE, GL_SHORT, GL_INT,
GL_FLOAT, and GL_DOUBLE are accepted.

stride Specifies the byte offset between consecutive color indexes. If stride is 0
(the initial value), the color indexes are understood to be tightly packed
in the array.

pointer Specifies a pointer to the first index in the array.

Description

glIndexPointer specifies the location and data format of an array of color indexes to use
when rendering. type specifies the data type of each color index and stride gives the byte
stride from one color index to the next allowing vertexes and attributes to be packed into
a single array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see glInterleavedArrays.)

type, stride, and pointer are saved as client-side state.

The color index array is initially disabled. To enable and disable the array, call
glEnableClientState and glDisableClientState with the argument GL_INDEX_ARRAY.
If enabled, the color index array is used when glDrawArrays, glDrawElements or
glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from
pre-specified vertex and vertex attribute arrays. Use glArrayElement to specify
primitives by indexing vertexes and vertex attributes and glDrawElements to construct
a sequence of primitives by indexing vertexes and vertex attributes.

Notes

glIndexPointer is available only if the GL version is 1.1 or greater.

The color index array is initially disabled, and it isn’t accessed when glArrayElement,
glDrawElements or glDrawArrays is called.

Execution of glIndexPointer is not allowed between glBegin and the corresponding
glEnd, but an error may or may not be generated. If an error is not generated, the
operation is undefined.
Chapter 9 233

I
glIndexPointer
glIndexPointer is typically implemented on the client side.

Since the color index array parameters are client-side state, they are not saved or
restored by glPushAttrib and glPopAttrib. Use glPushClientAttrib and
glPopClientAttrib instead.

Errors

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_INDEX_ARRAY
glGet with argument GL_INDEX_ARRAY_TYPE
glGet with argument GL_INDEX_ARRAY_STRIDE
glGetPointerv with argument GL_INDEX_ARRAY_POINTER

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointer,
glInterleavedArrays,
glNormalPointer,
glPopClientAttrib,
glPushClientAttrib,
glTexCoordPointer,
glVertexPointer
Chapter 9234

I
glInitNames
glInitNames
glInitNames : initialize the name stack.

C Specification

void glInitNames(void)

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers. glInitNames
causes the name stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glInitNames while the render mode is not GL_SELECT are ignored.

Errors

• GL_INVALID_OPERATION is generated if glInitNames is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

See Also

glLoadName,
glPushName,
glRenderMode,
glSelectBuffer
Chapter 9 235

I
glInterleavedArrays
glInterleavedArrays
glInterleavedArrays : simultaneously specify and enable several interleaved arrays.

C Specification

void glInterleavedArrays(
GLenum format,
GLsizei stride,

const GLvoid *pointer)

Parameters

format Specifies the type of array to enable. Symbolic constants GL_V2F,
GL_V3F, GL_C4UB_V2F, GL_C4UB_V3F, GL_C3F_V3F,
GL_N3F_V3F, GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F,
GL_T2F_C4UB_V3F, GL_T2F_C3F_V3F, GL_T2F_N3F_V3F,
GL_T2F_C4F_N3F_V3F, and GL_T4F_C4F_N3F_V4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

Description

 glInterleavedArrays lets you specify and enable individual color, normal, texture and
vertex arrays whose elements are part of a larger aggregate array element. For some
implementations, this is more efficient than specifying the arrays separately.

If stride is 0, the aggregate elements are stored consecutively. Otherwise, stride bytes
occur between the beginning of one aggregate array element and the beginning of the
next aggregate array element.

format serves as a “key” describing the extraction of individual arrays from the
aggregate array. If format contains a T, then texture coordinates are extracted from the
interleaved array. If C is present, color values are extracted. If N is present, normal
coordinates are extracted. Vertex coordinates are always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values are
extracted as floating-point values. Colors may also be extracted as four unsigned bytes if
4UB follows the C. If a color is extracted as four unsigned bytes, the vertex array
element which follows is located at the first possible floating-point aligned address.

Notes

glInterleavedArrays is available only if the GL version is 1.1 or greater.

If glInterleavedArrays is called while compiling a display list, it is not compiled into the
list, and it is executed immediately.

Execution of glInterleavedArrays is not allowed between the execution of glBegin and
the corresponding execution of glEnd, but an error may or may not be generated. If no
error is generated, the operation is undefined.

glInterleavedArrays is typically implemented on the client side.
Chapter 9236

I
glInterleavedArrays
Vertex array parameters are client-side state and are therefore not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

• GL_INVALID_ENUM is generated if format is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnableClientState,
glGetPointer,
glIndexPointer,
glNormalPointer,
glTexCoordPointer,
glVertexPointer
Chapter 9 237

I
glXIntro
glXIntro
glXIntro : Introduction to OpenGL in the X Window system.

Overview

OpenGL (called GL in other pages) is a high-performance 3D-oriented renderer. It is
available in the X window system through the GLX extension. To determine whether the
GLX extension is supported by an X server, and if so, what version is supported, call
glXQueryExtension and glXQueryVersion.

GLX extended servers make a subset of their visuals available for OpenGL rendering.
Drawables created with these visuals can also be rendered using the core X renderer and
with the renderer of any other X extension that is compatible with all core X visuals.

GLX extends drawables with several buffers other than the standard color buffer. These
buffers include back and auxiliary color buffers, a depth buffer, a stencil buffer, and a
color accumulation buffer. Some or all are included in each X visual that supports
OpenGL.

To render using OpenGL into an X drawable, you must first choose a visual that defines
the required OpenGL buffers. glXChooseVisual can be used to simplify selecting a
compatible visual. If more control of the selection process is required, use
XGetVisualInfo and glXGetConfig to select among all the available visuals.

Use the selected visual to create both a GLX context and an X drawable. GLX contexts
are created with glXCreateContext, and drawables are created with either
XCreateWindow or glXCreateGLXPixmap. Finally, bind the context and the drawable
together using glXMakeCurrent. This context/drawable pair becomes the current
context and current drawable, and it is used by all OpenGL commands until
glXMakeCurrent is called with different arguments.

Both core X and OpenGL commands can be used to operate on the current drawable. The
X and OpenGL command streams are not synchronized, however, except at explicitly
created boundaries generated by calling glXWaitGL, glXWaitX, XSync, and glFlush.

Examples

Below is the minimum code required to create an RGBA-format, X window that’s
compatible with OpenGL and to clear it to yellow. The code is correct, but it does not
include any error checking. Return values dpy, vi, cx, cmap, and win should all be tested.

#include <GL/glx.h>
#include <GL/gl.h>
#include <unistd.h>

static int attributeListSgl[] = {
GLX_RGBA,
GLX_RED_SIZE, 1, /*get the deepest buffer with 1 red bit*/
GLX_GREEN_SIZE, 1,
GLX_BLUE_SIZE, 1,

None};

static int attributeListDbl[] = {
Chapter 9238

I
glXIntro
GLX_RGBA,
GLX_DOUBLE_BUFFER, /*In case single buffering is not supported*/
GLX_RED_SIZE, 1,
GLX_GREEN_SIZE, 1,
GLX_BLUE_SIZE, 1,

None};

static Bool WaitForNotify(Display *d, XEvent *e, char *arg) {
return (e->type == MapNotify) && (e->xmap.window == (Window)arg);

}

int main(int argc, char **argv) {
Display *dpy;
XVisualInfo *vi;
Colormap cmap;
XSetWindowAttributes swa;
Window win;
GLXContext cx;
XEvent event;
int swap_flag = FALSE;

/* get a connection */
dpy = XOpenDisplay(0);

/* get an appropriate visual */
vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributeListSgl);
if (vi == NULL) {
vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributeListDbl);
swap_flag = TRUE;

}

/* create a GLX context */
cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

/* create a color map */
cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),

vi->visual, AllocNone);

/* create a window */
swa.colormap = cmap;
swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;
win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 100, 100,

0, vi->depth, InputOutput, vi->visual,
CWBorderPixel|CWColormap|CWEventMask, &swa);

XMapWindow(dpy, win);
XIfEvent(dpy, &event, WaitForNotify, (char*)win);

/* connect the context to the window */
glXMakeCurrent(dpy, win, cx);

/* clear the buffer */
glClearColor(1,1,0,1);
glClear(GL_COLOR_BUFFER_BIT);
glFlush();
if (swap_flag) glXSwapBuffers(dpy,win);
Chapter 9 239

I
glXIntro
/* wait a while */
sleep(10);

}

Notes

A color map must be created and passed to XCreateWindow. See the preceding example
code.

A GLX context must be created and attached to an X drawable before OpenGL
commands can be executed.

OpenGL commands issued while no context/drawable pair is current result in undefined
behavior.

Exposure events indicate that all buffers associated with the specified window may be
damaged and should be repainted. Although certain buffers of some visuals on some
systems may never require repainting (the depth buffer, for example), it is incorrect to
write a program assuming that these buffers will not be damaged.

GLX commands manipulate XVisualInfo structures rather than pointers to visuals or
visual IDs. XVisualInfo structures contain visual, visualID, screen, and depth elements,
as well as other X-specific information.

Using GLX Extensions

All supported GLX extensions will have a corresponding definition in glx.h and a token
in the extension string returned by glXQueryExtensionsString. For example, if the
EXT_visual_info extension is supported, then this token will be defined in glx.h and
EXT_visual_info will appear in the extension string returned by
glXQueryExtensionsString. The definitions in glx.h can be used at compile time to
determine if procedure calls corresponding to an extension exist in the library.

GLX 1.1 and GLX 1.2

GLX 1.2 is now supported. It is backward compatible with GLX 1.1 and GLX 1.0.

GLX 1.2 corresponds to OpenGL version 1.1 and introduces the following new call:
glXGetCurrentDisplay.

GLX 1.1 corresponds to OpenGL version 1.0 and introduces the following new calls:
glXQueryExtensionsString, glXQueryServerString, and glXGetClientString.

Call glXQueryVersion to determine at runtime what version of GLX is available.
glXQueryVersion returns the version that is supported on the connection. Thus if 1.2 is
returned, both the client and server support GLX 1.2. You can also check the GLX
version at compile time: GLX_VERSION_1_1 will be defined in glx.h if GLX 1.1 calls are
supported and GLX_VERSION_1_2 will be defined if GLX 1.2 calls are supported.

See Also

glFinish,
glFlush,
glXChooseVisual,
glXCopyContext,
glXCreateContext,
Chapter 9240

I
glXIntro
glXCreateGLXPixmap,
glXDestroyContext,
glXGetClientString,
glXGetConfig,
glXIsDirect,
glXMakeCurrent,
glXQueryExtension,
glXQueryExtensionsString,
glXQueryServerString,
glXQueryVersion,
glXSwapBuffers,
glXUseXFont,
glXWaitGL,
glXWaitX,
XCreateColormap,
XCreateWindow,
XSync
Chapter 9 241

I
glXIsDirect
glXIsDirect
glXIsDirect : indicate whether direct rendering is enabled.

C Specification

Bool glXIsDirect(
Display *dpy,

GLXContext ctx)

Parameters

dpy Specifies the connection to the X server.

ctx Specifies the GLX context that is being queried.

Description

glXIsDirect returns True if ctx is a direct rendering context, False otherwise. Direct
rendering contexts pass rendering commands directly from the calling process’s address
space to the rendering system, bypassing the X server. Non-direct rendering contexts
pass all rendering commands to the X server.

Errors

• GLXBadContext is generated if ctx is not a valid GLX context.

See Also

glXCreateContext
Chapter 9242

I
glIsEnabled
glIsEnabled
glIsEnabled : test whether a capability is enabled.

C Specification

GLboolean glIsEnabled(

GLenum cap)

Parameters

cap Specifies a symbolic constant indicating a GL capability.

Description

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE
otherwise. Initially all capabilities except GL_DITHER are disabled; GL_DITHER is
initially enabled.

The following capabilities are accepted for cap:

Constant See

GL_ALPHA_TEST glAlphaFunc

GL_AUTO_NORMAL glEvalCoord

GL_BLEND glBlendFunc, glLogicOp

GL_CLIP_PLANEi glClipPlane

 GL_COLOR_ARRAY glColorPointer

 GL_COLOR_LOGIC_OP glLogicOp

GL_COLOR_MATERIAL glColorMaterial

 GL_CULL_FACE glCullFace

GL_DEPTH_TEST glDepthFunc, glDepthRange

 GL_DITHER glEnable

 GL_EDGE_FLAG_ARRAY glEdgeFlagPointer

GL_FOG glFog

GL_INDEX_ARRAY glIndexPointer

GL_INDEX_LOGIC_OP glLogicOp

GL_LIGHTi glLightModel, glLight

GL_LIGHTING glMaterial, glLightModel, glLight

 GL_LINE_SMOOTH glLineWidth

 GL_LINE_STIPPLE glLineStipple
Chapter 9 243

I
glIsEnabled
Notes

 If an error is generated, glIsEnabled returns 0.

 GL_MAP1_COLOR_4 glMap1, glMap2

GL_MAP2_TEXTURE_COORD_2 glMap2

GL_MAP2_TEXTURE_COORD_3 glMap2

GL_MAP2_TEXTURE_COORD_4 glMap2

 GL_MAP2_VERTEX_3 glMap2

GL_MAP2_VERTEX_4 glMap2

 GL_NORMAL_ARRAY glNormalPointer

GL_NORMALIZE glNormal

GL_OCCLUSION_TEST_hp glEnable

GL_POINT_SMOOTH glPointSize

GL_POLYGON_SMOOTH glPolygonMode

 GL_POLYGON_OFFSET_FILL glPolygonOffset

GL_POLYGON_OFFSET_LINE glPolygonOffset

 GL_POLYGON_OFFSET_POINT glPolygonOffset

GL_POLYGON_STIPPLE glPolygonStipple

GL_RESCALE_NORMAL_EXT glEnable

GL_SCISSOR_TEST glScissor

GL_STENCIL_TEST glStencilFunc, glStencilOp

GL_TEXTURE_1D glTexImage1D

GL_TEXTURE_2D glTexImage2D

GL_TEXTURE_3D_EXT (if 3D texturing is supported)
glTexImage3DEXT

GL_TEXTURE_COORD_ARRAY glTexCoordPointer

GL_TEXTURE_GEN_Q glTexGen

GL_TEXTURE_GEN_R glTexGen

GL_TEXTURE_GEN_S glTexGen

GL_TEXTURE_GEN_T glTexGen

GL_VERTEX_ARRAY glVertexPointer

Constant See
Chapter 9244

I
glIsEnabled
 GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY,
GL_INDEX_ARRAY, GL_INDEX_LOGIC_OP, GL_NORMAL_ARRAY,
GL_POLYGON_OFFSET_FILL,GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY, and
GL_VERTEX_ARRAY are only available if the GL version is 1.1 or greater

Errors

• GL_INVALID_ENUM is generated if cap is not an accepted value.

• GL_INVALID_OPERATION is generated if glIsEnabled is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glEnable,
glEnableClientState
Chapter 9 245

I
glIsList
glIsList
glIsList : determine if a name corresponds to a display-list.

C Specification

GLboolean glIsList(

GLuint list)

Parameters

list Specifies a potential display-list name.

Description

glIsList returns GL_TRUE if list is the name of a display list and returns GL_FALSE
otherwise.

Errors

• GL_INVALID_OPERATION is generated if glIsList is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glCallList,
glCallLists,
glDeleteLists,
glGenLists,
glNewList
Chapter 9246

I
glIsTexture
glIsTexture
glIsTexture : determine if a name corresponds to a texture.

C Specification

GLboolean glIsTexture(

GLuint texture)

Parameters

texture Specifies a value that may be the name of a texture.

Description

glIsTexture returns GL_TRUE if texture is currently the name of a texture. If texture is
zero, or is a non-zero value that is not currently the name of a texture, or if an error
occurs, glIsTexture returns GL_FALSE.

Notes

 glIsTexture is available only if the GL version is 1.1 or greater.

Errors

• GL_INVALID_OPERATION is generated if glIsTexture is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glBindTexture,
glCopyTexImage1D,
glCopyTexImage2D,
glDeleteTextures,
glGenTextures,
glGet,
glGetTexParameter,
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 9 247

I
glIsTexture
Chapter 9248

10 L
Chapter 10 249

L
glLight
glLight
glLightf, glLighti, glLightfv, glLightiv : set light source parameters.

C Specification

void glLightf(
GLenum light,
GLenum pname,
GLfloat param)

void glLighti(
GLenum light,
GLenum pname,
GLint param)

void glLightfv(
GLenum light,
GLenum pname,
const GLfloat *params)

void glLightiv(
GLenum light,
GLenum pname,

const GLint *params)

Parameters

light Specifies a light. The number of lights depends on the implementation,
but at least eight lights are supported. They are identified by symbolic
names of the form GL_LIGHTi where 0 ≥ i < GL_MAX_LIGHTS.

pname Specifies a single-valued light source parameter for light.
GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,
and GL_QUADRATIC_ATTENUATION are accepted.

param Specifies the value that parameter pname of light source light will be
set to.

light Specifies a light. The number of lights depends on the implementation,
but at least eight lights are supported. They are identified by symbolic
names of the form GL_LIGHTi where 0 ≥i < GL_MAX_LIGHTS.

pname Specifies a light source parameter for light. GL_AMBIENT,
GL_DIFFUSE, GL_SPECULAR, GL_POSITION, GL_SPOT_CUTOFF,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_CONSTANT_ATTENUATION,GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION are accepted.

params Specifies a pointer to the value or values that parameter pname of
light source light will be set to.
Chapter 10250

L
glLight
Description

glLight sets the values of individual light source parameters. light names the light and is
a symbolic name of the form GL_LIGHTi, where 0 ≥ i < GL_MAX_LIGHTS. pname
specifies one of ten light source parameters, again by symbolic name. params is either a
single value or a pointer to an array that contains the new values.

To enable and disable lighting calculation, call glEnable and glDisable with argument
GL_LIGHTING. Lighting is initially disabled. When it is enabled, light sources that are
enabled contribute to the lighting calculation. Light source i is enabled and disabled
using glEnable and glDisable with argument GL_LIGHTi.

The ten light parameters are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA
intensity of the light. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -
1.0. Floating-point values are mapped directly. Neither integer nor floating-point values
are clamped. The initial ambient light intensity is (0, 0, 0, 1).

GL_DIFFUSE

params contains four integer or floating-point values that specify the diffuse RGBA
intensity of the light. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -
1.0. Floating-point values are mapped directly. Neither integer nor floating-point values
are clamped. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial
value is (0, 0, 0, 0).

GL_SPECULAR

params contains four integer or floating-point values that specify the specular RGBA
intensity of the light. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -
1.0. Floating-point values are mapped directly. Neither integer nor floating-point values
are clamped. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial
value is (0, 0, 0, 0).

GL_POSITION

params contains four integer or floating-point values that specify the position of the light
in homogeneous object coordinates. Both integer and floating-point values are mapped
directly. Neither integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when glLight is called (just as if it
were a point), and it is stored in eye coordinates. If the w component of the position is 0,
the light is treated as a directional source. Diffuse and specular lighting calculations
take the light’s direction, but not its actual position, into account, and attenuation is
disabled. Otherwise, diffuse and specular lighting calculations are based on the actual
location of the light in eye coordinates, and attenuation is enabled. The initial position is
(0, 0, 1, 0); thus, the initial light source is directional, parallel to, and in the direction of
the Z axis.

GL_SPOT_DIRECTION

params contains three integer or floating-point values that specify the direction of the
light in homogeneous object coordinates. Both integer and floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The spot
Chapter 10 251

L
glLight
direction is transformed by the inverse of the modelview matrix when glLight is called
(just as if it were a normal), and it is stored in eye coordinates. It is significant only when
GL_SPOT_CUTOFF is not 180, which it is initially. The initial direction is (0, 0, 1).

GL_SPOT_EXPONENT

params is a single integer or floating-point value that specifies the intensity distribution
of the light. Integer and floating-point values are mapped directly. Only values in the
range [0, 128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between the direction of
the light and the direction from the light to the vertex being lighted, raised to the power
of the spot exponent. Thus, higher spot exponents result in a more focused light source,
regardless of the spot cutoff angle (see GL_SPOT_CUTOFF, next paragraph). The initial
spot exponent is 0, resulting in uniform light distribution.

GL_SPOT_CUTOFF

params is a single integer or floating-point value that specifies the maximum spread
angle of a light source. Integer and floating-point values are mapped directly. Only
values in the range [0, 90] and the special value 180 are accepted. If the angle between
the direction of the light and the direction from the light to the vertex being lighted is
greater than the spot cutoff angle, the light is completely masked.

Otherwise, its intensity is controlled by the spot exponent and the attenuation factors.
The initial spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,
GL_QUADRATIC_ATTENUATION

params is a single integer or floating-point value that specifies one of the three light
attenuation factors. Integer and floating-point values are mapped directly. Only
nonnegative values are accepted. If the light is positional, rather than directional, its
intensity is attenuated by the reciprocal of the sum of the constant factor, the linear
factor times the distance between the light and the vertex being lighted, and the
quadratic factor times the square of the same distance. The initial attenuation factors
are (1, 0, 0), resulting in no attenuation.

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

Errors

• GL_INVALID_ENUM is generated if either light or pname is not an accepted value.

• GL_INVALID_VALUE is generated if a spot exponent value is specified outside the
range [0,128], or if spot cutoff is specified outside the range [0,90] (except for the
special value 180), or if a negative attenuation factor is specified.

• GL_INVALID_OPERATION is generated if glLight is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 10252

L
glLight
Associated Gets

glGetLight
glIsEnabled with argument GL_LIGHTING

See Also

glColorMaterial,
glLightModel,
glMaterial
Chapter 10 253

L
glLightModel
glLightModel
glLightModelf, glLightModeli, glLightModelfv, glLightModeliv : set the
lighting model parameters.

C Specification

void glLightModelf(
GLenum pname,
GLfloat param)

void glLightModeli(
GLenum pname,
GLint param)

void glLightModelfv(
GLenum pname,
const GLfloat *params)

void glLightModeliv(
GLenum pname,

const GLint *params)

Parameters

pname Specifies a single-valued lighting model parameter.
GL_LIGHT_MODEL_LOCAL_VIEWER and
GL_LIGHT_MODEL_TWO_SIDE are accepted.

param Specifies the value that param will be set to.

pname Specifies a lighting model parameter. GL_LIGHT_MODEL_AMBIENT,
GL_LIGHT_MODEL_LOCAL_VIEWER, and
GL_LIGHT_MODEL_TWO_SIDE are accepted.

params Specifies a pointer to the value or values that params will be set to.

Description

glLightModel sets the lighting model parameter. pname names a parameter and params
gives the new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA
intensity of the entire scene. Integer values are mapped linearly such that the most
positive representable value maps to 1.0, and the most negative representable value
maps to - 1.0. Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The initial ambient scene intensity is (0.2, 0.2, 0.2,
1.0).

GL_LIGHT_MODEL_LOCAL_VIEWER
Chapter 10254

L
glLightModel
params is a single integer or floating-point value that specifies how specular reflection
angles are computed. If params is 0 (or 0.0), specular reflection angles take the view
direction to be parallel to and in the direction of the - Z axis, regardless of the location of
the vertex in eye coordinates. Otherwise, specular reflections are computed from the
origin of the eye coordinate system. The initial value is 0.

GL_LIGHT_MODEL_TWO_SIDE

params is a single integer or floating-point value that specifies whether one- or two-sided
lighting calculations are done for polygons. It has no effect on the lighting calculations
for points, lines, or bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and
only the front material parameters are used in the lighting equation. Otherwise,
two-sided lighting is specified. In this case, vertices of back-facing polygons are lighted
using the back material parameters, and have their normals reversed before the lighting
equation is evaluated. Vertices of front-facing polygons are always lighted using the
front material parameters, with no change to their normals. The initial value is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity,
the product of the material ambient reflectance and the lighting model full-scene
ambient intensity, and the contribution of each enabled light source. Each light source
contributes the sum of three terms: ambient, diffuse, and specular. The ambient light
source contribution is the product of the material ambient reflectance and the light’s
ambient intensity. The diffuse light source contribution is the product of the material
diffuse reflectance, the light’s diffuse intensity, and the dot product of the vertex’s normal
with the normalized vector from the vertex to the light source. The specular light source
contribution is the product of the material specular reflectance, the light’s specular
intensity, and the dot product of the normalized vertex-to-eye and vertex-to-light vectors,
raised to the power of the shininess of the material. All three light source contributions
are attenuated equally based on the distance from the vertex to the light source and on
light source direction, spread exponent, and spread cutoff angle. All dot products are
replaced with 0 if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the
material diffuse reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to
the specular values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and
specular coefficients, computed with a (.30, .59, .11) weighting of the lights’ colors, the
shininess of the material, and the same reflection and attenuation equations as in the
RGBA case, determine how much above ambient the resulting index is.

Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glLightModel is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LIGHT_MODEL_AMBIENT
glGet with argument GL_LIGHT_MODEL_LOCAL_VIEWER
glGet with argument GL_LIGHT_MODEL_TWO_SIDE
glIsEnabled with argument GL_LIGHTING
Chapter 10 255

L
glLightModel
See Also

glLight,
glMaterial
Chapter 10256

L
glLineStipple
glLineStipple
glLineStipple : specify the line stipple pattern.

C Specification

void glLineStipple(
GLint factor,

GLushort pattern)

Parameters

factor Specifies a multiplier for each bit in the line stipple pattern. If factor is
3, for example, each bit in the pattern is used three times before the
next bit in the pattern is used. factor is clamped to the range [1, 256]
and defaults to 1.

pattern Specifies a 16-bit integer whose bit pattern determines which
fragments of a line will be drawn when the line is rasterized. Bit zero is
used first; the default pattern is all 1s.

Description

Line stippling masks out certain fragments produced by rasterization; those fragments
will not be drawn. The masking is achieved by using three parameters: the 16-bit line
stipple pattern pattern, the repeat count factor, and an integer stipple counter s. Counter
s is reset to 0 whenever glBegin is called, and before each line segment of a
glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each fragment
of a unit width aliased line segment is generated, or after each i fragments of an i width
line segment are generated. The i fragments associated with count s are masked out if

pattern bit (s / factor) mod 16 = 0

otherwise, these fragments are sent to the frame buffer. Bit zero of pattern is the least
significant bit.

Anti-aliased lines are treated as a sequence of 1 × width rectangles for purposes of
stippling. Whether rectangle s is rasterized or not depends on the fragment rule
described for aliased lines, counting rectangles rather than groups of fragments.

 To enable and disable line stippling, call glEnable and glDisable with argument
GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described
above. When disabled, it is as if the pattern were all 1s. Initially, line stippling is
disabled.

Errors

• GL_INVALID_OPERATION is generated if glLineStipple is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 10 257

L
glLineStipple
Associated Gets

glGet with argument GL_LINE_STIPPLE_PATTERN
glGet with argument GL_LINE_STIPPLE_REPEAT
glIsEnabled with argument GL_LINE_STIPPLE

See Also

glLineWidth,
glPolygonStipple
Chapter 10258

L
glLineWidth
glLineWidth
glLineWidth : specify the width of rasterized lines.

C Specification

void glLineWidth(

GLfloat width)

Parameters

width Specifies the width of rasterized lines. The initial value is 1.

Description

glLineWidth specifies the rasterized width of both aliased and anti-aliased lines. Using a
line width other than 1 has different effects, depending on whether line anti-aliasing is
enabled. To enable and disable line anti-aliasing, call glEnable and glDisable with
argument GL_LINE_SMOOTH. Line anti-aliasing is initially disabled.

If line anti-aliasing is disabled, the actual width is determined by rounding the supplied
width to the nearest integer. (If the rounding results in the value 0, it is as if the line
width were 1.) If |∆x| ≥ |∆y|, i pixels are filled in each column that is rasterized, where
i is the rounded value of width. Otherwise, i pixels are filled in each row that is
rasterized.

If anti-aliasing is enabled, line rasterization produces a fragment for each pixel square
that intersects the region lying within the rectangle having width equal to the current
line width, length equal to the actual length of the line, and centered on the
mathematical line segment. The coverage value for each fragment is the window
coordinate area of the intersection of the rectangular region with the corresponding pixel
square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line anti-aliasing is enabled. If an unsupported
width is requested, the nearest supported width is used. Only width 1 is guaranteed to
be supported; others depend on the implementation. To query the range of supported
widths and the size difference between supported widths within the range, call glGet
with arguments GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY.

Notes

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is
queried. Clamping and rounding for aliased and anti-aliased lines have no effect on the
specified value.

Non anti-aliased line width may be clamped to an implementation-dependent maximum.
Although this maximum cannot be queried, it must be no less than the maximum value
for anti-aliased lines, rounded to the nearest integer value.

Errors

• GL_INVALID_VALUE is generated if width is less than or equal to 0.
Chapter 10 259

L
glLineWidth
• GL_INVALID_OPERATION is generated if glLineWidth is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LINE_WIDTH
glGet with argument GL_LINE_WIDTH_RANGE
glGet with argument GL_LINE_WIDTH_GRANULARITY
glIsEnabled with argument GL_LINE_SMOOTH

See Also

glEnable
Chapter 10260

L
glListBase
glListBase
glListBase : set the display-list base for glCallLists.

C Specification

void glListBase(

GLuint base)

Parameters

base Specifies an integer offset that will be added to glCallLists offsets to
generate display-list names. The initial value is 0.

Description

glCallLists specifies an array of offsets. Display-list names are generated by adding base
to each offset. Names that reference valid display lists are executed; the others are
ignored.

Errors

• GL_INVALID_OPERATION is generated if glListBase is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LIST_BASE

See Also

glCallLists
Chapter 10 261

L
glLoadIdentity
glLoadIdentity
 glLoadIdentity : replace the current matrix with the identity matrix.

C Specification

void glLoadIdentity(void)

Description

glLoadIdentity replaces the current matrix with the identity matrix. It is semantically
equivalent to calling glLoadMatrix with the identity matrix:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

but in some cases it is more efficient.

Errors

• GL_INVALID_OPERATION is generated if glLoadIdentity is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadMatrix,
glMatrixMode,
glMultMatrix,
glPushMatrix
Chapter 10262

L
glLoadMatrix
glLoadMatrix
glLoadMatrixd, glLoadMatrixf : replace the current matrix with the specified
matrix.

C Specification

void glLoadMatrixd(
const GLdouble *m)

void glLoadMatrixf(

const GLfloa *m)

Parameters

m Specifies a pointer to 16 consecutive values, which are used as the
elements of a 44 column-major matrix.

Description

glLoadMatrix replaces the current matrix with the one whose elements are specified by
m. The current matrix is the projection matrix, modelview matrix, or texture matrix,
depending on the current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume M
refers to the modelview matrix. If v = (v[0], v[1], v[2], v[3]) is the set of object coordinates
of a vertex, and m points to an array of 16 single- or double-precision floating-point
values m[0], m[1],... ,m[15], then the modelview transformation M(v) does the following:

m[0] m[4] m[8] m[12] v[0]
Mv= m[1] m[5] m[9] m[13] × v[1]

m[2] m[6] m[10] m[14] v[2]
m[3] m[7] m[11] m[15] v[3]

Where × denotes matrix multiplication.

Projection and texture transformations are similarly defined.

Notes

While the elements of the matrix may be specified with single or double precision, the
GL implementation may store or operate on these values in less than single precision.

Errors

• GL_INVALID_OPERATION is generated if glLoadMatrix is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 10 263

L
glLoadMatrix
Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadIdentity,
glMatrixMode,
glMultMatrix,
glPushMatrix
Chapter 10264

L
glLoadName
glLoadName
glLoadName : load a name onto the name stack.

C Specification

void glLoadName(

GLuint name)

Parameters

name Specifies a name that will replace the top value on the name stack.

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers. glLoadName
causes name to replace the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glLoadName while the render mode is not GL_SELECT are ignored.

Errors

• GL_INVALID_OPERATION is generated if glLoadName is called while the name
stack is empty.

• GL_INVALID_OPERATION is generated if glLoadName is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

See Also

glInitNames,
glPushName,
glRenderMode,
glSelectBuffer
Chapter 10 265

L
gluLoadSamplingMatrices
gluLoadSamplingMatrices
gluLoadSamplingMatrices : load NURBS sampling and culling matrices.

C Specification

void gluLoadSamplingMatrices(
GLUnurbs* nurb,
const GLfloat *model,
const GLfloat *perspective,

const GLint *view)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

model Specifies a modelview matrix (as from a glGetFloatv call).

perspective Specifies a projection matrix (as from a glGetFloatv call).

view Specifies a viewport (as from a glGetIntegerv call).

Description

gluLoadSamplingMatrices uses model, perspective, and view to recompute the sampling
and culling matrices stored in nurb. The sampling matrix determines how finely a
NURBS curve or surface must be tessellated to satisfy the sampling tolerance (as
determined by the GLU_SAMPLING_TOLERANCE property). The culling matrix is
used in deciding if a NURBS curve or surface should be culled before rendering (when
the GLU_CULLING property is turned on).

gluLoadSamplingMatrices is necessary only if the GLU_AUTO_LOAD_MATRIX
property is turned off (see gluNurbsProperty). Although it can be convenient to leave the
GLU_AUTO_LOAD_MATRIX property turned on, there can be a performance penalty
for doing so. (A round trip to the GL server is needed to fetch the current values of the
modelview matrix, projection matrix, and viewport.)

See Also

gluGetNurbsProperty,
gluNewNurbsRenderer,
gluNurbsProperty
Chapter 10266

L
glLogicOp
glLogicOp
glLogicOp : specify a logical pixel operation for color index rendering.

C Specification

void glLogicOp(

GLenum opcode)

Parameters

opcode Specifies a symbolic constant that selects a logical operation. The
following symbols are accepted: GL_CLEAR, GL_SET, GL_COPY,
GL_COPY_INVERTED, GL_NOOP, GL_INVERT, GL_AND,
GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV,
GL_AND_REVERSE, GL_AND_INVERTED, GL_OR_REVERSE, and
GL_OR_INVERTED. The initial value is GL_COPY.

Description

glLogicOp specifies a logical operation that, when enabled, is applied between the
incoming color index or RGBA color and the color index or RGBA color at the
corresponding location in the frame buffer. To enable or disable the logical operation, call
glEnable and glDisable using the symbolic constant GL_COLOR_LOGIC_OP for RGBA
mode or GL_INDEX_LOGIC_OP for color index mode. The initial value is disabled for
both operations.

opcode Resulting Value

GL_CLEAR 0

 GL_SET 1

GL_COPY s

GL_COPY_INVERTED !s

GL_NOOP !d

 GL_INVERT d

 GL_AND s & d

 GL_NAND ! (s & d)

GL_OR s | d

 GL_NOR ! (s | d)

 GL_XOR s ^ d

GL_EQUIV ! (s ^ d)

GL_AND_REVERSE s & !d

GL_AND_INVERTED !s & d
Chapter 10 267

L
glLogicOp
opcode is a symbolic constant chosen from the list above. In the explanation of the logical
operations, s represents the incoming color index and d represents the index in the
frame buffer. Standard C-language operators are used. As these bitwise operators
suggest, the logical operation is applied independently to each bit pair of the source and
destination indices or colors.

Notes

Color index logical operations are always supported. RGBA logical operations are
supported only if the GL version is 1.1 or greater.

When more than one RGBA color or index buffer is enabled for drawing, logical
operations are performed separately for each enabled buffer, using for the destination
value the contents of that buffer (see glDrawBuffer).

Errors

• GL_INVALID_ENUM is generated if opcode is not an accepted value.

• GL_INVALID_OPERATION is generated if glLogicOp is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LOGIC_OP_MODE.
glIsEnabled with argument GL_COLOR_LOGIC_OP or GL_INDEX_LOGIC_OP.

See Also

glAlphaFunc,
glBlendFunc,
glDrawBuffer,
glEnable,
glStencilOp

GL_OR_REVERSE s | !d

GL_OR_INVERTED !s | d

opcode Resulting Value
Chapter 10268

L
gluLookAt
gluLookAt
gluLookAt : define a viewing transformation.

C Specification

void gluLookAt(
GLdouble eyeX.
GLdouble eyeY,
GLdouble eyeZ,
GLdouble centerX,
GLdouble centerY,
GLdouble centerZ,
GLdouble upX,
GLdouble upY,
GLdouble upZ)

Parameters

 eyeX, eyeY, eyeZ Specifies the position of the eye point.

 centerX, centerY, centerZ
Specifies the position of the reference point.

upX, upY, upZ Specifies the direction of the up-vector.

Description

gluLookAt creates a viewing matrix derived from an eye point, a reference point
indicating the center of the scene, and an up-vector.

The matrix maps the reference point to the negative Z axis and the eye point to the
origin. When a typical projection matrix is used, the center of the scene therefore maps
to the center of the viewport. Similarly, the direction described by the up-vector projected
onto the viewing plane is mapped to the positive Y axis so that it points upward in the
viewport. The up-vector must not be parallel to the line of sight from the eye point to the
reference point.

Let

F = (centerx - eyex, centery - eyey, centerz- eyez), let up be the vector (upX, upY, upZ),
and then normalize as follows:

and

 Finally, let s = f × up, and u = s × f.

M is then constructed as follows:

f
F
F

---------=

up
up
up

------------=
Chapter 10 269

L
gluLookAt
 M = s[0] s[1] s[2] 0

u[0] u[1] u[2] 0

- f[0 - f[1]- f[2] 0
0 0 0 1

and gluLookAt is equivalent to

glMultMatrixf(M);
glTranslated (-eyex, -eyey, -eyez);

See Also

glFrustum,
gluPerspective
Chapter 10270

11 M
Chapter 11 271

M
glXMakeCurrent
glXMakeCurrent
glXMakeCurrent : attach a GLX context to a window or a GLX pixmap.

C Specification

Bool glXMakeCurrent(
Display *dpy,
GLXDrawable drawable,

GLXContext ctx)

Parameters

dpy Specifies the connection to the X server.

drawable Specifies a GLX drawable. Must be either an X window ID or a GLX
pixmap ID.

ctx Specifies a GLX rendering context that is to be attached to drawable.

Description

glXMakeCurrent does two things: It makes ctx the current GLX rendering context of the
calling thread, replacing the previously current context if there was one, and it attaches
ctx to a GLX drawable, either a window or a GLX pixmap. As a result of these two
actions, subsequent GL rendering calls use rendering context ctx to modify GLX
drawable drawable. Because glXMakeCurrent always replaces the current rendering
context with ctx, there can be only one current context per thread.

Pending commands to the previous context, if any, are flushed before it is released.

The first time ctx is made current to any thread, its viewport is set to the full size of
drawable. Subsequent calls by any thread to glXMakeCurrent with ctx have no effect on
its viewport.

To release the current context without assigning a new one, call glXMakeCurrent with
drawable set None and ctx set to NULL

glXMakeCurrent returns True if it is successful, False otherwise. If False is returned,
the previously current rendering context and drawable (if any) remain unchanged.

Notes

A process is a single-execution environment, implemented in a single address space,
consisting of one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain
separate program counters, stack spaces, and other related global data. A thread that is
the only member of its subprocess group is equivalent to a process.
Chapter 11272

M
glXMakeCurrent
Errors

• BadMatch is generated if drawable was not created with the same X screen and
visual as ctx. It is also generated if drawable is None and ctx is not NULL.

• BadAccess is generated if ctx was current to another thread at the time
glXMakeCurrent was called.

• GLXBadDrawable is generated if drawable is not a valid GLX drawable.

• GLXBadContext is generated if ctx is not a valid GLX context.

• GLXBadContextState is generated if glXMakeCurrent is executed between the
execution of glBegin and the corresponding execution of glEnd.

• GLXBadContextState is also generated if the rendering context current to the
calling thread has GL renderer state GL_FEEDBACK or GL_SELECT.

• GLXBadCurrentWindow is generated if there are pending GL commands for the
previous context and the current drawable is a window that is no longer valid.

• BadAlloc may be generated if the server has delayed allocation of ancillary buffers
until glXMakeCurrent is called, only to find that it has insufficient resources to
complete the allocation.

See Also

glXCreateContext,
glXCreateGLXPixmap
Chapter 11 273

M
glMap1
glMap1
glMap1d, glMap1f : define a one-dimensional evaluator.

C Specification

void glMap1d(
GLenum target,
GLdouble u1,
GLdouble u2,
GLint stride,
GLint order,

const GLdouble *points)
void glMap1f(

GLenum target,
GLfloat u1,
GLfloat u2,
GLint stride,
GLint order,

const GLfloat *points)

Parameters

target Specifies the kind of values that are generated by the evaluator.
Symbolic constants GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4,
GL_MAP1_INDEX, GL_MAP1_COLOR_4, GL_MAP1_NORMAL,
GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, and
GL_MAP1_TEXTURE_COORD_4 are accepted.

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord1, to $u
hat$, the variable that is evaluated by the equations specified by this
command.

stride Specifies the number of floats or doubles between the beginning of one
control point and the beginning of the next one in the data structure
referenced in points. This allows control points to be embedded in
arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

order Specifies the number of control points. Must be positive.

points Specifies a pointer to the array of control points.

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce
vertices, normals, texture coordinates, and colors. The values produced by an evaluator
are sent to further stages of GL processing just as if they had been presented using
glVertex, glNormal, glTexCoord, and glColor commands, except that the generated
values do not update the current normal, texture coordinates, or color.
Chapter 11274

M
glMap1
All polynomial or rational polynomial splines of any degree (up to the maximum degree
supported by the GL implementation) can be described using evaluators. These include
almost all splines used in compute graphics: B-splines, Bezier curves, Hermite splines,
and so on.

 Evaluators define curves based on Bernstein polynomials. Define p(û) as

Equation 11-1

where Ri is a control point and Bin(û) is the ith Bernstein polynomial of degree n (order
= n + 1):

Equation 11-2

Recall that:

Equation 11-3

glMap1 is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling glEnable and glDisable with the
map name, one of the nine predefined values for target described below. glEvalCoord1
evaluates the one-dimensional maps that are enabled. When glEvalCoord1 presents a
value u, the Bernstein functions are evaluated using û, where

Equation 11-4

target is a symbolic constant that indicates what kind of control points are provided in
points, and what output is generated when the map is evaluated. It can assume one of
nine predefined values:

GL_MAP1_VERTEX_3

Each control point is three floating-point values representing x, y, and z. Internal
glVertex3 commands are generated when the map is evaluated.

 GL_MAP1_VERTEX_4

Each control point is four floating-point values representing x, y, z, and w. Internal
glVertex4 commands are generated when the map is evaluated.

GL_MAP1_INDEX

Each control point is a single floating-point value representing a color index. Internal
glIndex commands are generated when the map is evaluated but the current index is not
updated with the value of these glIndex commands.

 GL_MAP1_COLOR_4

p û() Bi
n

û()Ri
i 0=

n

∑=

Bi
n

û()
n

i
 ûi 1 û–()n i–=

00 1and
n

0
 1≡≡

û
u u1–

u2 u1–
------------------=
Chapter 11 275

M
glMap1
Each control point is four floating-point values representing red, green, blue, and alpha.
Internal glColor4 commands are generated when the map is evaluated but the current
color is not updated with the value of these glColor4 commands.

 GL_MAP1_NORMAL

Each control point is three floating-point values representing the x, y, and z components
of a normal vector. Internal glNormal commands are generated when the map is
evaluated but the current normal is not updated with the value of these glNormal
commands.

GL_MAP1_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s texture coordinate.
Internal glTexCoord1 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these glTexCoord
commands.

GL_MAP1_TEXTURE_COORD_2

Each control point is two floating-point values representing the s and t texture
coordinates. Internal glTexCoord2 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

 GL_MAP1_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and r texture
coordinates. Internal glTexCoord3 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

 GL_MAP1_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and q texture
coordinates. Internal glTexCoord4 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

stride, order, and points define the array addressing for accessing the control points.
points is the location of the first control point, which occupies one, two, three, or four
contiguous memory locations, depending on which map is being defined. order is the
number of control points in the array. stride specifies how many float or double locations
to advance the internal memory pointer to reach the next control point.

Notes

As is the case with all GL commands that accept pointers to data, it is as if the contents
of points were copied by glMap1 before glMap1 returns. Changes to he contents of points
have no effect after glMap1 is called.

Errors

• GL_INVALID_ENUM is generated if target is not an accepted value.

• GL_INVALID_VALUE is generated if u1 is equal to u2.

• GL_INVALID_VALUE is generated if stride is less than the number of values in a
control point.
Chapter 11276

M
glMap1
• GL_INVALID_VALUE is generated if order is less than 1 or greater than the return
value of GL_MAX_EVAL_ORDER.

• GL_INVALID_OPERATION is generated if glMap1 is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4

See Also

glBegin,
glColor,
glEnable,
glEvalCoord,
glEvalMesh,
glEvalPoint,
glMap2,
glMapGrid,
glNormal,
glTexCoord,
glVertex
Chapter 11 277

M
glMap2
glMap2
glMap2d, glMap2f : define a two-dimensional evaluator.

C Specification

void glMap2d(
GLenum target,
GLdouble u1,
GLdouble u2,
GLint ustride,
GLint uorder,
GLdouble v1,
GLdouble v2,
GLint vstride,
GLint vorder,
const GLdouble *points)

void glMap2f(
GLenum target,
GLfloat u1,
GLfloat u2,
GLint ustride,
GLint uorder,
GLfloat v1,
GLfloat v2,
GLint vstride,
GLint vorder,

const GLfloat*points)

Parameters

target Specifies the kind of values that are generated by the evaluator.
Symbolic constants GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4,
GL_MAP2_INDEX, GL_MAP2_COLOR_4, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, and
GL_MAP2_TEXTURE_COORD_4 are accepted.

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord2, to û, one
of the two variables that are evaluated by the equations specified by
this command. Initially, u1 is 0 and u2 is 1.

ustride Specifies the number of floats or doubles between the beginning of
control point Rij and the beginning of control point R(i+1)j, where i and j
are the u and v control point indices, respectively. This allows control
points to be embedded in arbitrary data structures. The only constraint
is that the values for a particular control point must occupy contiguous
memory locations. The initial value of ustride is 0.

uorder Specifies the dimension of the control point array in the u axis. Must be
positive. The initial value is 1.
Chapter 11278

M
glMap2
v1, v2 Specify a linear mapping of ˆv, as presented to glEvalCoord2, to one of
the two variables that are evaluated by the equations specified by this
command. Initially, v1 is 0 and v2 is 1.

vstride Specifies the number of floats or doubles between the beginning of
control point Rij and the beginning of control point Ri(j+1), where i and j
are the u and v control point indices, respectively. This allows control
points to be embedded in arbitrary data structures. The only constraint
is that the values for a particular control point must occupy contiguous
memory locations. The initial value of vstride is 0.

vorder Specifies the dimension of the control point array in the v axis. Must be
positive. The initial value is 1.

points

Specifies a pointer to the array of control points.

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce
vertices, normals, texture coordinates, and colors. The values produced by an evaluator
are sent on to further stages of GL processing just as if they had been presented using
glVertex, glNormal, glTexCoord, and glColor commands, except that the generated
values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree
supported by the GL implementation) can be described using evaluators. These include
almost all surfaces used in computer graphics, including B-spline surfaces, NURBS
surfaces, Bezier surfaces, and so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(û, v) as

Equation 11-5

where Rij is a control point, Bi
n(û) is the ith Bernstein polynomial of degree n (uorder = n

+ 1)

Equation 11-6

and Bj
m(v) is the jth Bernstein polynomial of degree m (vorder = m + 1)

Equation 11-7

Recall that

p û v̂,() Bi
n

j 0=

m

∑ û()Bj
m

v̂()Rij
i 0=

n

∑=

Bi
n

û()
n

i
 û

i
1 û–()n i–

=

Bj
m

v̂()
m

j
 v̂

j
1 v̂–()m j–

=

Chapter 11 279

M
glMap2
Equation 11-8

glMap2 is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling glEnable and glDisable with the
map name, one of the nine predefined values for target, described below.
WhenglEvalCoord2 presents values u and v, the bivariate Bernstein polynomials are
evaluated using û and v, where

Equation 11-9

target is a symbolic constant that indicates what kind of control points are provided in
points, and what output is generated when the map is evaluated. It can assume one of
nine predefined values:

 GL_MAP2_VERTEX_3

Each control point is three floating-point values representing x, y, and z. Internal
glVertex3 commands are generated when the map is evaluated.

GL_MAP2_VERTEX_4

Each control point is four floating-point values representing x, y, z, and w. Internal
glVertex4 commands are generated when the map is evaluated.

GL_MAP2_INDEX

Each control point is a single floating-point value representing a color index. Internal
glIndex commands are generated when the map is evaluated but the current index is not
updated with the value of these glIndex commands.

GL_MAP2_COLOR_4

Each control point is four floating-point values representing red, green, blue, and alpha.
Internal glColor4 commands are generated when the map is evaluated but the current
color is not updated with the value of these glColor4 commands.

 GL_MAP2_NORMAL

Each control point is three floating-point values representing the x, y, and z components
of a normal vector. Internal glNormal commands are generated when the map is
evaluated but the current normal is not updated with the value of these glNormal
commands.

GL_MAP2_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s texture coordinate.
Internal glTexCoord1 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these glTexCoord
commands.

GL_MAP2_TEXTURE_COORD_2

00 1and
n

0
 1≡≡

û
u u1–

u2 u1–
------------------=

v̂
v v1–

v2 v1–
------------------=
Chapter 11280

M
glMap2
Each control point is two floating-point values representing the s and t texture
coordinates. Internal glTexCoord2 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

 GL_MAP2_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and r texture
coordinates. Internal glTexCoord3 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

 GL_MAP2_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and q texture
coordinates. Internal glTexCoord4 commands are generated when the map is evaluated
but the current texture coordinates are not updated with the value of these glTexCoord
commands.

ustride, uorder, vstride, vorder, and points define the array addressing for accessing the
control points. points is the location of the first control point, which occupies one, two,
three, or four contiguous memory locations, depending on which map is being defined.
There are uorder× vorder control points in the array. ustride specifies how many float or
double locations are skipped to advance the internal memory pointer from control point
Rij to control point R(i+1)j. vstride specifies how many float or double locations are
skipped to advance the internal memory pointer from control point Rij to control point
Ri(j+1).

Notes

As is the case with all GL commands that accept pointers to data, it is as if the contents
of points were copied by glMap2 before glMap2 returns. Changes to the contents of
points have no effect after glMap2 is called.

Initially, GL_AUTO_NORMAL is enabled. If GL_AUTO_NORMAL is enabled, normal
vectors are generated when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is
used to generate vertices.

Errors

• GL_INVALID_ENUM is generated if target is not an accepted value.

• GL_INVALID_VALUE is generated if u1 is equal to u2, or if v1 is equal to v2.

• GL_INVALID_VALUE is generated if either ustride or vstride is less than the
number of values in a control point.

• GL_INVALID_VALUE is generated if either uorder or vorder is less than 1 or
greater than the return value of GL_MAX_EVAL_ORDER.

• GL_INVALID_OPERATION is generated if glMap2 is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 11 281

M
glMap2
Associated Gets

glGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4

See Also

glBegin,
glColor,
glEnable,
glEvalCoord,
glEvalMesh,
glEvalPoint,
glMap1,
glMapGrid,
glNormal,
glTexCoord,
glVertex
Chapter 11282

M
glMapGrid
glMapGrid
glMapGrid1d, glMapGrid1f, glMapGrid2d, glMapGrid2f : define a one- or
two-dimensional mesh.

C Specification

void glMapGrid1d(
GLint un,
GLdouble u1,
GLdouble u2)

void glMapGrid1f(
GLint un,
GLfloat u1,

 GLfloat u2)
void glMapGrid2d(

GLint un,
GLdouble u1,
GLdouble u2,
GLint vn,
GLdouble v1,
GLdouble v2)

void glMapGrid2f(
 GLint un,

GLfloat u1,
 GLfloat u2,

GLint vn,
GLfloat v1,

GLfloat v2)

Parameters

un Specifies the number of partitions in the grid range interval [u1, u2].
Must be positive.

u1, u2 Specify the mappings for integer grid domain values i=0 and i=un.

vn Specifies the number of partitions in the grid range interval [v1, v2]
(glMapGrid2 only).

v1, v2 Specify the mappings for integer grid domain values j=0 and j=vn
(glMapGrid2 only).

Description

glMapGrid and glEvalMesh are used together to efficiently generate and evaluate a
series of evenly-spaced map domain values. glEvalMesh steps through the integer
domain of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.
Chapter 11 283

M
glMapGrid
glMapGrid1 and glMapGrid2 specify the linear grid mappings between the i (or i and j)
integer grid coordinates, to the u (or u and v) floating-point evaluation map coordinates.
See glMap1 and glMap2 for details of how u and v coordinates are evaluated.

glMapGrid1 specifies a single linear mapping such that integer grid coordinate 0 maps
exactly to u1, and integer grid coordinate un maps exactly to u2. All other integer grid
coordinates i are mapped so that

u = i (u2 u1) / un + u1

glMapGrid2 specifies two such linear mappings. One maps integer grid coordinate i=0
exactly to u1, and integer grid coordinate i=un exactly to u2. The other maps integer grid
coordinate j=0 exactly to v1, and integer grid coordinate j=vn exactly to v2. Other integer
grid coordinates i and j are mapped such that

u = i (u2 u1) / un + u1

v = j (v2 v1) / vn + v1

The mappings specified by glMapGrid are used identically by glEvalMesh and
glEvalPoint.

Errors

• GL_INVALID_VALUE is generated if either un or vn is not positive.

• GL_INVALID_OPERATION is generated if glMapGrid is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glEvalCoord,
glEvalMesh,
glEvalPoint,
glMap1,
glMap2
Chapter 11284

M
glMaterials
glMaterials
glMaterialf, glMateriali, glMaterialfv, glMaterialiv : specify material
parameters for the lighting model.

C Specification

void glMaterialf(
GLenum face,
GLenum pname,
GLfloat param)

void glMateriali(
GLenum face,
GLenum pname,
GLint param)

void glMaterialfv(
GLenum face,

 GLenum pname,
const GLfloat *params)

void glMaterialiv(
GLenum face,
GLenum pname,

const GLint *params)

Parameters

face Specifies which face or faces are being updated. Must be one of
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

pname Specifies the single-valued material parameter of the face or faces that
is being updated. Must be GL_SHININESS.

param Specifies the value that parameter GL_SHININESS will be set to.

face Specifies which face or faces are being updated. Must be one of
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

pname Specifies the material parameter of the face or faces that is being
updated. Must be one of GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS,
GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

params Specifies a pointer to the value or values that pname will be set to.

Description

glMaterial assigns values to material parameters. There are two matched sets of
material parameters. One, the front-facing set, is used to shade points, lines, bitmaps,
and all polygons (when two-sided lighting is disabled), or just front-facing polygons
(when two-sided lighting is enabled). The other set, back-facing, is used to shade
back-facing polygons only when two-sided lighting is enabled. Refer to the glLightModel
reference page for details concerning one- and two-sided lighting calculations.
Chapter 11 285

M
glMaterials
glMaterial takes three arguments. The first, face, specifies whether the GL_FRONT
materials, the GL_BACK materials, or both GL_FRONT_AND_BACK materials will be
modified. The second, pname, specifies which of several parameters in one or both sets
will be modified. The third, params, specifies what value or values will be assigned to the
specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each
vertex. The equation is discussed in the glLightModel reference page. The parameters
that can be specified using glMaterial, and their interpretations by the lighting
equation, are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA
reflectance of the material. Integer values are mapped linearly such that the most
positive representable value maps to 1.0, and the most negative representable value
maps to - 1.0. Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The initial ambient reflectance for both front- and
back-facing materials is (0.2, 0.2, 0.2, 1.0).

 GL_DIFFUSE

params contains four integer or floating-point values that specify the diffuse RGBA
reflectance of the material. Integer values are mapped linearly such that the most
positive representable value maps to 1.0, and the most negative representable value
maps to - 1.0. Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The initial diffuse reflectance for both front- and
back-facing materials is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR

params contains four integer or floating-point values that specify the specular RGBA
reflectance of the material. Integer values are mapped linearly such that the most
positive representable value maps to 1.0, and the most negative representable value
maps to - 1.0. Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The initial specular reflectance for both front- and
back-facing materials is (0, 0, 0, 1).

GL_EMISSION

params contains four integer or floating-point values that specify the RGBA emitted
light intensity of the material. Integer values are mapped linearly such that the most
positive representable value maps to 1.0, and the most negative representable value
maps to - 1.0. Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The initial emission intensity for both front- and
back-facing materials is (0, 0, 0, 1).

GL_SHININESS

params is a single integer or floating-point value that specifies the RGBA specular
exponent of the material. Integer and floating-point values are mapped directly. Only
values in the range [0, 128] are accepted. The initial specular exponent for both front-
and back-facing materials is 0.

 GL_AMBIENT_AND_DIFFUSE

Equivalent to calling glMaterial twice with the same parameter values, once with
GL_AMBIENT and once with GL_DIFFUSE.

GL_COLOR_INDEXES
Chapter 11286

M
glMaterials
params contains three integer or floating-point values specifying the color indices for
ambient, diffuse, and specular lighting. These three values, and GL_SHININESS, are
the only material values used by the color index mode lighting equation. Refer to the
glLightModel reference page for a discussion of color index lighting.

Notes

The material parameters can be updated at any time. In particular, glMaterial can be
called between a call to glBegin and the corresponding call to glEnd. If only a single
material parameter is to be changed per vertex, however, glColorMaterial is preferred
over glMaterial (see glColorMaterial).

Errors

• GL_INVALID_ENUM is generated if either face or pname is not an accepted value.

• GL_INVALID_VALUE is generated if a specular exponent outside the range [0,128]
is specified.

Associated Gets

glGetMaterial

See Also

glColorMaterial,
glLight,
glLightModel
Chapter 11 287

M
glMatrixMode
glMatrixMode
glMatrixMode : specify which matrix is the current matrix.

C Specification

void glMatrixMode(

GLenum mode)

Parameters

mode Specifies which matrix stack is the target for subsequent matrix
operations. Three values are accepted: GL_MODELVIEW,
GL_PROJECTION, and GL_TEXTURE. The initial value is
GL_MODELVIEW.

Description

glMatrixMode sets the current matrix mode. mode can assume one of three values:

GL_MODELVIEW

Applies subsequent matrix operations to the modelview matrix stack.

 GL_PROJECTION

Applies subsequent matrix operations to the projection matrix stack.

GL_TEXTURE

Applies subsequent matrix operations to the texture matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call glGet
with argument GL_MATRIX_MODE. The initial value is GL_MODELVIEW.

Errors

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glMatrixMode is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE

See Also

glLoadMatrix,
glPushMatrix
Chapter 11288

M
glMultMatrix
glMultMatrix
glMultMatrixd, glMultMatrixf : multiply the current matrix with the specified
matrix.

C Specification

void glMultMatrixd(
const GLdouble *m)

void glMultMatrixf(

const GLfloat *m)

Parameters

m Points to 16 consecutive values that are used as the elements of a 4 × 4
column-major matrix.

Description

glMultMatrix multiplies the current matrix with the one specified using m, and replaces
the current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode). It is
either the projection matrix, modelview matrix, or the texture matrix.

Examples

If the current matrix is C, and the coordinates to be transformed are, v = (v[0], v[1], v[2],
v[3]. Then the current transformation is C × v, or

 C[0] C[4] C[8] C[12] v[0]

 C[1] C[5] C[9] C[13] × v[1]

 C[2] C[6] C[10] C[14] v[2]

 C[3] C[7] C[11] C[15] v[3]

Calling glMultMatrix with an argument of m = m[0], m[1], . . ., m[15] replaces the
current transformation with (C × m) × v, or

 C[0] C[4] C[8] C[12] m[0] m[4] m[8] m[12] v[0]

 C[1] C[5] C[9] C[13] × m[1] m[5] m[5] m[13] × v[1]

 C[2] C[6] C[10] C[14] m[2] m[6] m[10] m[14] v[2]

 C[3] C[7] C[11] C[15] m[3] m[7] m[11] m[15] v[3]

Where × denotes matrix multiplication, and v is represented as a 4 × 1 matrix.

Notes

While the elements of the matrix may be specified with single or double precision, the
GL may store or operate on these values in less than single precision.
Chapter 11 289

M
glMultMatrix
In many computer languages, 4 × 4 arrays are represented in row-major order. The
transformations just described represent these matrices in column-major order. The
order of the multiplication is important. For example, if the current transformation is a
rotation, and glMultMatrix is called with a translation matrix, the translation is done
directly on the coordinates to be transformed, while the rotation is done on the results of
that translation.

Errors

• GL_INVALID_OPERATION is generated if glMultMatrix is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadIdentity,
glLoadMatrix,
glMatrixMode,
glPushMatrix
Chapter 11290

12 N
Chapter 12 291

N
glNewList
glNewList
glNewList, glEndLis t: create or replace a display list.

C Specification

void glNewList(
GLuint list,
GLenum mode)

void glEndList(void)

Parameters

list Specifies the display-list name.

mode Specifies the compilation mode, which can be GL_COMPILE or
GL_COMPILE_AND_EXECUTE.

Description

Display lists are groups of GL commands that have been stored for subsequent
execution. Display lists are created with glNewList. All subsequent commands are
placed in the display list, in the order issued, until glEndList is called.

 glNewList has two arguments. The first argument, list, is a positive integer that
becomes the unique name for the display list. Names can be created and reserved with
glGenLists and tested for uniqueness with glIsList. The second argument, mode, is a
symbolic constant that can assume one of two values:

GL_COMPILE

Commands are merely compiled.

GL_COMPILE_AND_EXECUTE

Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed immediately,
regardless of the display-list mode. These commands are glColorPointer, glDeleteLists,
glDisableClientState, glEdgeFlagPointer, glEnableClientState, glFeedbackBuffer,
glFinish, glFlush, glGenLists, glIndexPointer, glInterleavedArrays, glIsEnabled,
glIsList, glNormalPointer, glPopClientAttrib, glPixelStore, glPushClientAttrib,
glReadPixels, glRenderMode, glSelectBuffer, glTexCoordPointer, glVertexPointer, and all
of the glGet commands.

Similarly, glTexImage2D and glTexImage1D are executed immediately and not compiled
into the display list when their first argument is GL_PROXY_TEXTURE_2D or
GL_PROXY_TEXTURE_1D, respectively.

When glEndList is encountered, the display-list definition is completed by associating
the list with the unique name list (specified in the glNewList command). If a display list
with name list already exists, it is replaced only when glEndList is called.
Chapter 12292

N
glNewList
Notes

 glCallList and glCallLists can be entered into display lists. Commands in the display
list or lists executed by glCallList or glCallLists are not included in the display list being
created, even if the list creation mode is

GL_COMPILE_AND_EXECUTE.

A display list is just a group of commands and arguments, so errors generated by
commands in a display list must be generated when the list is executed. If the list is
created in GL_COMPILE mode, errors are not generated until the list is executed.

Errors

• GL_INVALID_VALUE is generated if list is 0.

• GL_INVALID_ENUM is generated if mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glEndList is called without a preceding
glNewList, or if glNewList is called while a display list is being defined.

• GL_INVALID_OPERATION is generated if glNewList or glEndList is executed
between the execution of glBegin and the corresponding execution of glEnd.

• GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the
display list. If the GL version is 1.1 or greater, no change is made to the previous
contents of the display list, if any, and no other change is made to the GL state. (It is
as if no attempt had been made to create the new display list.)

Associated Gets

glIsList
glGet with argument GL_LIST_INDEX
glGet with argument GL_LIST_MODE

See Also

glCallList,
glCallLists,
glDeleteLists,
glGenLists
Chapter 12 293

N
glNextVisibilityTesthp
glNextVisibilityTesthp
glNextVisibilityTesthp - end the current visibility test and begin the next.

C Specification

void glNextVisibilityTesthp(void)

Parameters

None

Description

glNextVisibilityTesthp is used in conjunction with glVisibilityBufferhp to test the
visibility of primitives against the current contents of the depth buffer.

 With glVisibilityBufferhp, the programmer specifies a boolean array in which to store
the results of the visibility tests; a call to glNextVisibilityTesthp finishes the current test
(eventually placing the results of the test in the current position of the array specified by
glVisiblityBufferhp), and beginning the next test, whose results will be placed in the
subsequent entry of the array.

Visibility Testing is enabled by a call to glEnable(VISIBILITY_TEST_hp). Making this
call to glEnable (if VISIBILITY_TEST_hp has not already been enabled) causes
Visibility Testing to begin, and sets the result destination to be the first entry in the
buffer specified by glVisibilityBufferhp.

Notes

None

Errors

GL_INVALID_OPERATION is generated if glNextVisibilityTesthp is called and
VISIBILITY_TEST_hp has not been enabled via glEnable().

GL_INVALID_OPERATION is generated if glVisibiliyBufferhp is called between a call
to glBegin and the corresponding call to glEnd.

Associated Gets

None

See Also

glVisibilityBufferhp
Chapter 12294

N
gluNewNurbsRenderer
gluNewNurbsRenderer
gluNewNurbsRenderer : create a NURBS object.

C Specification

GLUnurbs* gluNewNurbsRenderer(void)

Description

gluNewNurbsRenderer creates and returns a pointer to a new NURBS object. This
object must be referred to when calling NURBS rendering and control functions. A
return value of 0 means that there is not enough memory to allocate the object.

See Also

gluBeginCurve,
gluBeginSurface,
gluBeginTrim,
gluDeleteNurbsRenderer,
gluNurbsCallback,
gluNurbsProperty
Chapter 12 295

N
gluNewQuadric
gluNewQuadric
gluNewQuadric : create a quadrics object.

C Specification

GLUquadric* gluNewQuadric(void)

Description

gluNewQuadric creates and returns a pointer to a new quadrics object. This object must
be referred to when calling quadrics rendering and control functions. A return value of 0
means that there is not enough memory to allocate the object.

See Also

gluCylinder,
gluDeleteQuadric,
gluDisk,
gluPartialDisk,
gluQuadricCallback,
gluQuadricDrawStyle,
gluQuadricNormals,
gluQuadricOrientation,
gluQuadricTexture,
gluSphere
Chapter 12296

N
gluNewTess
gluNewTess
gluNewTess : create a tessellation object.

C Specification

GLUtesselator* gluNewTess(void)

Description

gluNewTess creates and returns a pointer to a new tessellation object. This object must
be referred to when calling tessellation functions. A return value of 0 means that there is
not enough memory to allocate the object.

See Also

gluTessBeginPolygon,
gluDeleteTess,
gluTessCallback
Chapter 12 297

N
gluNextContour
gluNextContour
gluNextContour : mark the beginning of another contour.

C Specification

void gluNextContour(
GLUtesselator* tess,

GLenum type)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

type Specifies the type of the contour being defined. Valid values are
GLU_EXTERIOR, GLU_INTERIOR, GLU_UNKNOWN, GLU_CCW,
and GLU_CW.

Description

gluNextContour is used in describing polygons with multiple contours. After the first
contour has been described through a series of gluTessVertex calls, a gluNextContour
call indicates that the previous contour is complete and that the next contour is about to
begin.

 Another series of gluTessVertex calls is then used to describe the new contour. This
process can be repeated until all contours have been described.

type defines what type of contour follows. The legal contour types are as follows:

GLU_EXTERIOR

An exterior contour defines an exterior boundary of the polygon.

GLU_INTERIOR

An interior contour defines an interior boundary of the polygon (such as a hole).

GLU_UNKNOWN

An unknown contour is analyzed by the library to determine if it is interior or exterior.

GLU_CCW, GLU_CW

The first GLU_CCW or GLU_CW contour defined is considered to be exterior. All other
contours are considered to be exterior if they are oriented in the same direction
(clockwise or counterclockwise) as the first contour, and interior if they are not.

If one contour is of type GLU_CCW or GLU_CW, then all contours must be of the same
type (if they are not, then all GLU_CCW and GLU_CW contours will be changed to
GLU_UNKNOWN).

Note that there is no real difference between the GLU_CCW and GLU_CW contour
types.
Chapter 12298

N
gluNextContour
Before the first contour is described, gluNextContour can be called to define the type of
the first contour. If gluNextContour is not called before the first contour, then the first
contour is marked GLU_EXTERIOR.

This command is obsolete and is provided for backward compatibility only. Calls to
gluNextContour are mapped to gluTessEndContour followed by gluTessBeginContour.

See Also

gluBeginPolygon,
gluNewTess,
gluTessCallback,
gluTessVertex,
gluTessBeginContour
Chapter 12 299

N
glNormal
glNormal
glNormal3b, glNormal3d, glNormal3f, glNormal3i, glNormal3s,
glNormal3bv, glNormal3dv, glNormal3fv, glNormal3iv, glNormal3sv : set
the current normal vector.

C Specification

void glNormal3b(
GLbyte nx,
GLbyte ny,
GLbyte nz)

void glNormal3d(
GLdouble nx,
GLdouble ny,
GLdouble nz)

void glNormal3f(
GLfloat nx,
GLfloat ny,
GLfloat nz)

void glNormal3i(
GLint nx,

 GLint ny,
GLint nz)

void glNormal3s(
GLshort nx,
GLshort ny,
GLshort nz)

void glNormal3bv(
const GLbyte *v)

void glNormal3dv(
const GLdouble *v)

void glNormal3fv(
const GLfloat *v)

void glNormal3iv(
const GLint *v)

void glNormal3sv(
const GLshort *v)

Parameters

nx, ny, nz Specify the x, y, and z coordinates of the new current normal. The
initial value of the current normal is the unit vector, (0, 0, 1).

v Specifies a pointer to an array of three elements: the x, y, and z
coordinates of the new current normal.
Chapter 12300

N
glNormal
Description

The current normal is set to the given coordinates whenever glNormal is issued. Byte,
short, or integer arguments are converted to floating-point format with a linear mapping
that maps the most positive representable integer value to 1.0, and the most negative
representable integer value to - 1.0.

Normals specified with glNormal need not have unit length. If normalization is enabled,
then normals specified with glNormal are normalized after transformation. To enable
and disable normalization, call glEnable and glDisable with the argument
GL_NORMALIZE. Normalization is initially disabled.

Notes

The current normal can be updated at any time. In particular, glNormal can be called
between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_NORMAL
glIsEnabled with argument GL_NORMALIZE

See Also

glBegin
glColor,
glIndex,
glNormalPointer,
glTexCoord,
glVertex
Chapter 12 301

N
glNormalPointer
glNormalPointer
glNormalPointer : define an array of normals.

C Specification

void glNormalPointer(
GLenum type,
GLsizei stride,

const GLvoid *pointer)

Parameters

type Specifies the data type of each coordinate in the array. Symbolic
constants GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, and
GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normals. If stride is 0--
the initial value--the normals are understood to be tightly packed in
the array.

pointer Specifies a pointer to the first coordinate of the first normal in the
array.

Description

glNormalPointer specifies the location and data format of an array of normals to use
when rendering. type specifies the data type of the normal coordinates and stride gives
the byte stride from one normal to the next, allowing vertexes and attributes to be
packed into a single array or stored in separate arrays. (Single-array storage may be
more efficient on some implementations; see glInterleavedArrays.) When a normal array
is specified, type, stride, and pointer are saved as client-side state.

To enable and disable the normal array, call glEnableClientState and
glDisableClientState with the argument GL_NORMAL_ARRAY. If enabled, the normal
array is used when glDrawArrays, glDrawElements, or glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from
pre-specified vertex and vertex attribute arrays. Use glArrayElement to specify
primitives by indexing vertexes and vertex attributes and glDrawElements to construct
a sequence of primitives by indexing vertexes and vertex attributes.

Notes

glNormalPointer is available only if the GL version is 1.1 or greater.

The normal array is initially disabled and isn’t accessed when glArrayElement,
glDrawElements, or glDrawArrays is called.

Execution of glNormalPointer is not allowed between glBegin and the corresponding
glEnd, but an error may or may not be generated. If an error is not generated, the
operation is undefined.
Chapter 12302

N
glNormalPointer
glNormalPointer is typically implemented on the client side.

Since the normal array parameters are client-side state, they are not saved or restored
by glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_NORMAL_ARRAY
glGet with argument GL_NORMAL_ARRAY_TYPE
glGet with argument GL_NORMAL_ARRAY_STRIDE
glGetPointerv with argument GL_NORMAL_ARRAY_POINTER

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointerv,
glIndexPointer,
glInterleavedArrays,
glPopClientAttrib,
glPushClientAttrib,
glTexCoordPointer,
glVertexPointer
Chapter 12 303

N
gluNurbsCallback
gluNurbsCallback
gluNurbsCallback : define a callback for a NURBS object.

C Specification

void gluNurbsCallback(
GLUnurbs* nurb,
GLenum which,

GLvoid (*CallBackFunc)()

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

which Specifies the callback being defined. The only valid value is
GLU_ERROR.

CallBackFunc Specifies the function that the callback calls.

Description

gluNurbsCallback is used to define a callback to be used by a NURBS object. If the
specified callback is already defined, then it is replaced. If CallBackFunc is NULL, then
any existing callback is erased.

The one legal callback is GLU_ERROR:

GLU_ERROR

The error function is called when an error is encountered. Its single argument is of type
GLenum, and it indicates the specific error that occurred. There are 37 errors unique to
NURBS named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37. Character
strings describing these errors can be retrieved with gluErrorString.

See Also

gluErrorString,
gluNewNurbsRenderer
Chapter 12304

N
gluNurbsCurve
gluNurbsCurve
gluNurbsCurve : define the shape of a NURBS curve.

C Specification

void gluNurbsCurve(
GLUnurbs* nurb,
GLint knotCount,
GLfloat *knots,
GLint stride,
GLfloat *control,
GLint order,

GLenum type)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

knotCount Specifies the number of knots in knots. knotCount equals the number
of control points plus the order.

knots Specifies an array of knotCount non-decreasing knot values.

stride Specifies the offset (as a number of single-precision floating-point
values) between successive curve control points.

control Specifies a pointer to an array of control points. The coordinates must
agree with type, specified below.

order Specifies the order of the NURBS curve. order equals degree + 1, hence
a cubic curve has an order of 4.

type Specifies the type of the curve. If this curve is defined within a
gluBeginCurve/gluEndCurve pair, then the type can be any of the valid
one-dimensional evaluator types (such as GL_MAP1_VERTEX_3 or
GL_MAP1_COLOR_4). Between a gluBeginCurve/gluEndCurve pair,
the only valid types are GLU_MAP1_TRIM_2 and
GLU_MAP1_TRIM_3.

Description

Use gluNurbsCurve to describe a NURBS curve.

When gluNurbsCurve appears between a gluBeginCurve/gluEndCurve pair, it is used to
describe a curve to be rendered. Positional, texture, and color coordinates are associated
by presenting each as a separate gluNurbsCurve between a
gluBeginCurve/gluEndCurve pair. No more than one call to gluNurbsCurve for each of
color, position, and texture data can be made within a single
gluBeginCurve/gluEndCurve pair. Exactly one call must be made to describe the position
of the curve (a type of GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4).
Chapter 12 305

N
gluNurbsCurve
When gluNurbsCurve appears between a gluBeginTrim/gluEndTrim pair, it is used to
describe a trimming curve on a NURBS surface. If type is GLU_MAP1_TRIM_2, then it
describes a curve in two-dimensional (u and v) parameter space. If it is
GLU_MAP1_TRIM_3, then it describes a curve in two-dimensional homogeneous (u, v,
and w) parameter space. See the gluBeginTrim reference page for more discussion about
trimming curves.

Notes

To define trim curves that stitch well, use gluPwlCurve.

See Also

gluBeginCurve,
gluBeginTrim,
gluNewNurbsRenderer,
gluPwlCurve
Chapter 12306

N
gluNurbsPrperty
gluNurbsPrperty
gluNurbsProperty : set a NURBS property.

C Specification

void gluNurbsProperty(
GLUnurbs* nurb,
GLenum property,

GLfloat value)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

property Specifies the property to be set. Valid values are
GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
GLU_CULLING, GLU_AUTO_LOAD_MATRIX,
GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
GLU_U_STEP, or GLU_V_STEP.

value Specifies the value of the indicated property. It may be a numeric
value, or one of GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,
or GLU_DOMAIN_DISTANCE.

Description

gluNurbsProperty is used to control properties stored in a NURBS object. These
properties affect the way that a NURBS curve is rendered. The accepted values for
property are as follows:

GLU_SAMPLING_METHOD

Specifies how a NURBS surface should be tessellated. value may be one of
GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR, or GLU_DOMAIN_DISTANCE.
When set to GLU_PATH_LENGTH, the surface is rendered so that the maximum
length, in pixels, of the edges of the tessellation polygons is no greater than what is
specified by GLU_SAMPLING_TOLERANCE. The initial value of
GLU_SAMPLING_METHOD is GLU_PATH_LENGTH.

GLU_PARAMETRIC_ERROR

Specifies that the surface is rendered in such a way that the value specified by
GLU_PARAMETRIC_TOLERANCE describes the maximum distance, in pixels, between
the tessellation polygons and the surfaces they approximate.

GLU_DOMAIN_DISTANCE

Allows users to specify, in parametric coordinates, how many sample points per unit
length are taken in u, v direction.

GLU_SAMPLING_TOLERANCE
Chapter 12 307

N
gluNurbsPrperty
Specifies the maximum length, in pixels to use when the sampling method is set to
GLU_PATH_LENGTH. The NURBS code is conservative when rendering a curve or
surface, so the actual length can be somewhat shorter. The initial value is 50.0 pixels.

GLU_PARAMETRIC_TOLERANCE

Specifies the maximum distance, in pixels, to use when the sampling method is
GLU_PARAMETRIC_ERROR. The initial value is 0.5.

GLU_U_STEP

Specifies the number of sample points per unit length taken along the u axis in
parametric coordinates. It is needed when GLU_SAMPLING_METHOD is set to
GLU_DOMAIN_DISTANCE. The initial value is 100.

GLU_V_STEP

Specifies the number of sample points per unit length taken along the v axis in
parametric coordinate. It is needed when GLU_SAMPLING_METHOD is set to
GLU_DOMAIN_DISTANCE. The initial value is 100.

GLU_DISPLAY_MODE

value defines how a NURBS surface should be rendered. value can be set to
GLU_OUTLINE_POLYGON, GLU_FILL, or GLU_OUTLINE_PATCH. When value is
set to GLU_FILL, the surface is rendered as a set of polygons. When value is set to
GLU_OUTLINE_POLYGON the NURBS library draws only the outlines of the polygons
created by tessellation. When value is set to GLU_OUTLINE_PATCH just the outlines of
patches and trim curves defined by the user are drawn. The initial value is GLU_FILL.

GLU_CULLING

value is a boolean value that, when set to GL_TRUE, indicates that a NURBS curve
should be discarded prior to tessellation if its control points lie outside the current
viewport. The initial value is GL_FALSE.

GLU_AUTO_LOAD_MATRIX

value is a boolean value. When set to GL_TRUE, the NURBS code downloads the
projection matrix, the modelview matrix, and the viewport from the GL server to
compute sampling and culling matrices for each NURBS curve that is rendered.
Sampling and culling matrices are required to determine the tesselation of a NURBS
surface into line segments or polygons and to cull a NURBS surface if it lies outside the
viewport.

If this mode is set to GL_FALSE, then the program needs to provide a projection matrix,
a modelview matrix, and a viewport for the NURBS renderer to use to construct
sampling and culling matrices. This can be done with the gluLoadSamplingMatrices
function. This mode is initially set to GL_TRUE. Changing it from GL_TRUE to
GL_FALSE does not affect the sampling and culling matrices until
gluLoadSamplingMatrices is called.

Notes

If GLU_AUTO_LOAD_MATRIX is true, sampling and culling may be executed
incorrectly if NURBS routines are compiled into a display list.
Chapter 12308

N
gluNurbsPrperty
A property of GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
GLU_U_STEP, or GLU_V_STEP, or a value of GLU_PATH_LENGTH,
GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE are only available if the
GLU version is 1.1 or greater. They are not valid parameters in GLU 1.0.

gluGetString can be used to determine the GLU version.

See Also

gluGetNurbsProperty,
gluLoadSamplingMatrices,
gluNewNurbsRenderer,
gluGetString
Chapter 12 309

N
gluNurbsSurface
gluNurbsSurface
gluNurbsSurface : define the shape of a NURBS surface.

C Specification

void gluNurbsSurface(
GLUnurbs* nurb,
GLint sKnotCount,
GLfloat* sKnots,
GLint tKnotCount,
GLfloat* tKnots,

 GLint sStride,
GLint tStride,
GLfloat* control,
GLint sOrder,
GLint tOrder,

GLenum type)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

sKnotCount Specifies the number of knots in the parametric u direction.

sKnots Specifies an array of sKnotCount non-decreasing knot values in the
parametric u direction.

tKnotCount Specifies the number of knots in the parametric v direction.

tKnots Specifies an array of tKnotCount non-decreasing knot values in the
parametric v direction.

sStride Specifies the offset (as a number of single-precision floating point
values) between successive control points in the parametric u direction
in control.

tStride Specifies the offset (in single-precision floating-point values) between
successive control points in the parametric v direction in control.

control Specifies an array containing control points for the NURBS surface.
The offsets between successive control points in the parametric u and v
directions are given by sStride and tStride.

sOrder Specifies the order of the NURBS surface in the parametric u direction.
The order is one more than the degree, hence a surface that is cubic in
u has a u order of 4.

tOrder Specifies the order of the NURBS surface in the parametric v direction.
The order is one more than the degree, hence a surface that is cubic in
v has a v order of 4.

type Specifies type of the surface. type can be any of the valid
two-dimensional evaluator types (such as GL_MAP2_VERTEX_3 or
GL_MAP2_COLOR_4).
Chapter 12310

N
gluNurbsSurface
Description

Use gluNurbsSurface within a NURBS (Non-Uniform Rational B-Spline) surface
definition to describe the shape of a NURBS surface (before any trimming). To mark the
beginning of a NURBS surface definition, use the gluBeginSurface command. To mark
the end of a NURBS surface definition, use the gluEndSurface command. Call
gluNurbsSurface within a NURBS surface definition only.

Positional, texture, and color coordinates are associated with a surface by presenting
each as a separate gluNurbsSurface between a gluBeginSurface/gluEndSurface pair. No
more than one call to gluNurbsSurface for each of color, position, and texture data can be
made within a single gluBeginSurface/gluEndSurface pair. Exactly one call must be
made to describe the position of the surface (a type of GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4).

A NURBS surface can be trimmed by using the commands gluNurbsCurve and
gluPwlCurve between calls to gluBeginTrim and gluEndTrim.

Note that a gluNurbsSurface with sKnotCount knots in the u direction and tKnotCount
knots in the v direction with orders sOrder and tOrder must have (sKnotCount - sOrder)
× (tKnotCount - tOrder) control points.

See Also

gluBeginSurface,
gluBeginTrim,
gluNewNurbsRenderer,
gluNurbsCurve,
gluPwlCurve
Chapter 12 311

N
gluNurbsSurface
Chapter 12312

13 O
Chapter 13 313

O
glOrtho
glOrtho
glOrtho: multiply the current matrix with an orthographic matrix.

C Specification

void glOrtho(
GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble zNear,

GLdouble zFar)

Parameters

left, right Specify the coordinates for the left and right vertical clipping planes.

bottom, top Specify the coordinates for the bottom and top horizontal clipping
planes.

zNear, zFar Specify the distances to the nearer and farther depth clipping planes.
These values are negative if the plane is to be behind the viewer.

Description

glOrtho describes a transformation that produces a parallel projection. The current
matrix (see glMatrixMode) is multiplied by this matrix and the result replaces the
current matrix, as if glMultMatrix were called with the following matrix as its
argument:

A 0 0 tx

0 B 0 ty

0 0 C tz

0 0 0 1

where

A = 2 / (right left)

B = 2 / (top bottom)

C = 2 / (far near)

tx = (right + left) / (right left)

ty = (top + bottom) / (top bottom)

tz = (zFar + zNear) / (zFar zNear)
Chapter 13314

O
glOrtho
Typically, the matrix mode is GL_PROJECTION, and (left, bottom, zNear) and (right,
top, zNear) specify the points on the near clipping plane that are mapped to the lower left
and upper right corners of the window, respectively, assuming that the eye is located at
(0, 0, 0). zFar specifies the location of the far clipping plane. Both zNear and zFar can be
either positive or negative.

 Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Errors

• GL_INVALID_OPERATION is generated if glOrtho is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glFrustum,
glMatrixMode,
glMultMatrix,
glPushMatrix,
glViewport
Chapter 13 315

O
gluOrtho2D
gluOrtho2D
gluOrtho2D : define a 2D orthographic projection matrix.

C Specification

void gluOrtho2D(
GLdouble left,
GLdouble right,
GLdouble bottom,

GLdouble top)

Parameters

left, right Specify the coordinates for the left and right vertical clipping planes.

bottom, top Specify the coordinates for the bottom and top horizontal clipping
planes.

Description

gluOrtho2D sets up a two-dimensional orthographic viewing region. This is equivalent to
calling glOrtho with near = 1 and far = 1.

See Also

glOrtho,
gluPerspective
Chapter 13316

14 P
Chapter 14 317

P
gluPartialDisk
gluPartialDisk
gluPartialDisk : draw an arc of a disk.

C Specification

void gluPartialDisk(
GLUquadric* quad,
GLdouble inner,
GLdouble outer,
GLint slices,
GLint loops,
GLdouble start,

GLdouble sweep)

Parameters

quad Specifies a quadrics object (created with gluNewQuadric).

inner Specifies the inner radius of the partial disk (can be 0).

outer Specifies the outer radius of the partial disk.

slices Specifies the number of subdivisions around the Z axis.

loops Specifies the number of concentric rings about the origin into which
the partial disk is subdivided.

start Specifies the starting angle, in degrees, of the disk portion.

sweep Specifies the sweep angle, in degrees, of the disk portion.

Description

gluPartialDisk renders a partial disk on the Z = 0 plane. A partial disk is similar to a full
disk, except that only the subset of the disk from start through start + sweep is included
(where 0 degrees is along the +Y axis, 90 degrees along the +X axis, 180 along the Y axis,
and 270 along the X axis).

The partial disk has a radius of outer, and contains a concentric circular hole with a
radius of inner. If inner is 0, then no hole is generated. The partial disk is subdivided
around the Z axis into slices (like pizza slices), and also about the Z axis into rings (as
specified by slices and loops, respectively).

With respect to orientation, the +Z side of the partial disk is considered to be outside (see
gluQuadricOrientation). This means that if the orientation is set to GLU_OUTSIDE,
then any normals generated point along the +Z axis. Otherwise, they point along the Z
axis.

If texturing is turned on (with gluQuadricTexture), texture coordinates are generated
linearly such that where r = outer, the value at (r, 0, 0) is (1.0, 0.5), at 0, r, 0) it is (0.5,
1.0), at (- r, 0, 0) it is (0.0, 0.5), and at (0, - r, 0) it is (0.5, 0.0).
Chapter 14318

P
gluPartialDisk
See Also

gluCylinder,
gluDisk,
gluNewQuadric,
gluQuadricOrientation,
gluQuadricTexture,
gluSphere
Chapter 14 319

P
glPassThrough
glPassThrough
glPassThrough : place a marker in the feedback buffer.

C Specification

void glPassThrough(

GLfloat token)

Parameters

token Specifies a marker value to be placed in the feedback buffer following a
GL_PASS_THROUGH_TOKEN.

Description

Feedback is a GL render mode. The mode is selected by calling glRenderMode with
GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by
rasterization. Instead, information about primitives that would have been rasterized is
fed back to the application using the GL. See the glFeedbackBuffer reference page for a
description of the feedback buffer and the values in it.

glPassThrough inserts a user-defined marker in the feedback buffer when it is executed
in feedback mode. token is returned as if it were a primitive; it is indicated with its own
unique identifying value: GL_PASS_THROUGH_TOKEN. The order of glPassThrough
commands with respect to the specification of graphics primitives is maintained.

Notes

glPassThrough is ignored if the GL is not in feedback mode.

Errors

• GL_INVALID_OPERATION is generated if glPassThrough is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE

See Also

glFeedbackBuffer,
glRenderMode
Chapter 14320

P
gluPerspective
gluPerspective
gluPerspective : set up a perspective projection matrix.

C Specification

void gluPerspective(
GLdouble fovy,
GLdouble aspect,
GLdouble zNear,

GLdouble zFar)

Parameters

fovy Specifies the field of view angle, in degrees, in the Y direction.

aspect Specifies the aspect ratio that determines the field of view in the X
direction. The aspect ratio is the ratio of X (width) to Y (height).

zNear Specifies the distance from the viewer to the near clipping plane
(always positive).

zFar Specifies the distance from the viewer to the far clipping plane (always
positive).

Description

gluPerspective specifies a viewing frustum into the world coordinate system. In general,
the aspect ratio in gluPerspective should match the aspect ratio of the associated
viewport. For example, aspect = 2.0 means the viewer’s angle of view is twice as wide in
X as it is in Y. If the viewport is twice as wide as it is tall, it displays the image without
distortion.

 The matrix generated by gluPerspective is multiplied by the current matrix, just as if
glMultMatrix were called with the generated matrix. To load the perspective matrix onto
the current matrix stack instead, precede the call to gluPerspective with a call to
glLoadIdentity.

Given f defined as cotangent(fovy / 2), the generated matrix is

A 0 0 0
0 f 0 0
0 0 B C
0 0 -1 0

 where:

A = f / aspect

B = (zFar + zNear) / (zNear - zFar)

C = (2 × zFar × zNear) / (zNear × zFar)
Chapter 14 321

P
gluPerspective
Notes

Depth buffer precision is affected by the values specified for zNear and zFar. The greater
the ratio of zFar to zNear is, the less effective the depth buffer will be at distinguishing
between surfaces that are near each other. If r = zFar / zNear, roughly log2 r bits of
depth buffer precision are lost. Because r approaches infinity as zNear approaches 0,
zNear must never be set to 0.

See Also

glFrustum,
glLoadIdentity,
glMultMatrix,
gluOrtho2D
Chapter 14322

P
gluPickMatrix
gluPickMatrix
gluPickMatrix : define a picking region.

C Specification

void gluPickMatrix(
GLdouble x,
GLdouble y,
GLdouble delX,
GLdouble delY,

GLint *viewport)

Parameters

x, y Specify the center of a picking region in window coordinates.

xdelX, delY Specify the width and height, respectively, of the picking region in
window coordinates.

viewport Specifies the current viewport (as from a glGetIntegerv call).

Description

gluPickMatrix creates a projection matrix that can be used to restrict drawing to a small
region of the viewport. This is typically useful to determine what objects are being drawn
near the cursor. Use gluPickMatrix to restrict drawing to a small region around the
cursor. Then, enter selection mode (with glRenderMode) and re-render the scene. All
primitives that would have been drawn near the cursor are identified and stored in the
selection buffer.

The matrix created by gluPickMatrix is multiplied by the current matrix just as if
glMultMatrix is called with the generated matrix. To effectively use the generated pick
matrix for picking, first call glLoadIdentity to load an identity matrix onto the
perspective matrix stack. Then call gluPickMatrix, and finally, call a command (such as
gluPerspective) to multiply the perspective matrix by the pick matrix.

When using gluPickMatrix to pick NURBS, be careful to turn off the NURBS property
GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX is not turned off, then
any NURBS surface rendered is subdivided differently with the pick matrix than the
way it was subdivided without the pick matrix.

See Also

glGet,
glLoadIdentity,
glMultMatrix,
glRenderMode,
gluPerspective
Chapter 14 323

P
glPixelMap
glPixelMap
glPixelMapfv, glPixelMapuiv, glPixelMapusv : set up pixel transfer maps.

C Specification

void glPixelMapfv(
GLenum map,
GLsizei mapsize,
const GLfloat *values)

void glPixelMapuiv(
GLenum map,
GLsizei mapsize,
const GLuint *values)

void glPixelMapusv(
GLenum map,

GLsizei mapsize,const GLushort *values)

Parameters

map Specifies a symbolic map name. Must be one of the following:
GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S,
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A,
GL_PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G,
GL_PIXEL_MAP_B_TO_B, or GL_PIXEL_MAP_A_TO_A.

mapsize Specifies the size of the map being defined.

values Specifies an array of mapsize values.

Description

glPixelMap sets up translation tables, or maps, used by glCopyPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, and glTexSubImage2D. Use of these maps is described completely in
the glPixelTransfer reference page, and partly in the reference pages for the pixel and
texture image commands. Only the specification of the maps is described in this
reference page.

map is a symbolic map name, indicating one of ten maps to set.

mapsize specifies the number of entries in the map, and values is a pointer to an array of
mapsize map values.

The ten maps are as follows:

GL_PIXEL_MAP_I_TO_I

Maps color indices to color indices.

GL_PIXEL_MAP_S_TO_S

Maps stencil indices to stencil indices.
Chapter 14324

P
glPixelMap
GL_PIXEL_MAP_I_TO_R

Maps color indices to red components.

GL_PIXEL_MAP_I_TO_G

Maps color indices to green components.

GL_PIXEL_MAP_I_TO_B

Maps color indices to blue components.

GL_PIXEL_MAP_I_TO_A

Maps color indices to alpha components.

 GL_PIXEL_MAP_R_TO_R

Maps red components to red components.

GL_PIXEL_MAP_G_TO_G

Maps green components to green components.

GL_PIXEL_MAP_B_TO_B

Maps blue components to blue components.

GL_PIXEL_MAP_A_TO_A

Maps alpha components to alpha components.

The entries in a map can be specified as single-precision floating-point numbers,
unsigned short integers, or unsigned long integers. Maps that store color component
values (all but GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S) retain their
values in floating-point format, with unspecified mantissa and exponent sizes.
Floating-point values specified by glPixelMapfv are converted directly to the internal
floating-point format of these maps, then clamped to the range [0, 1]. Unsigned integer
values specified by glPixelMapusv and glPixelMapuiv are converted linearly such that
the largest representable integer maps to 1.0, and 0 maps to 0.0.

Maps that store indices, GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S, retain
their values in fixed-point format, with an unspecified number of bits to the right of the
binary point.

Floating-point values specified by glPixelMapfv are converted directly to the internal
fixed-point format of these maps. Unsigned integer values specified by glPixelMapusv
and glPixelMapuiv specify integer values, with all 0s to the right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that
are indexed by either color or stencil indices must have mapsize = 2n for some n or the
results are undefined. The maximum allowable size for each map depends on the
implementation and can be determined by calling glGet with argument
GL_MAX_PIXEL_MAP_TABLE. The single maximum applies to all maps; it is at least
32.
Chapter 14 325

P
glPixelMap
Errors

• GL_INVALID_ENUM is generated if map is not an accepted value.

• GL_INVALID_VALUE is generated if mapsize is less than one or larger than

• GL_MAX_PIXEL_MAP_TABLE. GL_INVALID_VALUE is generated if map is
GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, or GL_PIXEL_MAP_I_TO_A,
and mapsize is not a power of two.

• GL_INVALID_OPERATION is generated if glPixelMap is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetPixelMap
glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE

map Lookup
Index

Lookup
Value

Initial
Size

Initial
Value

GL_PIXEL_MAP_I_TO_I color
index

color index 1 0

 GL_PIXEL_MAP_S_TO_S stencil
index

stencil
index

1 0

GL_PIXEL_MAP_I_TO_R color
index

R 1 0

GL_PIXEL_MAP_I_TO_G color
index

G 1 0

GL_PIXEL_MAP_I_TO_B color
index

B 1 0

GL_PIXEL_MAP_I_TO_A color
index

A 1 0

GL_PIXEL_MAP_R_TO_R R R 1 0

GL_PIXEL_MAP_G_TO_G G G 1 0

GL_PIXEL_MAP_B_TO_B B B 1 0

 GL_PIXEL_MAP_A_TO_A A A 1 0
Chapter 14326

P
glPixelMap
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
glPixelStore,
glPixelTransfer,
glReadPixels,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D
Chapter 14 327

P
glPixelStore
glPixelStore
glPixelStoref, glPixelStorei : set pixel storage modes.

C Specification

void glPixelStoref(
GLenum pname,
GLfloat param)

void glPixelStorei(
GLenum pname,

GLint param)

Parameters

pname Specifies the symbolic name of the parameter to be set.

Six values affect the packing of pixel data into memory:
GL_PACK_SWAP_BYTES, GL_PACK_LSB_FIRST,
GL_PACK_ROW_LENGTH, GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS, and GL_PACK_ALIGNMENT. Six more
affect the unpacking of pixel data from memory:
GL_UNPACK_SWAP_BYTES, GL_UNPACK_LSB_FIRST,
GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS, and GL_UNPACK_ALIGNMENT.

param Specifies the value that pname is set to.

Description

glPixelStore sets pixel storage modes that affect the operation of subsequent
glDrawPixels and glReadPixels as well as the unpacking of polygon stipple patterns (see
glPolygonStipple), bitmaps (see glBitmap), and texture patterns (see glTexImage1D,
glTexImage2D, glTexSubImage1D, and glTexSubImage2D).

pname is a symbolic constant indicating the parameter to be set, and param is the new
value. Six of the twelve storage parameters affect how pixel data is returned to client
memory, and are therefore significant only for glReadPixels commands.

They are as follows:

GL_PACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component consists of bytes b0, b1, b2,
b3, it is stored in memory as b3, b2, b1, b0 if GL_PACK_SWAP_BYTES is true.
GL_PACK_SWAP_BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second,
and blue third, regardless of the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
Chapter 14328

P
glPixelStore
If true, bits are ordered within a byte from least significant to most significant;
otherwise, the first bit in each byte is the most significant one. This parameter is
significant for bitmap data only.

GL_PACK_ROW_LENGTH

If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixels in a row. If
the first pixel of a row is placed at location p in memory, then the location of the first
pixel of the next row is obtained by skipping

 components or indices, where n is the number of components or indices in a pixel, l is
the number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the
width argument to the pixel routine otherwise), a is the value of
GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single component (if a<s, then it
is as if a=s). In the case of 1-bit values, the location of the next row is obtained by
skipping

components or indices.

The word component in this description refers to the non-index values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

GL_PACK_SKIP_PIXELS and GL_PACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide no
functionality that cannot be duplicated simply by incrementing the pointer passed to
glReadPixels. Setting GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the
pointer by in components or indices, where n is the number of components or indices in
each pixel. Setting GL_PACK_SKIP_ROWS to j is equivalent to incrementing the
pointer by jk components or indices, where k is the number of components or indices per
row, as just computed in the GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in memory. The
allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4
(word-alignment), and 8 (rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client
memory. These values are significant for glDrawPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glBitmap, and glPolygonStipple. They are as
follows:

GL_UNPACK_SWAP_BYTES

k nl
a
s

snl
a

if

s a≥
s a<

=

k 8a nl
8a
------=
Chapter 14 329

P
glPixelStore
If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component consists of bytes b0, b1, b2,
b3, it is taken from memory as b3, b2, b1, b0 if GL_UNPACK_SWAP_BYTES is true.
GL_UNPACK_SWAP_BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second,
and blue third, regardless of the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most significant;
otherwise, the first bit in each byte is the most significant one. This is relevant only for
bitmap data.

GL_UNPACK_ROW_LENGTH

If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixels in a row. If
the first pixel of a row is placed at location p in memory, then the location of the first
pixel of the next row is obtained by skipping

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the
width argument to the pixel routine otherwise), a is the value of
GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a single component (if a<s,
then it is as if a=s). In the case of 1-bit values, the location of the next row is obtained by
skipping

 components or indices.

The word component in this description refers to the non-index values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

 GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide no
functionality that cannot be duplicated by incrementing the pointer passed to
glDrawPixels, glTexImage1D, glTexImage2D, glTexSubImage1D, glTexSubImage2D,
glBitmap, or glPolygonStipple. Setting GL_UNPACK_SKIP_PIXELS to i is equivalent to
incrementing the pointer by in components or indices, where n is the number of
components or indices in each pixel. Setting GL_UNPACK_SKIP_ROWS to j is

k nl
a
s

snl
a

if

s a≥
s a<

=

k nl
a
s

snl
a

if

s a≥
s a<

=

Chapter 14330

P
glPixelStore
equivalent to incrementing the pointer by jk components or indices, where k is the
number of components or indices per row, as just computed in the
GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in memory. The
allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4
(word-alignment), and 8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each
storage parameter that can be set with glPixelStore.

glPixelStoref can be used to set any pixel store parameter. If the parameter type is
boolean, then if param is 0, the parameter is false; otherwise it is set to true. If pname is
a integer type parameter, param is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean
parameters are set to false if param is 0 and true otherwise.

Notes

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImage1D,
glTexImage2D, glTexSubImage1D, glTexSubImage2D, glBitmap, or glPolygonStipple is
placed in a display list control the interpretation of memory data. The pixel storage
modes in effect when a display list is executed are not significant.

Pixel storage modes are client state and must be pushed and restored using
glPushClientAttrib and glPopClientAttrib.

pname Type Initial
Value

Valid
Range

GL_PACK_SWAP_BYTES boolean false true or false

GL_PACK_LSB_FIRST boolean false true or false

GL_PACK_ROW_LENGTH integer 0 [0, ∞]

GL_PACK_SKIP_ROWS integer 0 [0, ∞]

GL_PACK_SKIP_PIXELS integer 0 [0, ∞]

GL_PACK_ALIGNMENT integer 4 1, 2, 4 or 8

GL_UNPACK_SWAP_BYTES boolean false true or false

GL_UNPACK_LSB_FIRST boolean false true or false

GL_UNPACK_ROW_LENGTH integer 0 [0, ∞]

 GL_UNPACK_SKIP_ROWS integer 0 [0, ∞]

GL_UNPACK_SKIP_PIXELS integer 0 [0, ∞]

GL_UNPACK_ALIGNMENT integer 4 1, 2, 4 or 8
Chapter 14 331

P
glPixelStore
Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value.

• GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip
value is specified, or if alignment is specified as other than 1, 2, 4, or 8.

• GL_INVALID_OPERATION is generated if glPixelStore is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_PACK_SWAP_BYTES
glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_ALIGNMENT

See Also

glBitmap,
glDrawPixels,
glPixelMap,
glPixelTransfer,
glPixelZoom,
glPolygonStipple,
glPushClientAttrib,
glReadPixels,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D
Chapter 14332

P
glPixelTransfer
glPixelTransfer
glPixelTransferf, glPixelTransferi : set pixel transfer modes.

C Specification

void glPixelTransferf(
GLenum pname,
GLfloat param)

void glPixelTransferi(
GLenum pname,

GLint param)

Parameters

pname Specifies the symbolic name of the pixel transfer parameter to be set.
Must be one of the following: GL_MAP_COLOR, GL_MAP_STENCIL,
GL_INDEX_SHIFT, GL_INDEX_OFFSET, GL_RED_SCALE,
GL_RED_BIAS, GL_GREEN_SCALE, GL_GREEN_BIAS,
GL_BLUE_SCALE, GL_BLUE_BIAS, GL_ALPHA_SCALE,
GL_ALPHA_BIAS, GL_DEPTH_SCALE, or GL_DEPTH_BIAS.

param Specifies the value that pname is set to.

Description

 glPixelTransfer sets pixel transfer modes that affect the operation of subsequent
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, and glTexSubImage2D commands. The algorithms that are specified
by pixel transfer modes operate on pixels after they are read from the frame buffer
(glCopyPixels glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, and glReadPixels), or unpacked from client memory
(glDrawPixels, glTexImage1D, glTexImage2D, glTexSubImage1D, and
glTexSubImage2D). Pixel transfer operations happen in the same order, and in the same
manner, regardless of the command that resulted in the pixel operation. Pixel storage
modes (see glPixelStore) control the unpacking of pixels being read from client memory,
and the packing of pixels being written back into client memory.

 Pixel transfer operations handle four fundamental pixel types: color, color index, depth,
and stencil. Color pixels consist of four floating-point values with unspecified mantissa
and exponent sizes, scaled such that 0 represents zero intensity and 1 represents full
intensity. Color indices comprise a single fixed-point value, with unspecified precision to
the right of the binary point. Depth pixels comprise a single floating-point value, with
unspecified mantissa and exponent sizes, scaled such that 0.0 represents the minimum
depth buffer value, and 1.0 represents the maximum depth buffer value. Finally, stencil
pixels comprise a single fixed-point value, with unspecified precision to the right of the
binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

Color
Chapter 14 333

P
glPixelTransfer
Each of the four color components is multiplied by a scale factor, then added to a bias
factor. That is, the red component is multiplied by GL_RED_SCALE, then added to
GL_RED_BIAS; the green component is multiplied by GL_GREEN_SCALE, then added
to GL_GREEN_BIAS; the blue component is multiplied by GL_BLUE_SCALE, then
added to GL_BLUE_BIAS; and the alpha component is multiplied by
GL_ALPHA_SCALE, then added to GL_ALPHA_BIAS. After all four color components
are scaled and biased, each is clamped to the range [0, 1]. All color, scale, and bias values
are specified with glPixelTransfer.

If GL_MAP_COLOR is true, each color component is scaled by the size of the
corresponding color-to-color map, then replaced by the contents of that map indexed by
the scaled component. That is, the red component is scaled by
GL_PIXEL_MAP_R_TO_R_SIZE, then replaced by the contents of
GL_PIXEL_MAP_R_TO_R indexed by itself. The green component is scaled by
GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of
GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component is scaled by
GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents of
GL_PIXEL_MAP_B_TO_B indexed by itself. And the alpha component is scaled by
GL_PIXEL_MAP_A_TO_A_SIZE, then replaced by the contents of
GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken from the maps are
then clamped to the range [0, 1]. GL_MAP_COLOR is specified with glPixelTransfer. The
contents of the various maps are specified with glPixelMap.

Color index

Each color index is shifted left by GL_INDEX_SHIFT bits; any bits beyond the number
of fraction bits carried by the fixed-point index are filled with zeros. If
GL_INDEX_SHIFT is negative, the shift is to the right, again zero filled. Then
GL_INDEX_OFFSET is added to the index. GL_INDEX_SHIFT and
GL_INDEX_OFFSET are specified with glPixelTransfer.

From this point, operation diverges depending on the required format of the resulting
pixels. If the resulting pixels are to be written to a color index buffer, or if they are being
read back to client memory in GL_COLOR_INDEX format, the pixels continue to be
treated as indices. If GL_MAP_COLOR is true, each index is masked by 2n -1, where n is
GL_PIXEL_MAP_I_TO_I_SIZE, then replaced by the contents of
GL_PIXEL_MAP_I_TO_I indexed by the masked value. GL_MAP_COLOR is specified
with glPixelTransfer. The contents of the index map is specified with glPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they are read back
to client memory in a format other than GL_COLOR_INDEX, the pixels are converted
from indices to colors by referencing the four maps GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A.
Before being de-referenced, the index is masked by 2n - 1, where n is
GL_PIXEL_MAP_I_TO_R_SIZE for the red map, GL_PIXEL_MAP_I_TO_G_SIZE for
the green map, GL_PIXEL_MAP_I_TO_B_SIZE for the blue map, and
GL_PIXEL_MAP_I_TO_A_SIZE for the alpha map. All components taken from the maps
are then clamped to the range [0, 1]. The contents of the four maps is specified with
glPixelMap.

Depth

Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS,
then clamped to the range [0, 1].

Stencil
Chapter 14334

P
glPixelTransfer
Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then added to
GL_INDEX_OFFSET. If GL_MAP_STENCIL is true, each index is masked by 2n - 1,
where n is GL_PIXEL_MAP_S_TO_S_SIZE, then replaced by the contents of
GL_PIXEL_MAP_S_TO_S indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the
pixel transfer parameters that are set with glPixelTransfer.

glPixelTransferf can be used to set any pixel transfer parameter. If the parameter type is
boolean, 0 implies false and any other value implies true. If pname is an integer
parameter, param is rounded to the nearest integer.

Likewise, glPixelTransferi can be used to set any of the pixel transfer parameters.
Boolean parameters are set to false if param is 0 and to true otherwise. param is
converted to floating point before being assigned to real-valued parameters.

Notes

If a glCopyPixels, glCopyTexImage1D,glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, or glTexSubImage2D command is placed in a display list (see
glNewList and glCallList), the pixel transfer mode settings in effect when the display
list is executed are the ones that are used. They may be different from the settings when
the command was compiled into the display list.

pname Type Initial
Value

Valid
Range

GL_MAP_COLOR boolean false true/false

GL_MAP_STENCIL boolean false true/false

 GL_INDEX_SHIFT integer 0 (- ∞,∞)

GL_INDEX_OFFSET integer 0 (- ∞,∞)

 GL_RED_SCALE float 1 (- ∞,∞)

 GL_GREEN_SCALE float 1 (- ∞,∞)

GL_BLUE_SCALE float 1 (- ∞,∞)

GL_ALPHA_SCALE float 1 (- ∞,∞)

GL_DEPTH_SCALE float 1 (- ∞,∞)

 GL_RED_BIAS float 0 (- ∞,∞)

 GL_GREEN_BIAS float 0 (- ∞,∞)

GL_BLUE_BIAS float 0 (- ∞,∞)

 GL_ALPHA_BIAS float 0 (- ∞,∞)

 GL_DEPTH_BIAS float 0 (- ∞,∞)
Chapter 14 335

P
glPixelTransfer
Errors

• GL_INVALID_ENUM is generated if pname is not an accepted value.

• GL_INVALID_OPERATION is generated if glPixelTransfer is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP_COLOR
glGet with argument GL_MAP_STENCIL
glGet with argument GL_INDEX_SHIFT
glGet with argument GL_INDEX_OFFSET
glGet with argument GL_RED_SCALE
glGet with argument GL_RED_BIAS
glGet with argument GL_GREEN_SCALE
glGet with argument GL_GREEN_BIAS
glGet with argument GL_BLUE_SCALE
glGet with argument GL_BLUE_BIAS
glGet with argument GL_ALPHA_SCALE
glGet with argument GL_ALPHA_BIAS
glGet with argument GL_DEPTH_SCALE
glGet with argument GL_DEPTH_BIAS

See Also

glCallList,
glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
glNewList,
glPixelMap,
glPixelStore,
glPixelZoom,
glReadPixels,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D
Chapter 14336

P
glPixelZoom
glPixelZoom
glPixelZoom : specify the pixel zoom factors.

C Specification

void glPixelZoom(
 GLfloat xfactor,

GLfloat yfactor)

Parameters

xfactor, yfactor Specify the x and y zoom factors for pixel write operations.

Description

glPixelZoom specifies values for the x and y zoom factors. During the execution of
glDrawPixels or glCopyPixels, if (xr, yr) is the current raster position, and a given
element is in the mth row and nth column of the pixel rectangle, then pixels whose
centers are in the rectangle with corners at

 (xr + n ·xfactor, yr + m ·yfactor)

(xr + (n+1) ·xfactor, yr + (m+1) ·yfactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of
this rectangular region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the
resulting image about the current raster position.

Errors

• GL_INVALID_OPERATION is generated if glPixelZoom is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ZOOM_X
glGet with argument GL_ZOOM_Y

See Also

glCopyPixels,
glDrawPixels
Chapter 14 337

P
glPointSize
glPointSize
glPointSize : specify the diameter of rasterized points.

C Specification

void glPointSize(

GLfloat size)

Parameters

size Specifies the diameter of rasterized points. The initial value is 1.

Description

glPointSize specifies the rasterized diameter of both aliased and anti-aliased points.
Using a point size other than 1 has different effects, depending on whether point
anti-aliasing is enabled. To enable and disable point anti-aliasing, call glEnable and
glDisable with argument GL_POINT_SMOOTH. Point anti-aliasing is initially disabled.

If point anti-aliasing is disabled, the actual size is determined by rounding the supplied
size to the nearest integer. (If the rounding results in the value 0, it is as if the point size
were 1.) If the rounded size is odd, then the center point (x, y) of the pixel fragment that
represents the point is computed as

 (xw + .5, yw + .5)

where w subscripts indicate window coordinates. All pixels that lie within the square
grid of the rounded size centered at (x, y) make up the fragment. If the size is even, the
center point is

 (xw + .5 , yw + .5)

and the rasterized fragment’s centers are the half-integer window coordinates within the
square of the rounded size centered at (x, y). All pixel fragments produced in rasterizing
a non anti-aliased point are assigned the same associated data, that of the vertex
corresponding to the point.

 If anti-aliasing is enabled, then point rasterization produces a fragment for each pixel
square that intersects the region lying within the circle having diameter equal to the
current point size and centered at the point’s (xw, yw). The coverage value for each
fragment is the window coordinate area of the intersection of the circular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.
The data associated with each fragment is the data associated with the point being
rasterized.

Not all sizes are supported when point anti-aliasing is enabled. If an unsupported size is
requested, the nearest supported size is used. Only size 1 is guaranteed to be supported;
others depend on the implementation. To query the range of supported sizes and the size
difference between supported sizes within the range, call glGet with arguments
GL_POINT_SIZE_RANGE and GL_POINT_SIZE_GRANULARITY.
Chapter 14338

P
glPointSize
Notes

 The point size specified by glPointSize is always returned when GL_POINT_SIZE is
queried. Clamping and rounding for aliased and anti-aliased points have no effect on the
specified value.

A non-anti-aliased point size may be clamped to an implementation-dependent
maximum. Although this maximum cannot be queried, it must be no less than the
maximum value for anti-aliased points, rounded to the nearest integer value.

Errors

• GL_INVALID_VALUE is generated if size is less than or equal to 0.

• GL_INVALID_OPERATION is generated if glPointSize is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_POINT_SIZE
glGet with argument GL_POINT_SIZE_RANGE
glGet with argument GL_POINT_SIZE_GRANULARITY
glIsEnabled with argument GL_POINT_SMOOTH

See Also

glEnable
Chapter 14 339

P
glPolygonMode
glPolygonMode
glPolygonMode : select a polygon rasterization mode.

C Specification

void glPolygonMode(
 GLenum face,

GLenum mode)

Parameters

face Specifies the polygons that mode applies to.

Must be GL_FRONT for front-facing polygons, GL_BACK for
back-facing polygons, or GL_FRONT_AND_BACK for front- and
back-facing polygons.

mode Specifies how polygons will be rasterized. Accepted values are
GL_POINT, GL_LINE, and GL_FILL. The initial value is GL_FILL for
both front- and back-facing polygons.

Description

glPolygonMode controls the interpretation of polygons for rasterization. face describes
which polygons mode applies to: front-facing polygons (GL_FRONT), back-facing
polygons (GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon’s vertices are lit and the
polygon is clipped and possibly culled before these modes are applied.

Three modes are defined and can be specified in mode:

 GL_POINT

Polygon vertices that are marked as the start of a boundary edge are drawn as points.
Point attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the
rasterization of the points. Polygon rasterization attributes other than
GL_POLYGON_MODE have no effect.

GL_LINE

Boundary edges of the polygon are drawn as line segments. They are treated as
connected line segments for line stippling; the line stipple counter and pattern are not
reset between segments (see glLineStipple). Line attributes such as GL_LINE_WIDTH
and GL_LINE_SMOOTH control the rasterization of the lines. Polygon rasterization
attributes other than GL_POLYGON_MODE have no effect.

GL_FILL

The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE
and GL_POLYGON_SMOOTH control the rasterization of the polygon.
Chapter 14340

P
glPolygonMode
Examples

To draw a surface with filled back-facing polygons and outlined front-facing polygons,
call

glPolygonMode(GL_FRONT, GL_LINE) ;

Notes

Vertices are marked as boundary or non-boundary with an edge flag. Edge flags are
generated internally by the GL when it decomposes polygons; they can be set explicitly
using glEdgeFlag.

Errors

• GL_INVALID_ENUM is generated if either face or mode is not an accepted value.

• GL_INVALID_OPERATION is generated if glPolygonMode is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_POLYGON_MODE

See Also

glBegin,
glEdgeFlag,
glLineStipple,
glLineWidth,
glPointSize,
glPolygonStipple
Chapter 14 341

P
glPolygonOffset
glPolygonOffset
glPolygonOffset : set the scale and bias used to calculate depth values.

C Specification

void glPolygonOffset(
GLfloat factor,

GLfloat units)

Parameters

factor Specifies a scale factor that is used to create a variable depth offset for
each polygon. The initial value is 0.

units Is multiplied by an implementation-specific value to create a constant
depth offset. The initial value is 0.

Description

When GL_POLYGON_OFFSET is enabled, each fragment’s depth value will be offset
after it is interpolated from the depth values of the appropriate vertices. The value of the
offset is factor × ∆z + r × units, where z is a measurement of the change in depth relative
to the screen area of the polygon, and r is the smallest value that is guaranteed to
produce a resolvable offset for a given implementation. The offset is added before the
depth test is performed and before the value is written into the depth buffer.

glPolygonOffset is useful for rendering hidden-line images, for applying decals to
surfaces, and for rendering solids with highlighted edges.

Notes

glPolygonOffset is available only if the GL version is 1.1 or greater.

glPolygonOffset has no effect on depth coordinates placed in the feedback buffer.

 glPolygonOffset has no effect on selection.

Errors

• GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT.

glGet with argument GL_POLYGON_OFFSET_FACTOR or
GL_POLYGON_OFFSET_UNITS.
Chapter 14342

P
glPolygonOffset
See Also

glDepthFunc,
glDisable,
glEnable,
glGet,
glIsEnabled,
glLineWidth,
glStencilOp,
glTexEnv
Chapter 14 343

P
glPolygonStipple
glPolygonStipple
glPolygonStipple : set the polygon stippling pattern.

C Specification

void glPolygonStipple(

const GLubyte *mask)

Parameters

mask Specifies a pointer to a 32 × 32 stipple pattern that will be unpacked
from memory in the same way that glDrawPixels unpacks pixels.

Description

Polygon stippling, like line stippling (see glLineStipple), masks out certain fragments
produced by rasterization, creating a pattern. Stippling is independent of polygon
anti-aliasing.

*mask is a pointer to a 32 × 32 stipple pattern that is stored in memory just like the pixel
data supplied to a glDrawPixels call with height and width both equal to 32, a pixel
format of GL_COLOR_INDEX, and data type of GL_BITMAP. That is, the stipple
pattern is represented as a 32 × 32 array of 1-bit color indices packed in unsigned bytes.
glPixelStore parameters like GL_UNPACK_SWAP_BYTES and
GL_UNPACK_LSB_FIRST affect the assembling of the bits into a stipple pattern. Pixel
transfer operations (shift, offset, pixel map) are not applied to the stipple image,
however.

To enable and disable polygon stippling, call glEnable and glDisable with argument
GL_POLYGON_STIPPLE. Polygon stippling is initially disabled. If it’s enabled, a
rasterized polygon fragment with window coordinates xw and yw is sent to the next stage
of the GL if and only if the (xw mod 32)th bit in the (yw mod 32)th row of the stipple
pattern is 1 (one). When polygon stippling is disabled, it is as if the stipple pattern
consists of all 1s.

Errors

• GL_INVALID_OPERATION is generated if glPolygonStipple is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetPolygonStipple
glIsEnabled with argument GL_POLYGON_STIPPLE
Chapter 14344

P
glPolygonStipple
See Also

glDrawPixels,
glLineStipple,
glPixelStore,
glPixelTransfer
Chapter 14 345

P
glPrioritizeTextures
glPrioritizeTextures
glPrioritizeTextures : set texture residence priority.

C Specification

void glPrioritizeTextures(
GLsizei n,

 const GLuint *textures,

const GLclampf *priorities)

Parameters

n Specifies the number of textures to be prioritized.

textures Specifies an array containing the names of the textures to be
prioritized.

priorities Specifies an array containing the texture priorities. A priority given in
an element of priorities applies to the texture named by the
corresponding element of textures.

Description

glPrioritizeTextures assigns the n texture priorities given in priorities to the n textures
named in textures.

The GL establishes a “working set” of textures that are resident in texture memory.
These textures may be bound to a texture target much more efficiently than textures
that are not resident. By specifying a priority for each texture, glPrioritizeTextures
allows applications to guide the GL implementation in determining which textures
should be resident.

The priorities given in priorities are clamped to the range [0, 1] before they are assigned.
0 indicates the lowest priority; textures with priority 0 are least likely to be resident. 1
indicates the highest priority; textures with priority 1 are most likely to be resident.
However, textures are not guaranteed to be resident until they are used.

glPrioritizeTextures silently ignores attempts to prioritize texture 0, or any texture
name that does not correspond to an existing texture.

glPrioritizeTextures does not require that any of the textures named by textures be
bound to a texture target. glTexParameter may also be used to set a texture’s priority,
but only if the texture is currently bound. This is the only way to set the priority of a
default texture.

Notes

glPrioritizeTextures is available only if the GL version is 1.1 or greater.
Chapter 14346

P
glPrioritizeTextures
Errors

• GL_INVALID_VALUE is generated if n is negative.

• GL_INVALID_OPERATION is generated if glPrioritizeTextures is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY retrieves the
priority of a currently bound texture.

See Also

glAreTexturesResident,
glBindTexture,
glCopyTexImage1D,
glCopyTexImage2D,
glTexImage1D,
glTexImage2D,
glTexParameter
Chapter 14 347

P
gluProject
gluProject
gluProject : map object coordinates to window coordinates.

C Specification

GLint gluProject(
GLdouble objX,
GLdouble objY,
GLdouble objZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* winX,
GLdouble* winY,

GLdouble* winZ)

Parameters

objA, objY, objZ Specify the object coordinates.

model Specifies the current modelview matrix (as from a glGetDoublev call).

proj Specifies the current projection matrix (as from a glGetDoublev call).

view Specifies the current viewport (as from a glGetIntegerv call).

winX, winY, winZ Return the computed window coordinates.

Description

gluProject transforms the specified object coordinates into window coordinates using
model, proj, and view. The result is stored in winX, winY, and winZ. A return value of
GL_TRUE indicates success, a return value of GL_FALSE indicates failure.

To compute the coordinates, let v = (objX, objY, objZ, 1.0) represented as a matrix with 4
rows and 1 column. Then gluProject computes v as follows:

 v = P × M × v

where P is the current projection matrix proj, M is the current modelview matrix model
(both represented as 4 4 matrices in column-major order) and "×" represents matrix
multiplication.

The window coordinates are then computed as follows:

winX = view(0) + view(2) (v’(0) + 1)/2
winY = view(1) + view(3) (v’(1) + 1)/2
winZ = (v(2) + 1)/ 2

See Also

glGet,
gluUnProject
Chapter 14348

P
glPushAttrib
glPushAttrib
glPushAttrib, glPopAttrib : push and pop the server attribute stack.

C Specification

void glPushAttrib(
GLbitfield mask)

void glPopAttrib(void)

Parameters

mask Specifies a mask that indicates which attributes to save. Values for
mask are listed below.

Description

glPushAttrib takes one argument, a mask that indicates which groups of state variables
to save on the attribute stack. Symbolic constants are used to set bits in the mask. mask
is typically constructed by ORing several of these constants together. The special mask
GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second
column lists which attributes are saved):

GL_ACCUM_BUFFER_BIT Accumulation buffer clear value

GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable bit
Alpha test function and reference value
GL_BLEND enable bit
Blending source and destination functions
Constant blend color
Blending equation
GL_DITHER enable bit
GL_DRAW_BUFFER setting
GL_COLOR_LOGIC_OP enable bit
GL_INDEX_LOGIC_OP enable bit
Logic op function
Color mode and index mode clear values
Color mode and index mode writemasks
Chapter 14 349

P
glPushAttrib
GL_CURRENT_BIT Current RGBA color
Current color index
Current normal vector
Current texture coordinates
Current raster position
GL_CURRENT_RASTER_POSITION_VALID
flag
RGBA color associated with current raster
position
Color index associated with current raster
position
Texture coordinates associated with current
raster position
GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit
Depth buffer test function
Depth buffer clear value
GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT GL_ALPHA_TEST flag
GL_AUTO_NORMAL flag
GL_BLEND flag
Enable bits for the user-definable clipping
planes
GL_COLOR_MATERIAL
GL_CULL_FACE flag
GL_DEPTH_TEST flag
GL_DITHER flag
GL_FOG flag
GL_LIGHTi where 0 i < GL_MAX_LIGHTS
GL_LIGHTING flag
GL_LINE_SMOOTH flag
GL_LINE_STIPPLE flag
GL_COLOR_LOGIC_OP flag
GL_INDEX_LOGIC_OP flag
GL_MAP1_x where x is a map type
GL_MAP2_x where x is a map type
GL_NORMALIZE flag
GL_POINT_SMOOTH flag
GL_POLYGON_OFFSET_LINE flag
GL_POLYGON_OFFSET_FILL flag
GL_POLYGON_OFFSET_POINT flag
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE flag
GL_SCISSOR_TEST flag
GL_STENCIL_TEST flag
GL_TEXTURE_1D flag
GL_TEXTURE_2D flag
Flags GL_TEXTURE_GEN_x where x is S, T,
R, or Q
Chapter 14350

P
glPushAttrib
GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type
GL_MAP2_x enable bits, where x is a map type
1D grid endpoints and divisions
2D grid endpoints and divisions
GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable bit
Fog color
Fog density
Linear fog start
Linear fog end
Fog index
GL_FOG_MODE value

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT
setting
GL_POINT_SMOOTH_HINT setting
GL_LINE_SMOOTH_HINT setting
GL_POLYGON_SMOOTH_HINT setting
GL_FOG_HINT setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable bit
GL_COLOR_MATERIAL_FACE value
Color material parameters that are tracking
the current color
Ambient scene color
GL_LIGHT_MODEL_LOCAL_VIEWER value
GL_LIGHT_MODEL_TWO_SIDE setting
GL_LIGHTING enable bit
Enable bit for each light
Ambient, diffuse, and specular intensity for
each light
Direction, position, exponent, and cutoff angle
for each light
Constant, linear, and quadratic attenuation
factors for each light
Ambient, diffuse, specular, and emissive color
for each material
Ambient, diffuse, and specular color indices for
each material
Specular exponent for each material
GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag
GL_LINE_STIPPLE enable bit
Line stipple pattern and repeat counter
Line width

GL_LIST_BIT GL_LIST_BASE setting
Chapter 14 351

P
glPushAttrib
GL_PIXEL_MODE_BIT GL_RED_BIAS and GL_RED_SCALE settings
GL_GREEN_BIAS and GL_GREEN_SCALE
values
GL_BLUE_BIAS and GL_BLUE_SCALE
GL_ALPHA_BIAS and GL_ALPHA_SCALE
GL_DEPTH_BIAS and GL_DEPTH_SCALE
GL_INDEX_OFFSET and GL_INDEX_SHIFT
values
GL_MAP_COLOR and GL_MAP_STENCIL
flags
GL_ZOOM_X and GL_ZOOM_Y factors
GL_READ_BUFFER setting

GL_POINT_BIT GL_POINT_SMOOTH flag
Point size

GL_POLYGON_BIT GL_CULL_FACE enable bit
GL_CULL_FACE_MODE value
GL_FRONT_FACE indicator
GL_POLYGON_MODE setting
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE enable bit
GL_POLYGON_OFFSET_FILL flag
GL_POLYGON_OFFSET_LINE flag
GL_POLYGON_OFFSET_POINT flag
GL_POLYGON_OFFSET_FACTOR
GL_POLYGON_OFFSET_UNITS

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR_BIT GL_SCISSOR_TEST flag
Scissor box

GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit
Stencil function and reference value
Stencil value mask
Stencil fail, pass, and depth buffer pass actions
Stencil buffer clear value
Stencil buffer writemask
Chapter 14352

P
glPushAttrib
glPopAttrib restores the values of the state variables saved with the last glPushAttrib
command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty

stack. In either case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

Notes

Not all values for GL state can be saved on the attribute stack. For example, render
mode state, and select and feedback state cannot be saved. Client state must be saved
with glPushClientAttrib.

The depth of the attribute stack depends on the implementation, but it must be at least
16.

Errors

• GL_STACK_OVERFLOW is generated if glPushAttrib is called while the attribute
stack is full.

• GL_STACK_UNDERFLOW is generated if glPopAttrib is called while the attribute
stack is empty.

• GL_INVALID_OPERATION is generated if glPushAttrib or glPopAttrib is executed
between the execution of glBegin and the corresponding execution of glEnd.

GL_TEXTURE_BIT Enable bits for the four texture coordinates
Border color for each texture image
Minification function for each texture image
Magnification function for each texture image
Texture coordinates and wrap mode for each
texture image
Color and mode for each texture environment
Enable bits GL_TEXTURE_GEN_x, x is S, T, R,
and Q
GL_TEXTURE_GEN_MODE setting for S, T,
R, and Q
glTexGen plane equations for S, T, R, and Q
Current texture bindings (for example,
GL_TEXTURE_2D_BINDING)

GL_TRANSFORM_BIT Coefficients of the six clipping planes
Enable bits for the user-definable clipping
planes
GL_MATRIX_MODE value
GL_NORMALIZE flag

GL_VIEWPORT_BIT Depth range (near and far)
Viewport origin and extent
Chapter 14 353

P
glPushAttrib
Associated Gets

 glGet with argument GL_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_ATTRIB_STACK_DEPTH

See Also

glGet,
glGetClipPlane,
glGetError,
glGetLight,
glGetMap,
glGetMaterial,
glGetPixelMap,
glGetPolygonStipple,
glGetString,
glGetTexEnv,
glGetTexGen,
glGetTexImage,
glGetTexLevelParameter,
glGetTexParameter,
glIsEnabled,
glPushClientAttrib
Chapter 14354

P
glPushClientAttrib
glPushClientAttrib
glPushClientAttrib, glPopClientAttrib : push and pop the client attribute stack.

C Specification

void glPushClientAttrib(
GLbitfield mask)

void glPopClientAttrib(void)

Parameters

mask Specifies a mask that indicates which attributes to save. Values for
mask are listed below.

Description

glPushClientAttrib takes one argument, a mask that indicates which groups of
client-state variables to save on the client attribute stack. Symbolic constants are used
to set bits in the mask. mask is typically constructed by ORing several of these constants
together. The special mask GL_CLIENT_ALL_ATTRIB_BITS can be used to save all
stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the
second column lists which attributes are saved):

glPopClientAttrib restores the values of the client-state variables saved with the last
glPushClientAttrib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off
an empty stack. In either case, the error flag is set, and no other change is made to GL
state.

Initially, the client attribute stack is empty.

Notes

glPushClientAttrib is available only if the GL version is 1.1 or greater.

Not all values for GL client state can be saved on the attribute stack. For example, select
and feedback state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least
16.

Use glPushAttrib and glPopAttrib to push and restore state which is kept on the server.
Only pixel storage modes and vertex array state may be pushed and popped with
glPushClientAttrib and glPopClientAttrib.

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes

GL_CLIENT_VERTEX_ARRAY_BIT Vertex arrays (and enables)
Chapter 14 355

P
glPushClientAttrib
Errors

• GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the
attribute stack is full.

• GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the
attribute stack is empty.

Associated Gets

glGet with argument GL_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

See Also

glColorPointer,
glDisableClientState,
glEdgeFlagPointer,
glEnableClientState,
glGet,
glGetError,
glIndexPointer,
glNormalPointer,
glNewList,
glPixelStore,
glPushAttrib,
glTexCoordPointer,
glVertexPointer
Chapter 14356

P
glPushMatrix
glPushMatrix
glPushMatrix, glPopMatrix : push and pop the current matrix stack.

C Specification

void glPushMatrix(void)

void glPopMatrix(void)

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode,
the stack depth is at least 32. In the other two modes, GL_PROJECTION and
GL_TEXTURE, the depth is at least 2. The current matrix in any mode is the matrix on
the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current
matrix. That is, after a glPushMatrix call, the matrix on top of the stack is identical to
the one below it.

 glPopMatrix pops the current matrix stack, replacing the current matrix with the one
below it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a
single matrix. In either case, the error flag is set and no other change is made to GL
state.

Errors

• GL_STACK_OVERFLOW is generated if glPushMatrix is called while the current
matrix stack is full.

• GL_STACK_UNDERFLOW is generated if glPopMatrix is called while the current
matrix stack contains only a single matrix.

• GL_INVALID_OPERATION is generated if glPushMatrix or glPopMatrix is
executed between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX
glGet with argument GL_MODELVIEW_STACK_DEPTH
glGet with argument GL_PROJECTION_STACK_DEPTH
glGet with argument GL_TEXTURE_STACK_DEPTH
glGet with argument GL_MAX_MODELVIEW_STACK_DEPTH
glGet with argument GL_MAX_PROJECTION_STACK_DEPTH
glGet with argument GL_MAX_TEXTURE_STACK_DEPTH
Chapter 14 357

P
glPushMatrix
See Also

glFrustum,
glLoadIdentity,
glLoadMatrix,
glMatrixMode,
glMultMatrix,
glOrtho,
glRotate,
glScale,
glTranslate,
glViewport
Chapter 14358

P
glPushName
glPushName
glPushName, glPopName : push and pop the name stack.

C Specification

void glPushName(
GLuint name)

void glPopName(void)

Parameters

name Specifies a name that will be pushed onto the name stack.

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers and is initially
empty.

glPushName causes name to be pushed onto the name stack. glPopName pops one name
off the top of the stack.

The maximum name stack depth is implementation-dependent; call
GL_MAX_NAME_STACK_DEPTH to find out the value for a particular implementation.
It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is
also an error to manipulate the name stack between the execution of glBegin and the
corresponding execution of glEnd. In any of these cases, the error flag is set and no other
change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glPushName or glPopName while the render mode is not GL_SELECT are ignored.

Errors

• GL_STACK_OVERFLOW is generated if glPushName is called while the name stack
is full.

• GL_STACK_UNDERFLOW is generated if glPopName is called while the name
stack is empty.

• GL_INVALID_OPERATION is generated if glPushName or glPopName is executed
between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH
Chapter 14 359

P
glPushName
See Also

glInitNames,
glLoadName,
glRenderMode,
glSelectBuffer
Chapter 14360

P
gluPwlCurve
gluPwlCurve
gluPwlCurve : describe a piece-wise linear NURBS trimming curve.

C Specification

void gluPwlCurve(
GLUnurbs* nurb,
GLint count,
GLfloat* data,
GLint stride,

GLenum type)

Parameters

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

count Specifies the number of points on the curve.

data Specifies an array containing the curve points.

stride Specifies the offset (a number of single-precision floating-point values)
between points on the curve.

type Specifies the type of curve. Must be either GLU_MAP1_TRIM_2 or
GLU_MAP1_TRIM_3.

Description

gluPwlCurve describes a piece-wise linear trimming curve for a NURBS surface. A
piece-wise linear curve consists of a list of coordinates of points in the parameter space
for the NURBS surface to be trimmed. These points are connected with line segments to
form a curve. If the curve is an approximation to a curve that is not piece-wise linear, the
points should be close enough in parameter space that the resulting path appears curved
at the resolution used in the application.

If type is GLU_MAP1_TRIM_2, then it describes a curve in two-dimensional (u and v)
parameter space. If it is GLU_MAP1_TRIM_3, then it describes a curve in
two-dimensional homogeneous (u, v, and w) parameter space. See the gluBeginTrim
reference page for more information about trimming curves.

Notes

To describe a trim curve that closely follows the contours of a NURBS surface, call
gluNurbsCurve.

See Also

gluBeginCurve,
gluBeginTrim,
gluNewNurbsRenderer,
gluNurbsCurve
Chapter 14 361

P
gluPwlCurve
Chapter 14362

15 Q
Chapter 15 363

Q
gluQuadricCallback
gluQuadricCallback
gluQuadricCallback : define a callback for a quadrics object.

C Specification

void gluQuadricCallback(
GLUquadric* quad,
GLenum which,

GLvoid (*CallBackFunc)()

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

which Specifies the callback being defined. The only valid value is
GLU_ERROR.

CallBackFunc Specifies the function to be called.

Description

gluQuadricCallback is used to define a new callback to be used by a quadrics object. If
the specified callback is already defined, then it is replaced. If CallBackFunc is NULL,
then any existing callback is erased.

The one legal callback is GLU_ERROR:

GLU_ERROR

The function is called when an error is encountered. Its single argument is of type
GLenum, and it indicates the specific error that occurred. Character strings describing
these errors can be retrieved with the gluErrorString call.

See Also

gluErrorString,
gluNewQuadric
Chapter 15364

Q
gluQuadricDrawStyle
gluQuadricDrawStyle
gluQuadricDrawStyle : specify the draw style desired for quadrics.

C Specification

void gluQuadricDrawStyle(
GLUquadric* quad,

GLenum draw)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

draw Specifies the desired draw style. Valid values are GLU_FILL,
GLU_LINE, GLU_SILHOUETTE, and GLU_POINT.

Description

gluQuadricDrawStyle specifies the draw style for quadrics rendered with quad. The
legal values are as follows:

GLU_FILL

Quadrics are rendered with polygon primitives. The polygons are drawn in a
counterclockwise fashion with respect to their normals (as defined with
gluQuadricOrientation).

GLU_LINE

Quadrics are rendered as a set of lines.

GLU_SILHOUETTE

Quadrics are rendered as a set of lines, except that edges separating coplanar faces will
not be drawn.

GLU_POINT

Quadrics are rendered as a set of points.

See Also

gluNewQuadric,
gluQuadricNormals,
gluQuadricOrientation,
gluQuadricTexture
Chapter 15 365

Q
gluQuadricNormals
gluQuadricNormals
gluQuadricNormals: specify what kind of normals are desired for quadrics.

C Specification

void gluQuadricNormals(
GLUquadric* quad,

GLenum normal)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

normal Specifies the desired type of normals. Valid values are GLU_NONE,
GLU_FLAT, and GLU_SMOOTH.

Description

gluQuadricNormals specifies what kind of normals are desired for quadrics rendered
with quad. The legal values are as follows:

GLU_NONE

No normals are generated.

GLU_FLAT

One normal is generated for every facet of a quadric.

GLU_SMOOTH

One normal is generated for every vertex of a quadric. This is the initial value.

See Also

gluNewQuadric,
gluQuadricDrawStyle,
gluQuadricOrientation,
gluQuadricTexture
Chapter 15366

Q
gluQuadricOrientation
gluQuadricOrientation
gluQuadricOrientation : specify inside/outside orientation for quadrics.

C Specification

void gluQuadricOrientation(
GLUquadric* quad,

GLenum orientation)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

orientation Specifies the desired orientation. Valid values are GLU_OUTSIDE
and GLU_INSIDE.

Description

gluQuadricOrientation specifies what kind of orientation is desired for quadrics
rendered with quad. The orientation values are as follows:

GLU_OUTSIDE

Quadrics are drawn with normals pointing outward (the initial value).

GLU_INSIDE

Quadrics are drawn with normals pointing inward.

Note that the interpretation of outward and inward depends on the quadric being
drawn.

See Also

gluNewQuadric,
gluQuadricDrawStyle,
gluQuadricNormals,
gluQuadricTexture
Chapter 15 367

Q
gluQuadricTexture
gluQuadricTexture
gluQuadricTexture : specify if texturing is desired for quadrics.

C Specification

void gluQuadricTexture(
GLUquadric* quad,

GLboolean texture)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

texture Specifies a flag indicating if texture coordinates should be generated.

Description

gluQuadricTexture specifies if texture coordinates should be generated for quadrics
rendered with quad. If the value of texture is GL_TRUE, then texture coordinates are
generated, and if texture is GL_FALSE, they are not. The initial value is GL_FALSE.

The manner in which texture coordinates are generated depends upon the specific
quadric rendered.

See Also

gluNewQuadric,
gluQuadricDrawStyle,
gluQuadricNormals,
gluQuadricOrientation
Chapter 15368

Q
glXQueryExtension
glXQueryExtension
glXQueryExtension : indicate whether the GLX extension is supported.

C Specification

Bool glXQueryExtension(
Display *dpy,
int *errorBase,
int *eventBase)

Parameters

dpy Specifies the connection to the X server.

errorBase Returns the base error code of the GLX server extension.

eventBase Returns the base event code of the GLX server extension.

Description

glXQueryExtension returns True if the X server of connection dpy supports the GLX
extension, False otherwise. If True is returned, then errorBase and eventBase return the
error base and event base of the GLX extension. Otherwise, errorBase and eventBase are
unchanged.

errorBase and eventBase do not return values if they are specified as NULL.

Notes

eventBase is included for future extensions. GLX does not currently define any events.

See Also

glXQueryVersion
Chapter 15 369

Q
glXQueryExtensionsString
glXQueryExtensionsString
glXQueryExtensionsString : return list of supported extensions.

C Specification

constchar *glXQueryExtensionsString(
Display *dpy,

int screen)

Parameters

dpy Specifies the connection to the X server.

screen Specifies the screen.

Description

glXQueryExtensionsString returns a pointer to a string describing which GLX
extensions are supported on the connection. The string is null-terminated and contains a
space-separated list of extension names. (The extension names themselves never contain
spaces.) If there are no extensions to GLX, then the empty string is returned.

Notes

glXQueryExtensionsString is available only if the GLX version is 1.1 or greater.

glXQueryExtensionsString only returns information about GLX extensions. Call
glGetString to get a list of GL extensions.

See Also

glGetString,
glXQueryVersion,
glXQueryServerString,
glXGetClientString
Chapter 15370

Q
glXQueryServerString
glXQueryServerString
glXQueryServerString : return string describing the server.

C Specification

constchar *glXQueryServerString(
Display *dpy,
int screen,

int name)

Parameters

dpy Specifies the connection to the X server.

screen Specifies the screen number.

name Specifies which string is returned. One of GLX_VENDOR,
GLX_VERSION, or GLX_EXTENSIONS.

Description

glXQueryServerString returns a pointer to a static, null-terminated string describing
some aspect of the server’s GLX extension. The possible values for name and the format
of the strings is the same as for glXGetClientString. If name is not set to a recognized
value, NULL is returned.

Notes

glXQueryServerString is available only if the GLX version is 1.1 or greater.

If the GLX version is 1.1 or 1.0, the GL version must be 1.0. If the GLX version is 1.2, the
GL version must be 1.1.

glXQueryServerString only returns information about GLX extensions supported by the
server. Call glGetString to get a list of GL extensions. Call glXGetClientString to get a
list of GLX extensions supported by the client.

See Also

glXQueryVersion,
glXGetClientString,
glXQueryExtensionsString
Chapter 15 371

Q
glXQueryVersion
glXQueryVersion
Chapter 15372

16 R
Chapter 16 373

R
glRasterPos
glRasterPos
glRasterPos2d, glRasterPos2f, glRasterPos2i, glRasterPos2s,
glRasterPos3d, glRasterPos3f, glRasterPos3i, glRasterPos3s,
glRasterPos4d, glRasterPos4f, glRasterPos4i, glRasterPos4s,
glRasterPos2dv, glRasterPos2fv, glRasterPos2iv, glRasterPos2sv,
glRasterPos3dv, glRasterPos3fv, glRasterPos3iv, glRasterPos3sv,
glRasterPos4dv, glRasterPos4fv, glRasterPos4iv, glRasterPos4sv : specify
the raster position for pixel operations.

C Specification

void glRasterPos2d(
GLdouble x,
GLdouble y)

void glRasterPos2f(
GLfloat x,
GLfloat y)

void glRasterPos2i(
GLint x,
GLint y)

void glRasterPos2s(
GLshort x,
GLshort y)

void glRasterPos3d(
GLdouble x,
GLdouble y,
GLdouble z)

void glRasterPos3f(
GLfloat x,
GLfloat y,
GLfloat z)

void glRasterPos3i(
GLint x,
GLint y,
GLint z)

void glRasterPos3s(
GLshort x,
GLshort y,
GLshort z)

void glRasterPos4d(
GLdouble x,
GLdouble y,
GLdouble z,
GLdouble w)

void glRasterPos4f(
GLfloat x,
GLfloat y,
GLfloat z,
GLfloat w)

void glRasterPos4i(
Chapter 16374

R
glRasterPos
GLint x,
GLint y,
GLint z,
GLint w)

void glRasterPos4s(
GLshort x,
GLshort y,
GLshort z,
GLshort w)

void glRasterPos2dv(
const GLdouble *v)

void glRasterPos2fv(
const GLfloat *v)

void glRasterPos2iv(
const GLint *v)

void glRasterPos2sv(
const GLshort *v)

void glRasterPos3dv(
const GLdouble *v)

void glRasterPos3fv(
const GLfloat *v)

void glRasterPos3iv(
const GLint *v)

void glRasterPos3sv(
const GLshort *v)

void glRasterPos4dv(
const GLdouble *v)

void glRasterPos4fv(
const GLfloat *v)

void glRasterPos4iv(
const GLint *v)

void glRasterPos4sv(

const GLshort *v)

Parameters

x, y, z, w Specify the x, y, z, and w object coordinates (if present) for the raster
position.

v Specifies a pointer to an array of two, three, or four elements,
specifying x, y, z, and w coordinates, respectively.

Description

The GL maintains a 3D position in window coordinates. This position, called the raster
position, is used to position pixel and bitmap write operations. It is maintained with
subpixel accuracy. See glBitmap, glDrawPixels, and glCopyPixels.

The current raster position consists of three window coordinates (x, y, z), a clip
coordinate value (w), an eye coordinate distance, a valid bit, and associated color data
and texture coordinates. The w coordinate is a clip coordinate, because w is not projected
to window coordinates. glRasterPos4 specifies object coordinates x, y, z, and w explicitly.
Chapter 16 375

R
glRasterPos
glRasterPos3 specifies object coordinate x, y, and z explicitly, while w is implicitly set to
1. glRasterPos2 uses the argument values for x and y while implicitly setting z and w to
0 and 1.

The object coordinates presented by glRasterPos are treated just like those of a glVertex
command: They are transformed by the current modelview and projection matrices and
passed to the clipping stage. If the vertex is not culled, then it is projected and scaled to
window coordinates, which become the new current raster position, and the
GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is culled, then the
valid bit is cleared and the current raster position and associated color and texture
coordinates are undefined.

The current raster position also includes some associated color data and texture
coordinates. If lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA
mode) or GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color
produced by the lighting calculation (see glLight, glLightModel, and glShadeModel). If
lighting is disabled, current color (in RGBA mode, state variable
GL_CURRENT_COLOR) or color index (in color index mode, state variable
GL_CURRENT_INDEX) is used to update the current raster color.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture
generation functions (see glTexGen). Finally, the distance from the origin of the eye
coordinate system to the vertex as transformed by only the modelview matrix replaces
GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is 0, the
valid bit is set, the associated RGBA color is (1, 1, 1, 1), the associated color index is 1,
and the associated texture coordinates are (0, 0, 0, 1). In RGBA mode,
GL_CURRENT_RASTER_INDEX is always 1; in color index mode, the current raster
RGBA color always maintains its initial value.

Notes

The raster position is modified both by glRasterPos and by glBitmap.

When the raster position coordinates are invalid, drawing commands that are based on
the raster position are ignored (that is, they do not result in changes to GL state).

Calling glDrawElements may leave the current color or index indeterminate. If
glRasterPos is executed while the current color or index is indeterminate, the current
raster color or current raster index remains indeterminate.

To set a valid raster position outside the viewport, first set a valid raster position, then
call glBitmap with NULL as the bitmap parameter.

Errors

• GL_INVALID_OPERATION is generated if glRasterPos is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_CURRENT_RASTER_DISTANCE
Chapter 16376

R
glRasterPos
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

See Also

glBitmap,
glCopyPixels,
glDrawElements,
glDrawPixels,
glLight,
glLightModel,
glShadeModel,
glTexCoord,
glTexGen,
glVertex
Chapter 16 377

R
glReadBuffer
glReadBuffer
glReadBuffer : select a color buffer source for pixels.

C Specification

void glReadBuffer(

GLenum mode)

Parameters

mode Specifies a color buffer. Accepted values are GL_FRONT_LEFT,
GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT,
GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_AUXi, where i
is between 0 and GL_AUX_BUFFERS - 1.

Description

glReadBuffer specifies a color buffer as the source for subsequent glReadPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, and glCopyPixels commands. mode accepts one of twelve or
more predefined values. (GL_AUX0 through GL_AUX3 are always defined.) In a fully
configured system, GL_FRONT, GL_LEFT, and GL_FRONT_LEFT all name the front
left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front right buffer, and
GL_BACK_LEFT and GL_BACK name the back left buffer.

Non-stereo double-buffered configurations have only a front left and a back left buffer.
Single-buffered configurations have a front left and a front right buffer if stereo, and
only a front left buffer if non-stereo. It is an error to specify a nonexistent buffer to
glReadBuffer.

mode is initially GL_FRONT in single-buffered configurations, and GL_BACK in
double-buffered configurations.

Errors

• GL_INVALID_ENUM is generated if mode is not one of the twelve (or more)
accepted values.

• GL_INVALID_OPERATION is generated if mode specifies a buffer that does not
exist.

• GL_INVALID_OPERATION is generated if glReadBuffer is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_READ_BUFFER
Chapter 16378

R
glReadBuffer
See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawBuffer,
glReadPixels
Chapter 16 379

R
glReadPixels
glReadPixels
glReadPixels : read a block of pixels from the frame buffer.

C Specification

void glReadPixels(
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,

GLvoid *pixels)

Parameters

x, y Specify the window coordinates of the first pixel that is read from the
frame buffer. This location is the lower left corner of a rectangular
block of pixels.

width, height Specify the dimensions of the pixel rectangle. width and height of one
correspond to a single pixel.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. Must be one of
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

pixels Returns the pixel data.

Description

glReadPixels returns pixel data from the frame buffer, starting with the pixel whose
lower left corner is at location (x, y), into client memory starting at location pixels.
Several parameters control the processing of the pixel data before it is placed into client
memory. These parameters are set with three commands: glPixelStore, glPixelTransfer,
and glPixelMap. This reference page describes the effects on glReadPixels of most, but
not all of the parameters specified by these three commands.

glReadPixels returns values from each pixel with lower left corner at (x + i, y + j) for 0 ≥ i
< width and 0 ≥ j < height. This pixel is said to be the ith pixel in the jth row. Pixels are
returned in row order from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values; accepted values are:

GL_COLOR_INDEX
Chapter 16380

R
glReadPixels
Color indices are read from the color buffer selected by glReadBuffer. Each index is
converted to fixed point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If GL_MAP_COLOR is
GL_TRUE, indices are replaced by their mappings in the table
GL_PIXEL_MAP_I_TO_I. GL_STENCIL_INDEX

Stencil values are read from the stencil buffer.

Each index is converted to fixed point, shifted left or right depending on the value and
sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If GL_MAP_STENCIL is
GL_TRUE, indices are replaced by their mappings in the table
GL_PIXEL_MAP_S_TO_S.

 GL_DEPTH_COMPONENT

Depth values are read from the depth buffer. Each component is converted to floating
point such that the minimum depth value maps to 0 and the maximum value maps to 1.
Each component is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS,
and finally clamped to the range [0,1].

GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_LUMINANCE, and GL_LUMINANCE_ALPHA

Processing differs depending on whether color buffers store color indices or RGBA color
components. If color indices are stored, they are read from the color buffer selected by
glReadBuffer. Each index is converted to fixed point, shifted left or right depending on
the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indices
are then replaced by the red, green, blue, and alpha values obtained by indexing the
tables GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
Each table must be of size 2n, but n may be different for different tables.

Before an index is used to look up a value in a table of size 2n, it must be masked against
2n - 1.

If RGBA color components are stored in the color buffers, they are read from the color
buffer selected by glReadBuffer. Each color component is converted to floating point such
that zero intensity maps to 0.0 and full intensity maps to 1.0. Each component is then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN, BLUE,
or ALPHA. Finally, if GL_MAP_COLOR is GL_TRUE, each component is clamped to the
range [0, 1], scaled to the size of its corresponding table, and is then replaced by its
mapping in the table GL_PIXEL_MAP_c_TO_c, where c is R, G, B, or A.

 Unneeded data is then discarded. For example, GL_RED discards the green, blue, and
alpha components, while GL_RGB discards only the alpha component.
GL_LUMINANCE computes a single-component value as the sum of the red, green, and
blue components, and GL_LUMINANCE_ALPHA does the same, while keeping alpha as
a second value. The final values are clamped to the range [0, 1].

The shift, scale, bias, and lookup factors just described are all specified by
glPixelTransfer. The lookup table contents themselves are specified by glPixelMap.

Finally, the indices or components are converted to the proper format, as specified by
type. If format is GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not
GL_FLOAT, each index is masked with the mask value given in the following table. If
type is GL_FLOAT, then each integer index is converted to single-precision
floating-point format.
Chapter 16 381

R
glReadPixels
 If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each
component is multiplied by the multiplier shown in the following table. If type is
GL_FLOAT, then each component is passed as is (or converted to the client’s
single-precision floating-point format if it is different from the one used by the GL).

Return values are placed in memory as follows. If format is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, or GL_LUMINANCE, a single value is returned and the data for the ith
pixel in the jth row is placed in location j · width + i. GL_RGB returns three values,
GL_RGBA returns four values, and GL_LUMINANCE_ALPHA returns two values for
each pixel, with all values corresponding to a single pixel occupying contiguous space in
pixels. Storage parameters set by glPixelStore, such as GL_PACK_LSB_FIRST and
GL_PACK_SWAP_BYTES, affect the way that data is written into memory. See
glPixelStore for a description.

Notes

Values for pixels that lie outside the window connected to the current GL context are
undefined.

 If an error is generated, no change is made to the contents of pixels.

Errors

• GL_INVALID_ENUM is generated if format or type is not an accepted value.

• GL_INVALID_VALUE is generated if either width or height is negative.

• GL_INVALID_OPERATION is generated if format is GL_COLOR_INDEX and the
color buffers store RGBA color components.

• GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and
there is no stencil buffer.

• GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT
and there is no depth buffer.

Type Index
Mask

Component
Conversion

GL_UNSIGNED_BYTE 28 - 1 (28 - 1)c

GL_BYTE 27 - 1 [(28 - 1)c - 1] / 2

GL_BITMAP 1 1

GL_UNSIGNED_SHORT 216 - 1 (216- 1)c

GL_SHORT 215 - 1 [(216 - 1)c - 1] / 2

 GL_UNSIGNED_INT 232 - 1 (232 - 1)c

GL_INT 231 - 1 [(232 - 1)c - 1] / 2

 GL_FLOAT none c
Chapter 16382

R
glReadPixels
• GL_INVALID_OPERATION is generated if glReadPixels is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_INDEX_MODE

See Also

glCopyPixels,
glDrawPixels,
glPixelMap,
glPixelStore,
glPixelTransfer,
glReadBuffer
Chapter 16 383

R
glRect
glRect
glRectd, glRectf, glRecti, glRects, glRectdv, glRectfv, glRectiv,
glRectsv : draw a rectangle.

C Specification

void glRectd(
GLdouble x1,
GLdouble y1,
GLdouble x2,
GLdouble y2)

void glRectf(
GLfloat x1,
GLfloat y1,
GLfloat x2,
GLfloat y2)

void glRecti(
GLint x1,
GLint y1,
GLint x2,
GLint y2)

void glRects(
GLshort x1,
GLshort y1,
GLshortx2,
GLshort y2)

void glRectdv(
const GLdouble *v1,
const GLdouble *v2)

void glRectfv(
const GLfloat *v1,
const GLfloat *v2)

void glRectiv(
const GLint *v1,
const GLint *v2)

void glRectsv(
const GLshort *v1,

const GLshort *v2)

Parameters

x1, y1 Specify one vertex of a rectangle.

x2, y2 Specify the opposite vertex of the rectangle.

v1 Specifies a pointer to one vertex of a rectangle.

v2 Specifies a pointer to the opposite vertex of the rectangle.
Chapter 16384

R
glRect
Description

glRect supports efficient specification of rectangles as two corner points. Each rectangle
command takes four arguments, organized either as two consecutive pairs of (x,y)
coordinates, or as two pointers to arrays, each containing an (x, y) pair. The resulting
rectangle is defined in the z = 0 plane.

glRect(x1, y1, x2, y2) is exactly equivalent to the following sequence:

glBegin(GL_POLYGON);
glVertex2(x1, y1);
glVertex2(x2, y1);
glVertex2(x2, y2);
glVertex2(x1, y2);
glEnd();

Note that if the second vertex is above and to the right of the first vertex, the rectangle is
constructed with a counter-clockwise winding.

Errors

• GL_INVALID_OPERATION is generated if glRect is executed between the execution
of glBegin and the corresponding execution of glEnd.

See Also

glBegin,
glVertex
Chapter 16 385

R
glRenderMode
glRenderMode
glRenderMode : set rasterization mode.

C Specification

GLint glRenderMode(

GLenum mode)

Parameters

mode Specifies the rasterization mode. Three values are accepted:
GL_RENDER, GL_SELECT, and GL_FEEDBACK. The initial value is
GL_RENDER.

Description

glRenderMode sets the rasterization mode. It takes one argument, mode, which can
assume one of three predefined values:

 GL_RENDER

Render mode. Primitives are rasterized, producing pixel fragments, which are written
into the frame buffer. This is the normal mode and also the default mode.

GL_SELECT

Selection mode. No pixel fragments are produced, and no change to the frame buffer
contents is made. Instead, a record of the names of primitives that would have been
drawn if the render mode had been GL_RENDER is returned in a select buffer, which
must be created (see glSelectBuffer) before selection mode is entered.

GL_FEEDBACK

Feedback mode. No pixel fragments are produced, and no change to the frame buffer
contents is made. Instead, the coordinates and attributes of vertices that would have
been drawn if the render mode had been GL_RENDER is returned in a feedback buffer,
which must be created (see glFeedbackBuffer) before feedback mode is entered.

 The return value of glRenderMode is determined by the render mode at the time
glRenderMode is called, rather than by mode. The values returned for the three render
modes are as follows:

GL_RENDER

0.

GL_SELECT

The number of hit records transferred to the select buffer.

GL_FEEDBACK

The number of values (not vertices) transferred to the feedback buffer.

 See the glSelectBuffer and glFeedbackBuffer reference pages for more details
concerning selection and feedback operation.
Chapter 16386

R
glRenderMode
Notes

If an error is generated, glRenderMode returns 0 regardless of the current render mode.

Errors

• GL_INVALID_ENUM is generated if mode is not one of the three accepted values.

• GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render
mode is GL_SELECT, or if glRenderMode is called with argument GL_SELECT
before glSelectBuffer is called at least once.

• GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the
render mode is GL_FEEDBACK, or if glRenderMode is called with argument
GL_FEEDBACK before glFeedbackBuffer is called at least once.

• GL_INVALID_OPERATION is generated if glRenderMode is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE

See Also

glFeedbackBuffer,
glInitNames,
glLoadName,
glPassThrough,
glPushName,
glSelectBuffer
Chapter 16 387

R
glRotate
glRotate
glRotated, glRotatef : multiply the current matrix by a rotation matrix.

C Specification

void glRotated(
GLdouble angle,
GLdouble x,
GLdouble y,
GLdouble z)

void glRotatef(
GLfloat angle,
GLfloat x,
GLfloat y,

GLfloat z)

Parameters

angle Specifies the angle of rotation, in degrees.

x, y, z Specify the x, y, and z coordinates of a vector, respectively.

Description

glRotate produces a rotation of angle degrees around the vector (x, y, z). The current
matrix (see glMatrixMode) is multiplied by a rotation matrix with the product replacing
the current matrix, as if glMultMatrix were called with the following matrix as its
argument:

 xx (1- c) + c xy (1 - c) - xz (1- c) + 0
zs ys

yx (1- c) + zs yy (1- c) + c yz (1 - c) 0
xs

zx (1 - c) - zy (1 - c) + zz (1 - c) + c 0
ys xs

 0 0 0 1

 Where c = cos(angle), s = sin(angle), and ||(x, y, z)|| = 1 (if not, the GL will normalize
this vector).

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and
restore the unrotated coordinate system.

Notes

This rotation follows the right-hand rule, so if the vector (x, y, z) points toward the user,
the rotation will be counterclockwise.
Chapter 16388

R
glRotate
Errors

• GL_INVALID_OPERATION is generated if glRotate is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glMatrixMode,
glMultMatrix,
glPushMatrix,
glScale,
glTranslate
Chapter 16 389

R
glRotate
Chapter 16390

17 S
Chapter 17 391

S
glScale
glScale
glScaled, glScalef : multiply the current matrix by a general scaling matrix.

C Specification

void glScaled(
GLdouble x,
GLdouble y,
GLdouble z)

void glScalef(
GLfloat x,
GLfloat y,

GLfloat z)

Parameters

x, y, z Specify scale factors along the x, y, and z axes, respectively.

Description

 glScale produces a nonuniform scaling along the x, y, and z axes. The three parameters
indicate the desired scale factor along each of the three axes.

The current matrix (see glMatrixMode) is multiplied by this scale matrix, and the
product replaces the current matrix as if glScale were called with the following matrix as
its argument:

x 0 0 0

0 y 0 0

0 0 z 0

0 0 0 1

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after glScale is called are scaled.

Use glPushMatrix and glPopMatrix to save and restore the unscaled coordinate system.

Notes

If scale factors other than 1 are applied to the modelview matrix and lighting is enabled,
lighting often appears wrong. In that case, enable automatic normalization of normals
by calling glEnable with the argument GL_NORMALIZE.

Errors

• GL_INVALID_OPERATION is generated if glScale is executed between the
execution of glBegin and the corresponding execution of glEnd.
Chapter 17392

S
glScale
Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glMatrixMode,
glMultMatrix,
glPushMatrix,
glRotate,
glTranslate
Chapter 17 393

S
gluScaleImage
gluScaleImage
gluScaleImage : scale an image to an arbitrary size.

C Specification

GLint gluScaleImage(
GLenum format,
GLsizei wIn,
GLsizei hIn,
GLenum typeIn,

const void *dataIn,
GLsizei wOut,
GLsizei hOut,
GLenum typeOut,

GLvoid* dataOut)

Parameters

format Specifies the format of the pixel data. The following symbolic values
are valid: GL_COLOR_INDEX, GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

wIn, hIn Specify the width and height, respectively, of the source image that is
scaled.

typeIn Specifies the data type for dataIn. Must be one of
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

dataIn Specifies a pointer to the source image.

wOut, hOut Specify the width and height, respectively, of the destination image.

typeOut Specifies the data type for dataOut. Must be one of
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

dataOut Specifies a pointer to the destination image.

Description

gluScaleImage scales a pixel image using the appropriate pixel store modes to unpack
data from the source image and pack data into the destination image.

When shrinking an image, gluScaleImage uses a box filter to sample the source image
and create pixels for the destination image. When an image is magnified, the pixels from
the source image are linearly interpolated to create the destination image.
Chapter 17394

S
gluScaleImage
A return value of 0 indicates success. Otherwise gluScaleImage returns a GLU error
code that indicates what the problem is (see gluErrorString).

See the glReadPixels reference page for a description of the acceptable values for format,
typeIn, and typeOut.

Errors

• GLU_INVALID_VALUE is returned if wIn, hIn, wOut, r hOut is negative.

• GLU_INVALID_ENUM is returned if format, typeIn, or typeOut is not one of the
accepted values.

See Also

glDrawPixels,
glReadPixels,
gluBuild1DMipmaps,
gluBuild2DMipmaps,
gluErrorString
Chapter 17 395

S
glScissor
glScissor
glScissor: define the scissor box.

C Specification

void glScissor(
GLint x,
GLint y,
GLsizei width,

GLsizei height)

Parameters

x, y Specify the lower left corner of the scissor box. Initially (0, 0).

width, height Specify the width and height of the scissor box. When a GL context is
first attached to a window, width and height are set to the dimensions
of that window.

Description

glScissor defines a rectangle, called the scissor box, in window coordinates. The first two
arguments, x and y, specify the lower left corner of the box. width and height specify the
width and height of the box.

 To enable and disable the scissor test, call glEnable and glDisable with argument
GL_SCISSOR_TEST. The test is initially disabled. While the test is enabled, only pixels
that lie within the scissor box can be modified by drawing commands. Window
coordinates have integer values at the shared corners of frame buffer pixels. glScissor(0,
0, 1, 1) allows modification of only the lower left pixel in the window, and glScissor(0, 0,
0, 0) doesn’t allow modification of any pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire
window.

Errors

• GL_INVALID_VALUE is generated if either width or height is negative.

• GL_INVALID_OPERATION is generated if glScissor is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_SCISSOR_BOX
glIsEnabled with argument GL_SCISSOR_TEST
Chapter 17396

S
glScissor
See Also

glEnable,
glViewport
Chapter 17 397

S
glSelectBuffer
glSelectBuffer
glSelectBuffer : establish a buffer for selection mode values.

C Specification

void glSelectBuffer(
GLsizei size,

GLuint *buffer)

Parameters

size Specifies the size of buffer.

buffer Returns the selection data.

Description

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned integers,
and size indicates the size of the array. buffer returns values from the name stack (see
glInitNames, glLoadName, glPushName) when the rendering mode is GL_SELECT (see
glRenderMode). glSelectBuffer must be issued before selection mode is enabled, and it
must not be issued while the rendering mode is GL_SELECT.

A programmer can use selection to determine which primitives are drawn into some
region of a window. The region is defined by the current modelview and perspective
matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a
primitive or a raster position intersects the clipping volume defined by the viewing
frustum and the user-defined clipping planes, this primitive causes a selection hit. (With
polygons, no hit occurs if the polygon is culled.) When a change is made to the name
stack, or when glRenderMode is called, a hit record is copied to buffer if any hits have
occurred since the last such event (name stack change or glRenderMode call). The hit
record consists of the number of names in the name stack at the time of the event,
followed by the minimum and maximum depth values of all vertices that hit since the
previous event, followed by the name stack contents, bottom name first.

Depth values (which are in the range [0, 1]) are multiplied by 232 - 1 before being placed
in the hit record.

An internal index into buffer is reset to 0 whenever selection mode is entered. Each time
a hit record is copied into buffer, the index is incremented to point to the cell just past the
end of the block of names that is, to the next available cell. If the hit record is larger than
the number of remaining locations in buffer, as much data as can fit is copied, and the
overflow flag is set. If the name stack is empty when a hit record is copied, that record
consists of 0 followed by the minimum and maximum depth values.

To exit selection mode, call glRenderMode with an argument other than GL_SELECT.
Whenever glRenderMode is called while the render mode is GL_SELECT, it returns the
number of hit records copied to buffer, resets the overflow flag and the selection buffer
pointer, and initializes the name stack to be empty. If the overflow bit was set when
glRenderMode was called, a negative hit record count is returned.
Chapter 17398

S
glSelectBuffer
Notes

The contents of buffer is undefined until glRenderModeis called with an argument other
than GL_SELECT.

glBegin/glEnd primitives and calls to glRasterPos can result in hits.

Errors

• GL_INVALID_VALUE is generated if size is negative.

• GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render
mode is GL_SELECT, or if glRenderMode is called with argument GL_SELECT
before glSelectBuffer is called at least once.

• GL_INVALID_OPERATION is generated if glSelectBuffer is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH

See Also

glFeedbackBuffer,
glInitNames,
glLoadName,
glPushName,
glRenderMode
Chapter 17 399

S
glShadeModel
glShadeModel
glShadeModel : select flat or smooth shading.

C Specification

void glShadeModel(

GLenum mode)

Parameters

mode Specifies a symbolic value representing a shading technique. Accepted
values are GL_FLAT and GL_SMOOTH. The initial value is
GL_SMOOTH.

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default,
causes the computed colors of vertices to be interpolated as the primitive is rasterized,
typically assigning different colors to each resulting pixel fragment. Flat shading selects
the computed color of just one vertex and assigns it to all the pixel fragments generated
by rasterizing a single primitive. In either case, the computed color of a vertex is the
result of lighting if lighting is enabled, or it is the current color at the time the vertex
was specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when glBegin is
issued and counting vertices and primitives from 1, the GL gives each flat-shaded line
segment i the computed color of vertex i + 1, its second vertex. Counting similarly from
1, the GL gives each flat-shaded polygon the computed color of the vertex listed in the
following table. This is the last vertex to specify the polygon in all cases except single
polygons, where the first vertex specifies the flat-shaded color.

Flat and smooth shading are specified by glShadeModel with mode set to GL_FLAT and
GL_SMOOTH, respectively.

Primitive Type of Polygon i Vertex

 Single polygon (i≡ 1) 1

 Triangle strip i + 2

Triangle fan i + 2

Independent triangle 3i

 Quad strip 2i + 2

 Independent quad 4i
Chapter 17400

S
glShadeModel
Errors

• GL_INVALID_ENUM is generated if mode is any value other than GL_FLAT or
GL_SMOOTH.

• GL_INVALID_OPERATION is generated if glShadeModel is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_SHADE_MODEL

See Also

glBegin,
glColor,
glLight,
glLightModel
Chapter 17 401

S
gluSphere
gluSphere
gluSphere : draw a sphere.

C Specification

void gluSphere(
 GLUquadric* quad,

GLdouble radius,
GLint slices,

GLint stacks)

Parameters

quad Specifies the quadrics object (created with gluNewQuadric).

radius Specifies the radius of the sphere.

slices Specifies the number of subdivisions around the Z axis (similar to
lines of longitude).

stacks Specifies the number of subdivisions along the Z axis (similar to lines
of latitude).

Description

gluSphere draws a sphere of the given radius centered around the origin. The sphere is
subdivided around the Z axis into slices and along the Z axis into stacks (similar to lines
of longitude and latitude).

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any
normals generated point away from the center of the sphere. Otherwise, they point
toward the center of the sphere.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are
generated so that t ranges from 0.0 at Z = radius to 1.0 at Z = radius (t increases linearly
along longitudinal lines), and s ranges from 0.0 at the +Y axis, to 0.25 at the +X axis, to
0.5 at the - Y axis, to 0.75 at the - X axis, and back to 1.0 at the +Y axis.

See Also

gluCylinder,
gluDisk,
gluNewQuadric,
gluPartialDisk,
gluQuadricOrientation,
gluQuadricTexture
Chapter 17402

S
glStencilFunc
glStencilFunc
glStencilFunc : set function and reference value for stencil testing.

C Specification

void glStencilFunc(
GLenum func,
GLint ref,

GLuint mask)

Parameters

func Specifies the test function. Eight tokens are valid: GL_NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL,
GL_NOTEQUAL, and GL_ALWAYS. The initial value is GL_ALWAYS.

ref Specifies the reference value for the stencil test. ref is clamped to the
range [0, 2n - 1], where n is the number of bitplanes in the stencil
buffer. The initial value is 0.

mask Specifies a mask that is ANDed with both the reference value and the
stored stencil value when the test is done. The initial value is all 1s.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You
draw into the stencil planes using GL drawing primitives, then render geometry and
images, using the stencil planes to mask out portions of the screen. Stenciling is typically
used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the reference value and the value in the stencil buffer. To enable and disable the
test, call glEnable and glDisable with argument GL_STENCIL_TEST. To specify actions
based on the outcome of the stencil test, call glStencilOp.

func is a symbolic constant that determines the stencil comparison function. It accepts
one of eight values, shown in the following list. ref is an integer reference value that is
used in the stencil comparison. It is clamped to the range [0, 2n - 1], where n is the
number of bitplanes in the stencil buffer. mask is bitwise anded with both the reference
value and the stored stencil value, with the anded values participating in the
comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the
following list shows the effect of each comparison function that can be specified by func.
Only if the comparison succeeds is the pixel passed through to the next stage in the
rasterization process (see glStencilOp). All tests treat stencil values as unsigned integers
in the range [0, 2n - 1], where n is the number of bitplanes in the stencil buffer.
Chapter 17 403

S
glStencilFunc
 The following values are accepted by func:

GL_NEVER
Always fails.

GL_LESS
Passes if (ref & mask) < (stencil & mask).

GL_LEQUAL
Passes if (ref & mask) ≤(stencil & mask).

GL_GREATER
Passes if (ref & mask) > (stencil & mask).

GL_GEQUAL
Passes if (ref & mask) ≥ (stencil & mask).

GL_EQUAL
Passes if (ref & mask) = (stencil & mask).

GL_NOTEQUAL
Passes if (ref & mask) ≠ (stencil & mask).

GL_ALWAYS
Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification
can occur and it is as if the stencil test always passes.

Errors

• GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

• GL_INVALID_OPERATION is generated if glStencilFunc is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_FUNC
glGet with argument GL_STENCIL_VALUE_MASK
glGet with argument GL_STENCIL_REF
glGet with argument GL_STENCIL_BITS
glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc,
glBlendFunc,
glDepthFunc,
glEnable,
glIsEnabled,
glLogicOp,
glStencilOp
Chapter 17404

S
glStencilMask
glStencilMask
glStencilMask : control the writing of individual bits in the stencil planes.

C Specification

void glStencilMask(

GLuint mask)

Parameters

mask Specifies a bit mask to enable and disable writing of individual bits in
the stencil planes. Initially, the mask is all 1s.

Description

glStencilMask controls the writing of individual bits in the stencil planes. The least
significant n bits of mask, where n is the number of bits in the stencil buffer, specify a
mask. Where a 1 appears in the mask, it’s possible to write to the corresponding bit in
the stencil buffer. Where a 0 appears, the corresponding bit is write-protected. Initially,
all bits are enabled for writing.

Errors

• GL_INVALID_OPERATION is generated if glStencilMask is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_WRITEMASK
glGet with argument GL_STENCIL_BITS

See Also

glColorMask,
glDepthMask,
glIndexMask,
glStencilFunc,
glStencilOp
Chapter 17 405

S
glStencilOp
glStencilOp
glStencilOp : set stencil test actions.

C Specification

void glStencilOp(
GLenum fail,
GLenum zfail,
GLenum zpass)

Parameters

fail Specifies the action to take when the stencil test fails. Six symbolic
constants are accepted: GL_KEEP, GL_ZERO, GL_REPLACE,
GL_INCR, GL_DECR, and GL_INVERT. The initial value is
GL_KEEP.

zfail Specifies the stencil action when the stencil test passes, but the depth
test fails. zfail accepts the same symbolic constants as fail. The initial
value is GL_KEEP.

zpass Specifies the stencil action when both the stencil test and the depth
test pass, or when the stencil test passes and either there is no depth
buffer or depth testing is not enabled. zpass accepts the same symbolic
constants as fail. The initial value is GL_KEEP.

Description

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You
draw into the stencil planes using GL drawing primitives, then render geometry and
images, using the stencil planes to mask out portions of the screen. Stenciling is typically
used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the value in the stencil buffer and a reference value. To enable and disable the
test, call glEnable and glDisable with argument GL_STENCIL_TEST; to control it, call
glStencilFunc.

glStencilOp takes three arguments that indicate what happens to the stored stencil
value while stenciling is enabled. If the stencil test fails, no change is made to the pixel’s
color or depth buffers, and fail specifies what happens to the stencil buffer contents. The
following six actions are possible.

GL_KEEP
Keeps the current value.

GL_ZERO
Sets the stencil buffer value to 0.

GL_REPLACE
Sets the stencil buffer value to ref, as specified by glStencilFunc.
Chapter 17406

S
glStencilOp
GL_INCR
Increments the current stencil buffer value. Clamps to the maximum representable
unsigned value.

GL_DECR
Decrements the current stencil buffer value. Clamps to 0.

GL_INVERT
Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and
decremented, values are clamped to 0 and 2n - 1, where n is the value returned by
querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions that depend on
whether subsequent depth buffer tests succeed (zpass) or fail (zfail) (see glDepthFunc).
The actions are specified using the same six symbolic constants as fail. Note that zfail is
ignored when there is no depth buffer, or when the depth buffer is not enabled. In these
cases, fail and zpass specify stencil action when the stencil test fails and passes,
respectively.

Notes

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification
can occur and it is as if the stencil tests always pass, regardless of any call to
glStencilOp.

Errors

• GL_INVALID_ENUM is generated if fail, zfail, or zpass is any value other than the
six defined constant values.

• GL_INVALID_OPERATION is generated if glStencilOp is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_FAIL
glGet with argument GL_STENCIL_PASS_DEPTH_PASS
glGet with argument GL_STENCIL_PASS_DEPTH_FAIL
glGet with argument GL_STENCIL_BITS
glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc,
glBlendFunc,
glDepthFunc,
glEnable,
glLogicOp,
glStencilFunc
Chapter 17 407

S
glXSwapBuffers
glXSwapBuffers
glXSwapBuffers : make back buffer visible.

C Specification

void glXSwapBuffers(
Display *dpy,

GLXDrawable drawable)

Parameters

dpy Specifies the connection to the X server.

drawable Specifies the window whose buffers are to be swapped.

Description

glXSwapBuffers promotes the contents of the back buffer of drawable to become the
contents of the front buffer of drawable. The contents of the back buffer then become
undefined. The update typically takes place during the vertical retrace of the monitor,
rather than immediately after glXSwapBuffers is called. All GLX rendering contexts
share the same notion of which are front buffers and which are back buffers.

 glXSwapBuffers performs an implicit glFlush before it returns. Subsequent GL
commands can be issued immediately after calling glXSwapBuffers, but are not executed
until the buffer exchange is completed.

If drawable was not created with respect to a double-buffered visual, glXSwapBuffers
has no effect, and no error is generated.

Notes

Synchronization of multiple GLX contexts rendering to the same double-buffered
window is the responsibility of the clients. Use the X Synchronization Extension to
facilitate such cooperation.

The X double buffer extension (DBE) has information on which buffer is the currently
displayed buffer. This information is shared with GLX.

Errors

• GLXBadDrawable is generated if drawable is not a valid GLX drawable.

• GLXBadCurrentWindow is generated if dpy and drawable are respectively the
display and drawable associated with the current context of the calling thread, and
drawable identifies a window that is no longer valid.

See Also

glFlush
Chapter 17408

18 T
Chapter 18 409

T
gluTessBeginContour
gluTessBeginContour
gluTessBeginContour, gluTessEndContour : delimit a contour description.

C Specification

void gluTessBeginContour(
GLUtesselator* tess)

void gluTessEndContour(

GLUtesselator* tess)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

Description

 gluTessBeginContour and gluTessEndContour delimit the definition of a polygon
contour. Within each gluTessBeginContour/gluTessEndContour pair, there can be zero or
more calls to gluTessVertex. The vertices specify a closed contour (the last vertex of each
contour is automatically linked to the first). See the gluTessVertex reference page for
more details.gluTessBeginContour can only be called between gluTessBeginPolygon and
gluTessEndPolygon.

See Also

gluNewTess,
gluTessBeginPolygon,
gluTessVertex,
gluTessCallback,
gluTessProperty,
gluTessNormal,
gluTessEndPolygon
Chapter 18410

T
gluTessBeginPolygon
gluTessBeginPolygon
gluTessBeginPolygon : delimit a polygon description.

C Specification

void gluTessBeginPolygon(
GLUtesselator* tess,

GLvoid* data)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

data Specifies a pointer to user polygon data.

Description

gluTessBeginPolygon and gluTessEndPolygon delimit the definition of a non-convex
polygon. Within each gluTessBeginPolygon/gluTessEndPolygon pair, there must be one
or more calls to gluTessBeginContour/gluTessEndContour. Within each contour, there
are zero or more calls to gluTessVertex. The vertices specify a closed contour (the last
vertex of each contour is automatically linked to the first). See the gluTessVertex,
gluTessBeginContour, and gluTessEndContour reference pages for more details.

data is a pointer to a user-defined data structure. If the appropriate callback(s) are
specified (see gluTessCallback), then this pointer is returned to the callback function(s).
Thus, it is a convenient way to store per-polygon information.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles
are described through callbacks. See gluTessCallback for descriptions of the callback
functions.

See Also

gluNewTess,
gluTessBeginContour,
gluTessVertex,
gluTessCallback,
gluTessProperty,
gluTessNormal gluTessEndPolygon
Chapter 18 411

T
gluTessCallback
gluTessCallback
gluTessCallback: define a callback for a tessellation object.

C Specification

void gluTessCallback(
GLUtesselator* tess,
GLenum which,

GLvoid (*CallBackFunc)()

Parameters

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the callback being defined. The following values are valid:
GLU_TESS_BEGIN, GLU_TESS_BEGIN_DATA,
GLU_TESS_EDGE_FLAG, GLU_TESS_EDGE_FLAG_DATA,
GLU_TESS_VERTEX, GLU_TESS_VERTEX_DATA,
GLU_TESS_END, GLU_TESS_END_DATA, GLU_TESS_COMBINE,
GLU_TESS_COMBINE_DATA, GLU_TESS_ERROR, and
GLU_TESS_ERROR_DATA.

CallBackFunc Specifies the function to be called.

Description

gluTessCallback is used to indicate a callback to be used by a tessellation object. If the
specified callback is already defined, then it is replaced. If CallBackFunc is NULL, then
the existing callback becomes undefined.

These callbacks are used by the tessellation object to describe how a polygon specified by
the user is broken into triangles. Note that there are two versions of each callback: one
with user-specified polygon data and one without. If both versions of a particular
callback are specified, then the callback with user-specified polygon data will be used.
Note that the polygon_data parameter used by some of the functions is a copy of the
pointer that was specified when gluTessBeginPolygon was called. The legal callbacks are
as follows:

GLU_TESS_BEGIN

The begin callback is invoked like glBegin to indicate the start of a (triangle) primitive.
The function takes a single argument of type GLenum. If the
GLU_TESS_BOUNDARY_ONLY property is set to GL_FALSE, then the argument is set
to either GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, or GL_TRIANGLES. If the
GLU_TESS_BOUNDARY_ONLY property is set to GL_TRUE, then the argument will
be set to GL_LINE_LOOP. The function prototype for this callback is:

void begin(GLenum type);

GLU_TESS_BEGIN_DATA
Chapter 18412

T
gluTessCallback
The same as the GLU_TESS_BEGIN callback except that it takes an additional pointer
argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

 void beginData(GLenum type, void *polygon_data);

GLU_TESS_EDGE_FLAG

The edge flag callback is similar to glEdgeFlag. The function takes a single boolean flag
that indicates which edges lie on the polygon boundary. If the flag is GL_TRUE, then
each vertex that follows begins an edge that lies on the polygon boundary, that is, an
edge that separates an interior region from an exterior one. If the flag is GL_FALSE,
then each vertex that follows begins an edge that lies in the polygon interior. The edge
flag callback (if defined) is invoked before the first vertex callback.

 Since triangle fans and triangle strips do not support edge flags, the begin callback is
not called with GL_TRIANGLE_FAN or GL_TRIANGLE_STRIP if a non-NULL edge
flag callback is provided. (If the callback is initialized to NULL, there is no impact on
performance). Instead, the fans and strips are converted to independent triangles. The
function prototype for this callback is:

void edgeFlag(GLboolean flag);

GLU_TESS_EDGE_FLAG_DATA

The same as the GLU_TESS_EDGE_FLAG callback except that it takes an additional
pointer argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

 void edgeFlagData(GLboolean flag, void *polygon_data);

GLU_TESS_VERTEX

The vertex callback is invoked between the begin and end callbacks. It is similar to
glVertex, and it defines the vertices of the triangles created by the tessellation process.
The function takes a pointer as its only argument. This pointer is identical to the opaque
pointer provided by the user when the vertex was described (see gluTessVertex). The
function prototype for this callback is:

 void vertex (void *vertex_data);

GLU_TESS_VERTEX_DATA

The same as the GLU_TESS_VERTEX callback except that it takes an additional
pointer argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

 void vertexData (void *vertex_data, void *polygon_data);

 GLU_TESS_END

The end callback serves the same purpose as glEnd. It indicates the end of a primitive
and it takes no arguments. The function prototype for this callback is:

 void end(void);

 GLU_TESS_END_DATA

The same as the GLU_TESS_END callback except that it takes an additional pointer
argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

void endData(void *polygon_data);
Chapter 18 413

T
gluTessCallback
GLU_TESS_COMBINE

The combine callback is called to create a new vertex when the tessellation detects an
intersection, or wishes to merge features. The function takes four arguments: an array of
three elements each of type GLdouble, an array of four pointers, an array of four
elements each of type GLfloat, and a pointer to a pointer. The prototype is:

void combine(GLdouble coords[3], void *vertex_data[4], GLfloat
weight[4], void **outData);

The vertex is defined as a linear combination of up to four existing vertices, stored in
vertex_data. The coefficients of the linear combination are given by weight; these
weights always add up to 1. All vertex pointers are valid even when some of the weights
are 0. coords gives the location of the new vertex.

The user must allocate another vertex, interpolate parameters using vertex_data and
weight, and return the new vertex pointer in outData. This handle is supplied during
rendering callbacks. The user is responsible for freeing the memory some time after
gluTessEndPolygon is called.

For example, if the polygon lies in an arbitrary plane in 3-space, and a color is associated
with each vertex, the GLU_TESS_COMBINE callback might look like this:

 void myCombine(GLdouble coords[3], VERTEX *d[4],

 GLfloat w[4], VERTEX **dataOut)

 {

 VERTEX *new = new_vertex();

 new->x = coords[0];

 new->y = coords[1];

 new->z = coords[2];

 new->r = w[0]*d[0]->r + w[1]*d[1]->r + w[2]*d[2]->r + w[3]*d[3]->r;

 new->g = w[0]*d[0]->g + w[1]*d[1]->g + w[2]*d[2]->g + w[3]*d[3]->g;

 new->b = w[0]*d[0]->b + w[1]*d[1]->b + w[2]*d[2]->b + w[3]*d[3]->b;

 new->a = w[0]*d[0]->a + w[1]*d[1]->a + w[2]*d[2]->a + w[3]*d[3]->a;

 *dataOut = new;

 }

If the tessellation detects an intersection, then the GLU_TESS_COMBINE or
GLU_TESS_COMBINE_DATA callback (see below) must be defined, and it must write a
non-NULL pointer into dataOut. Otherwise the
GLU_TESS_NEED_COMBINE_CALLBACK error occurs, and no output is generated.
(This is the only error that can occur during tessellation and rendering.)

GLU_TESS_COMBINE_DATA

The same as the GLU_TESS_COMBINE callback except that it takes an additional
pointer argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

void combineData (GLdouble coords[3], void *vertex_data[4], GLfloat
weight[4], void **outData,
void *polygon_data);
Chapter 18414

T
gluTessCallback
 GLU_TESS_ERROR

The error callback is called when an error is encountered. The one argument is of type
GLenum; it indicates the specific error that occurred and will be set to one of
GLU_TESS_MISSING_BEGIN_POLYGON, GLU_TESS_MISSING_END_POLYGON,
GLU_TESS_MISSING_BEGIN_CONTOUR, GLU_TESS_MISSING_END_CONTOUR,
GLU_TESS_COORD_TOO_LARGE, GLU_TESS_NEED_COMBINE_CALLBACK.

Character strings describing these errors can be retrieved with the gluErrorString call.
The function prototype for this callback is:

void error(GLenum errno);

The GLU library will recover from the first four errors by inserting the missing call(s).
GLU_TESS_COORD_TOO_LARGE indicates that some vertex coordinate exceeded the
predefined constant GLU_TESS_MAX_COORD in absolute value, and that the value
has been clamped. (Coordinate values must be small enough so that two can be
multiplied together without overflow.)

GLU_TESS_NEED_COMBINE_CALLBACK indicates that the tessellation detected an
intersection between two edges in the input data, and the GLU_TESS_COMBINE or
GLU_TESS_COMBINE_DATA callback was not provided. No output is generated.

GLU_TESS_ERROR_DATA

The same as the GLU_TESS_ERROR callback except that it takes an additional pointer
argument. This pointer is identical to the opaque pointer provided when
gluTessBeginPolygon was called. The function prototype for this callback is:

void errorData(GLenum errno, void *polygon_data);

See Also

glBegin,
glEdgeFlag,
glVertex,
gluNewTess,
gluErrorString,
gluTessVertex,
gluTessBeginPolygon,
gluTessBeginContour,
gluTessProperty,
gluTessNormal
Chapter 18 415

T
gluTessEndPolygon
gluTessEndPolygon
gluTessEndPolygon : delimit a polygon description.

C Specification

void gluTessEndPolygon(

GLUtesselator* tess)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

Description

gluTessBeginPolygon and gluTessEndPolygon delimit the definition of a nonconvex
polygon. Within each gluTessBeginPolygon/gluTessEndPolygon pair, there must be one
or more calls to gluTessBeginContour/gluTessEndContour. Within each contour, there
are zero or more calls to gluTessVertex. The vertices specify a closed contour (the last
vertex of each contour is automatically linked to the first). See the gluTessVertex,
gluTessBeginContour and gluTessEndContour reference pages for more details.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles
are described through callbacks. See gluTessCallback for descriptions of the callback
functions.

See Also

gluNewTess,
gluTessBeginContour,
gluTessVertex,
gluTessCallback,
gluTessProperty,
gluTessNormal,
gluTessBeginPolygon
Chapter 18416

T
gluTessNormal
gluTessNormal
gluTessNormal : specify a normal for a polygon.

C Specification

void gluTessNormal(
GLUtesselator* tess,
GLdouble valueX,
GLdouble valueY,

GLdouble valueZ)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

valueX Specifies the first component of the normal.

valueY Specifies the second component of the normal.

valueZ Specifies the third component of the normal.

Description

gluTessNormal describes a normal for a polygon that the program is defining. All input
data will be projected onto a plane perpendicular to one of the three coordinate axes
before tessellation and all output triangles will be oriented CCW with respect to the
normal (CW orientation can be obtained by reversing the sign of the supplied normal).
For example, if you know that all polygons lie in the XY plane, call gluTessNormal(tess,
0.0, 0.0, 1.0) before rendering any polygons.

If the supplied normal is (0.0, 0.0, 0.0) (the initial value), the normal is determined as
follows. The direction of the normal, up to its sign, is found by fitting a plane to the
vertices, without regard to how the vertices are connected. It is expected that the input
data lies approximately in the plane; otherwise, projection perpendicular to one of the
three coordinate axes may substantially change the geometry. The sign of the normal is
chosen so that the sum of the signed areas of all input contours is nonnegative (where a
CCW contour has positive area).

The supplied normal persists until it is changed by another call to gluTessNormal.

See Also

gluTessBeginPolygon,
gluTessEndPolygon
Chapter 18 417

T
gluTessProperty
gluTessProperty
gluTessProperty : set a tessellation object property.

C Specification

void gluTessProperty(
GLUtesselator* tess,
GLenum which,

GLdouble data)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the property to be set. Valid values are
GLU_TESS_WINDING_RULE, GLU_TESS_BOUNDARY_ONLY,
GLU_TESS_TOLERANCE.

data Specifies the value of the indicated property.

Description

gluTessProperty is used to control properties stored in a tessellation object. These
properties affect the way that the polygons are interpreted and rendered. The legal
values for which are as follows:

GLU_TESS_WINDING_RULE

Determines which parts of the polygon are on the “interior”. data may be set to one of
GLU_TESS_WINDING_ODD, GLU_TESS_WINDING_NONZERO,
GLU_TESS_WINDING_POSITIVE, or GLU_TESS_WINDING_NEGATIVE, or
GLU_TESS_WINDING_ABS_GEQ_TWO.

To understand how the winding rule works, consider that the input contours partition
the plane into regions. The winding rule determines which of these regions are inside the
polygon.

For a single contour C, the winding number of a point x is simply the signed number of
revolutions we make around x as we travel once around C (where CCW is positive).
When there are several contours, the individual winding numbers are summed. This
procedure associates a signed integer value with each point x in the plane. Note that the
winding number is the same for all points in a single region.

The winding rule classifies a region as “inside” if its winding number belongs to the
chosen category (odd, nonzero, positive, negative, or absolute value of at least two). The
previous GLU tessellator (prior to GLU 1.2) used the “odd” rule. The “nonzero” rule is
another common way to define the interior. The other three rules are useful for polygon
CSG operations.

 GLU_TESS_BOUNDARY_ONLY
Chapter 18418

T
gluTessProperty
Is a boolean value (“value” should be set to GL_TRUE or GL_FALSE). When set to
GL_TRUE, a set of closed contours separating the polygon interior and exterior are
returned instead of a tessellation. Exterior contours are oriented CCW with respect to
the normal; interior contours are oriented CW. The GLU_TESS_BEGIN and
GLU_TESS_BEGIN_DATA callbacks use the type GL_LINE_LOOP for each contour.

GLU_TESS_TOLERANCE

Specifies a tolerance for merging features to reduce the size of the output. For example,
two vertices that are very close to each other might be replaced by a single vertex. The
tolerance is multiplied by the largest coordinate magnitude of any input vertex; this
specifies the maximum distance that any feature can move as the result of a single
merge operation. If a single feature takes part in several merge operations, the total
distance moved could be larger.

 Feature merging is completely optional; the tolerance is only a hint. The
implementation is free to merge in some cases and not in others, or to never merge
features at all. The initial tolerance is 0.

The current implementation merges vertices only if they are exactly coincident,
regardless of the current tolerance. A vertex is spliced into an edge only if the
implementation is unable to distinguish which side of the edge the vertex lies on. Two
edges are merged only when both endpoints are identical.

See Also

gluGetTessProperty
Chapter 18 419

T
gluTessVertex
gluTessVertex
gluTessVertex : specify a vertex on a polygon.

C Specification

void gluTessVertex(
GLUtesselator* tess,
GLdouble *location,

GLvoid* data)

Parameters

tess Specifies the tessellation object (created with gluNewTess).

location Specifies the location of the vertex.

data Specifies an opaque pointer passed back to the program with the vertex
callback (as specified by gluTessCallback).

Description

gluTessVertex describes a vertex on a polygon that the program defines. Successive
gluTessVertex calls describe a closed contour. For example, to describe a quadrilateral
gluTessVertex should be called four times. gluTessVertex can only be called between
gluTessBeginContour and gluTessEndContour.

 data normally points to a structure containing the vertex location, as well as other
per-vertex attributes such as color and normal. This pointer is passed back to the user
through the GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA callback after
tessellation (see the gluTessCallback reference page).

Notes

It is a common error to use a local variable for location or data and store values into it as
part of a loop. For example:

for (i = 0; i < NVERTICES; ++i) {

 GLdouble data[3];

 data[0] = vertex[i][0];

 data[1] = vertex[i][1];

 data[2] = vertex[i][2];

 gluTessVertex(tobj, data, data);

 }

This doesn’t work, because the pointers specified by location and data might not be
de-referenced until gluTessEndPolygon is executed, all the vertex coordinates but the
very last set could be overwritten before tessellation begins.
Chapter 18420

T
gluTessVertex
 Two common symptoms of this problem are consists of a single point (when a local
variable is used for data) and a GLU_TESS_NEED_COMBINE_CALLBACK error
(when a local variable is used for location).

See Also

gluTessBeginPolygon,
gluNewTess,
gluTessBeginContour,
gluTessCallback,
gluTessProperty,
gluTessNormal,
gluTessEndPolygon
Chapter 18 421

T
glTexCoord
glTexCoord
glTexCoord1d, glTexCoord1f, glTexCoord1i, glTexCoord1s,
glTexCoord2d, glTexCoord2f, glTexCoord2i, glTexCoord2s,
glTexCoord3d, glTexCoord3f, glTexCoord3i, glTexCoord3s,
glTexCoord4d, glTexCoord4f, glTexCoord4i, glTexCoord4s,
glTexCoord1dv, glTexCoord1fv, glTexCoord1iv, glTexCoord1sv,
glTexCoord2dv, glTexCoord2fv, glTexCoord2iv, glTexCoord2sv,
glTexCoord3dv, glTexCoord3fv, glTexCoord3iv, glTexCoord3sv,
glTexCoord4dv, glTexCoord4fv, glTexCoord4iv, glTexCoord4sv : set the
current texture coordinates.

C Specification

void glTexCoord1d(
GLdouble s)

void glTexCoord1f(
GLfloat s)

void glTexCoord1i(
GLint s)

void glTexCoord1s(
GLshort s)

void glTexCoord2d(
GLdouble s,
GLdouble t)

void glTexCoord2f(
GLfloat s,
GLfloat t)

void glTexCoord2i(
GLint s,
GLint t)

void glTexCoord2s(
GLshort s,
GLshort t)

void glTexCoord3d(
GLdouble s,
GLdouble t,
GLdouble r)

void glTexCoord3f(
GLfloat s,
GLfloat t,
GLfloat r)

void glTexCoord3i(
GLint s,
GLint t,
GLint r)

void glTexCoord3s(
GLshort s,
GLshort t,
GLshort r)

void glTexCoord4d(
Chapter 18422

T
glTexCoord
GLdouble s,
GLdouble t,
GLdouble r,
GLdouble q)

void glTexCoord4f(
GLfloat s,
GLfloat t,
GLfloat r,
GLfloat q)

void glTexCoord4i(
GLint s,
GLint t,
GLint r,
GLint q)

void glTexCoord4s(
GLshort s,
GLshort t,
GLshort r,
GLshort q)

void glTexCoord1dv(
const GLdouble *v)

void glTexCoord1fv(
const GLfloat *v)

void glTexCoord1iv(
const GLint *v)

void glTexCoord1sv(
const GLshort *v)

void glTexCoord2dv(
const GLdouble *v)

void glTexCoord2fv(
const GLfloat *v)

void glTexCoord2iv(
const GLint *v)

void glTexCoord2sv(
const GLshort *v)

void glTexCoord3dv(
const GLdouble *v)

void glTexCoord3fv(
const GLfloat *v)

void glTexCoord3iv(
const GLint *v)

void glTexCoord3sv(
const GLshort *v)

void glTexCoord4dv(
const GLdouble *v)

void glTexCoord4fv(
const GLfloat *v)

void glTexCoord4iv(
const GLint *v)

void glTexCoord4sv(

const GLshort *v)
Chapter 18 423

T
glTexCoord
Parameters

s, t, r, q Specify s, t, r, and q texture coordinates. Not all parameters are
present in all forms of the command.

v Specifies a pointer to an array of one, two, three, or four elements,
which in turn specify the s, t, r, and q texture coordinates.

Description

glTexCoord specifies texture coordinates in one, two, three, or four dimensions.
glTexCoord1 sets the current texture coordinates to (s, 0, 0, 1); a call to glTexCoord2 sets
them to (s, t, 0, 1). Similarly, glTexCoord3 specifies the texture coordinates as (s, t, r, 1),
and glTexCoord4 defines all four components explicitly as (s, t, r, q).

The current texture coordinates are part of the data that is associated with each vertex
and with the current raster position. Initially, the values for s, t, r, and q are (0, 0, 0, 1).

Notes

The current texture coordinates can be updated at any time. In particular, glTexCoord
can be called between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_TEXTURE_COORDS

See Also

glTexCoordPointer,
glVertex
Chapter 18424

T
glTexCoordPointer
glTexCoordPointer
glTexCoordPointe r: define an array of texture coordinates.

C Specification

void glTexCoordPointer(
GLint size,
GLenum type,
GLsizei stride,

const GLvoid *pointer)

Parameters

size Specifies the number of coordinates per array element. Must be 1, 2, 3
or 4. The initial value is 4.

type Specifies the data type of each texture coordinate. Symbolic constants
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The
initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive array elements. If stride
is 0, the array elements are understood to be tightly packed. The initial
value is 0.

pointer Specifies a pointer to the first coordinate of the first element in the
array.

Description

glTexCoordPointer specifies the location and data format of an array of texture
coordinates to use when rendering. size specifies the number of coordinates per element,
and must be 1, 2, 3, or 4. type specifies the data type of each texture coordinate and stride
specifies the byte stride from one array element to the next allowing vertexes and
attributes to be packed into a single array or stored in separate arrays. (Single-array
storage may be more efficient on some implementations; see glInterleavedArrays.) When
a texture coordinate array is specified, size, type, stride, and pointer are saved client-side
state.

To enable and disable the texture coordinate array, call glEnableClientState and
glDisableClientState with the argument GL_TEXTURE_COORD_ARRAY. If enabled,
the texture coordinate array is used when glDrawArrays, glDrawElements or
glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from
pre-specified vertex and vertex attribute arrays. Use glArrayElement to specify
primitives by indexing vertexes and vertex attributes and glDrawElements to construct
a sequence of primitives by indexing vertexes and vertex attributes.
Chapter 18 425

T
glTexCoordPointer
Notes

glTexCoordPointer is available only if the GL version is 1.1 or greater.

The texture coordinate array is initially disabled and it won’t be accessed when
glArrayElement, glDrawElements or glDrawArrays is called.

Execution of glTexCoordPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error
is generated, the operation is undefined.

 glTexCoordPointer is typically implemented on the client side with no protocol.

The texture coordinate array parameters are client-side state and are therefore not
saved or restored by glPushAttrib and glPopAttrib. Use glPushClientAttrib and
glPopClientAttrib instead.

Errors

• GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_TEXTURE_COORD_ARRAY
glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE
glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE
glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointerv,
glIndexPointer,
glNormalPointer,
glPopClientAttrib,
glPushClientAttrib,
glTexCoord,
glVertexPointer
Chapter 18426

T
glTexEnv
glTexEnv
glTexEnvf, glTexEnvi, glTexEnvfv, glTexEnviv: set texture environment
parameters.

C Specification

void glTexEnvf(
GLenum target,
GLenum pname,
GLfloat param)

void glTexEnvi(
GLenum target,
GLenum pname,
GLint param)

void glTexEnvfv(
GLenum target,
GLenum pname,
const GLfloat *params)

void glTexEnviv(
GLenum target,
GLenum pname,

const GLint *params)

Parameters

target Specifies a texture environment. Must be GL_TEXTURE_ENV.

pname (glTexEnvf and glTexEnvi)
Specifies the symbolic name of a single-valued texture environment
parameter. Must be GL_TEXTURE_ENV_MODE.

pname (for glTexEnvfv and glTexEnviv)
Specifies the symbolic name of a texture environment parameter.
Accepted values are GL_TEXTURE_ENV_MODE and
GL_TEXTURE_ENV_COLOR and
GL_TEXTURE_LIGHTING_MODE_hp.

param Specifies a single symbolic constant, one of GL_MODULATE,
GL_DECAL, GL_BLEND, or GL_REPLACE. If pname is
GL_TEXTURE_LIGHTING_MODE_hp, specifies a single symbolic
constant, either GL_TEXTURE_POST_SPECULAR_hp or
GL_TEXTURE_PRE_SPECULAR_hp.

params Specifies a pointer to a parameter array that contains either a single
symbolic constant or an RGBA color.
Chapter 18 427

T
glTexEnv
Description

A texture environment specifies how texture values are interpreted when a fragment is
textured. target must be GL_TEXTURE_ENV. pname can be either
GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR or
GL_TEXTURE_LIGHTING_MODE_hp (if the extension GL_hp_texture_lighting is
supported).

If pname is GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic
name of a texture function. Four texture functions may be specified: GL_MODULATE,
GL_DECAL, GL_BLEND, and GL_REPLACE. If pname is
GL_TEXTURE_LIGHTING_MODE_hp, two possible values for param may be specified:
either GL_TEXTURE_PRE_SPECULAR_hp or GL_TEXTURE_POST_SPECULAR_hp.

A texture function acts on the fragment to be textured using the texture image value
that applies to the fragment (see glTexParameter) and produces an RGBA color for that
fragment. The following table shows how the RGBA color is produced for each of the
three texture functions that can be chosen. C is a triple of color values (RGB) and A is
the associated alpha value. RGBA values extracted from a texture image are in the
range [0, 1]. The subscript f refers to the incoming fragment, the subscript t to the
texture image, the subscript c to the texture environment color, and subscript v indicates
a value produced by the texture function.

A texture image can have up to four components per texture element (see glTexImage1D,
glTexImage2D, glCopyTexImage1D, and glCopyTexImage2D). In a one-component
image, Lt indicates that single component. A two-component image uses Lt and At. A
three-component image has only a color value, Ct. A four-component image has both a
color value Ct and an alpha value At.

Base Internal Format
Texture Functions

GL_MODULATE GL_DECAL GL_BLEND GL_REPLACE

GL_ALPHA Cv = Cf
Av = Af At

 (undefined) Cv = Cf
Av = Af

Cv = Cf
Av = At

GL_LUMINANCE
1

Cv = Lt Cf
Av = Af

 (undefined) Cv = (1 - Lt)
Cf + Lt Cc
Av = Af

 Cv = Lt
Av = Af

GL_LUMINANCE_ALPHA
2

Cv = Lt Cf
Av = At Af

 (undefined) Cv = (1 - Lt)
Cf + Lt Cc
Av = At Af

Cv = Lt
Av = At

GL_INTENSITY Cv = Cf It
Av = Af It

 (undefined) Cv = (1 - It)
Cf + It Cc
Av = (1 - It)
Af + It Ac

Cv = It
Av = It
Chapter 18428

T
glTexEnv
If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an
RGBA color consisting of four values. Integer color components are interpreted linearly
such that the most positive integer maps to 1.0, and the most negative integer maps to
-1.0. The values are clamped to the range [0, 1] when they are specified. Cc takes these
four values.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and
GL_TEXTURE_ENV_COLOR defaults to (0, 0, 0, 0). GL_TEXTURE_LIGHTING_hp
defaults to GL_TEXTURE_POST_SPECULAR_hp.

Notes

GL_REPLACE may only be used if the GL version is 1.1 or greater.

GL_TEXTURE_LIGHTING_MODE_hp may only be used if the GL_hp_texture_lighting
extension is supported.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or
greater.

Errors

• GL_INVALID_ENUM is generated when target or pname is not one of the accepted
defined values, or when params should have a defined constant value (based on the
value of pname) and does not.

• GL_INVALID_OPERATION is generated if glTexEnv is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGetTexEnv

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,

GL_RGB
3

Cv = Ct Cf
Av = Af

 Cv = Ct
Av = Af

Cv = (1 - Ct)
Cf + Ct Cc
Av = Af

Cv = Ct
Av = Af

GL_RGBA
4

Cv = Ct Cf
Av = At Af

Cv = (1 - At)
Cf +At Ct
Av = Af

Cv = (1 - Ct)
Cf + Ct Cc
Av = At Af

Cv = Ct
Av = At

Base Internal Format
Texture Functions

GL_MODULATE GL_DECAL GL_BLEND GL_REPLACE
Chapter 18 429

T
glTexEnv
glCopyTexSubImage2D,
glTexImage1D,
glTexImage2D,
glTexParameter,
glTexSubImage1D,
glTexSubImage2D
Chapter 18430

T
glTexGen
glTexGen
glTexGend, glTexGenf, glTexGeni, glTexGendv, glTexGenfv, glTexGeniv :
control the generation of texture coordinates.

C Specification

void glTexGend(
GLenum coord,
GLenum pname,
GLdouble param)

void glTexGenf(
GLenum coord,
GLenum pname,
GLfloat param)

void glTexGeni(
GLenum coord,
GLenum pname,
GLint param)

void glTexGendv(
GLenum coord,
GLenum pname,
const GLdouble *params)

void glTexGenfv(
GLenum coord,
GLenum pname,
const GLfloat *params)

void glTexGeniv(
GLenum coord,
GLenum pname,

const GLint *params)

Parameters

coord Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or
GL_Q.

pname Specifies the symbolic name of the texture-coordinate generation
function. Must be GL_TEXTURE_GEN_MODE.

param Specifies a single-valued texture generation parameter, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP.

coord Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or
GL_Q.

pname Specifies the symbolic name of the texture-coordinate generation
function or function parameters. Must be
GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or
GL_EYE_PLANE.
Chapter 18 431

T
glTexGen
params Specifies a pointer to an array of texture generation parameters. If
pname is GL_TEXTURE_GEN_MODE, then the array must contain a
single symbolic constant, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise, params holds
the coefficients for the texture-coordinate generation function specified
by pname.

Description

glTexGen selects a texture-coordinate generation function or supplies coefficients for one
of the functions. coord names one of the (s, t, r, q) texture coordinates; it must be one of
the symbols GL_S, GL_T, GL_R, or GL_Q. pname must be one of three symbolic
constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If
pname is GL_TEXTURE_GEN_MODE, then params chooses a mode, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. If pname is either
GL_OBJECT_PLANE or GL_EYE_PLANE, params contains coefficients for the
corresponding texture generation function.

 If the texture generation function is GL_OBJECT_LINEAR, the function

 g = p1xo + p2yo + p3zo + p4wo

is used, where g is the value computed for the coordinate named in coord, p1, p2, p3, and
p4 are the four values supplied in params, and xo, yo, zo, and wo are the object coordinates
of the vertex. This function can be used, for example, to texture-map terrain using sea
level as a reference plane (defined by p1, p2, p3, and p4). The altitude of a terrain vertex
is computed by the GL_OBJECT_LINEAR coordinate generation function as its distance
from sea level; that altitude can then be used to index the texture image to map white
snow onto peaks and green grass onto foothills.

 If the texture generation function is GL_EYE_LINEAR, the function

 g = p1’ xe + p2’ ye + p3’ ze + p4’ we

 is used, where

(p1’ p2’ p3’ p4’) = (p1 p2 p3 p4) M-1

and xe, ye, ze, and we are the eye coordinates of the vertex, p1, p2, p3, and p4 are the
values supplied in params, and M is the modelview matrix when glTexGen is invoked. If
M is poorly conditioned or singular, texture coordinates generated by the resulting
function may be inaccurate or undefined.

Note that the values in params define a reference plane in eye coordinates. The
modelview matrix that is applied to them may not be the same one in effect when the
polygon vertices are transformed. This function establishes a field of texture coordinates
that can produce dynamic contour lines on moving objects.

 If pname is GL_SPHERE_MAP and coord is either GL_S or GL_T, s and t texture
coordinates are generated as follows. Let u be the unit vector pointing from the origin to
the polygon vertex (in eye coordinates). Let n’ be the current normal, after
transformation to eye coordinates. Let f = (fx fy fz)

T be the reflection vector such that

f = u 2n’ n’Tu
Chapter 18432

T
glTexGen
Finally, let m = 2 sqrt(fx
2 + fy

2 + (fz + 1)2). Then the values assigned to the s and t texture
coordinates are

s = fx/m + 1/2

t = fy/m + 1/2

To enable or disable a texture-coordinate generation function, call glEnable or glDisable
with one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S,
GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the
argument. When enabled, the specified texture coordinate is computed according to the
generating function associated with that coordinate. When disabled, subsequent vertices
take the specified texture coordinate from the current set of texture coordinates.
Initially, all texture generation functions are set to GL_EYE_LINEAR and are disabled.
Both s plane equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all r and
q plane equations are (0, 0, 0, 0).

Errors

• GL_INVALID_ENUM is generated when coord or pname is not an accepted defined
value, or when pname is GL_TEXTURE_GEN_MODE and params is not an
accepted defined value.

• GL_INVALID_ENUM is generated when pname is GL_TEXTURE_GEN_MODE,
params is GL_SPHERE_MAP, and coord is either GL_R or GL_Q.

• GL_INVALID_OPERATION is generated if glTexGen is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexGen
glIsEnabled with argument GL_TEXTURE_GEN_S
glIsEnabled with argument GL_TEXTURE_GEN_T
glIsEnabled with argument GL_TEXTURE_GEN_R
glIsEnabled with argument GL_TEXTURE_GEN_Q

See Also

glCopyPixels,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glTexEnv,
glTexImage1D,
glTexImage2D,
glTexParameter,
glTexSubImage1D,
glTexSubImage2D
Chapter 18 433

T
glTexImage1D
glTexImage1D
glTexImage1D : specify a one-dimensional texture image.

C Specification

void glTexImage1D(
GLenum target,
GLint level,
GLint internalformat,
GLsizei width,
GLint border,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D or
GL_PROXY_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2,
3, or 4, or one of the following symbolic constants: GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8,
GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or
GL_RGBA16. Additionally, if the extension GL_EXT_shadow is
supported, may be one of the symbolic constants
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

width Specifies the width of the texture image. Must be 2n + 2 × border for
some integer n. All implementations support texture images that are
at least 64 texels wide. The height of the 1D texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
Chapter 18434

T
glTexImage1D
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. To enable and disable one-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the parameters
of the texture image, such as width, width of the border, level-of-detail number (see
glTexParameter), and the internal resolution and format used to store the image. The
last three arguments describe how the image is represented in memory; they are
identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_1D, no data is read from pixels, but all of the texture
image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an error
(see glGetError). To query for an entire mipmap array, use an image array level greater
than or equal to 1.

If target is GL_TEXTURE_1D, data is read from pixels as a sequence of signed or
unsigned bytes, shorts, or longs, or single-precision floating-point values, depending on
type. These values are grouped into sets of one, two, three, or four values, depending on
format, to form elements. If type is GL_BITMAP, the data is considered as a string of
unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as
eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

The first element corresponds to the left end of the texture array. Subsequent elements
progress left-to-right through the remaining texels in the texture array. The final
element corresponds to the right end of the texture array.

format determines the composition of each element in pixels. It can assume one of nine
symbolic values:

GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right
depending on the value and sign of GL_INDEX_SHIFT, and added to
GL_INDEX_OFFSET (see glPixelTransfer). The resulting index is converted to a set of
color components using the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped to the
range [0, 1].

GL_RED
Chapter 18 435

T
glTexImage1D
Each element is a single red component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_GREEN

Each element is a single green component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red and blue, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_BLUE

Each element is a single blue component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red and green, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_ALPHA

Each element is a single alpha component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_RGB

Each element is an RGB triple. The GL converts it to floating point and assembles it into
an RGBA element by attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0, 1] (see glPixelTransfer).

GL_RGBA

Each element contains all four components. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0, 1] (see glPixelTransfer).

GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating point, then
assembles it into an RGBA element by replicating the luminance value three times for
red, green, and blue and attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0, 1] (see glPixelTransfer).

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point, then
assembles it into an RGBA element by replicating the luminance value three times for
red, green, and blue. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0, 1] (see
glPixelTransfer).

GL_DEPTH_COMPONENT

Each element is a single depth component. It is converted to floating-point, then
multiplied by the signed scale factor GL_DEPTH_SCALE, added to the signed bias
GL_DEPTH_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).
Chapter 18436

T
glTexImage1D
If an application wants to store the texture at a certain resolution or in a certain format,
it can request the resolution and format with internalformat. The GL will choose an
internal representation that closely approximates that requested by internalformat, but
it may not match exactly. (The representations specified by GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric
values 1, 2, 3, and 4 may also be used to specify the preceding representations.)

Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The
implementation will update and recompute its best match for the requested storage
resolution and format. To query this state, call glGetTexLevelParameter. If the texture
cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color
extracted from pixels. A two-component image uses the R and A values. A
three-component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Notes

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a
glDrawPixels command, except that GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT cannot be used. glPixelStore and glPixelTransfer modes
affect texture images in exactly the way they affect glDrawPixels.

The format value GL_DEPTH_COMPONENT and internalformat values
GL_DEPTH_COMPONENT16_EXT, GL_DEPTH_COMPONENT24_EXT, and
GL_DEPTH_COMPONENT32_EXT may only be used if the GL_EXT_shadow extension
is supported.

GL_PROXY_TEXTURE_1D may only be used if the GL version is 1.1 or greater.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or
greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is
allocated to accommodate a texture of width width. You can then download subtextures
to initialize the texture memory. The image is undefined if the program tries to apply an
uninitialized portion of the texture image to a primitive.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or
GL_PROXY_TEXTURE_1D.

• GL_INVALID_ENUM is generated if format is not an accepted format constant.
Format constants other than GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT are accepted.

• GL_INVALID_ENUM is generated if type is not a type constant.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.

• GL_INVALID_VALUE is generated if level is less than 0.
Chapter 18 437

T
glTexImage1D
• GL_INVALID_VALUE may be generated if level is greater than log2max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

• GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2n + 2 × border for some
integer value of n.

• GL_INVALID_VALUE is generated if border is not 0 or 1.

• GL_INVALID_OPERATION is generated if glTexImage1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 18438

T
glTexImage2D
glTexImage2D
glTexImage2D : specify a two-dimensional texture image.

C Specification

void glTexImage2D(
GLenum target,
GLint level,
GLint internalformat,
GLsizei width,
GLsizeiheight,
GLint border,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2,
3, or 4, or one of the following symbolic constants: GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8,
GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2,
GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16. Additionally, if the extension
GL_EXT_shadow is supported, may be one of the symbolic constants
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

width Specifies the width of the texture image. Must be 2n + 2 × border for
some integer n. All implementations support texture images that are
at least 64 texels wide.

height Specifies the height of the texture image. Must be 2m + 2 × border for
some integer m. All implementations support texture images that are
at least 64 texels high.

border Specifies the width of the border. Must be either 0 or 1.
Chapter 18 439

T
glTexImage2D
format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. To enable and disable two-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_2D.

To define texture images, call glTexImage2D. The arguments describe the parameters of
the texture image, such as height, width, width of the border, level-of-detail number (see
glTexParameter), and number of color components provided. The last three arguments
describe how the image is represented in memory; they are identical to the pixel formats
used for glDrawPixels.

If target is GL_PROXY_TEXTURE_2D, no data is read from pixels, but all of the texture
image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an error
(see glGetError). To query for an entire mipmap array, use an image array level greater
than or equal to 1.

If target is GL_TEXTURE_2D, data is read from pixels as a sequence of signed or
unsigned bytes, shorts, or longs, or single-precision floating-point values, depending on
type. These values are grouped into sets of one, two, three, or four values, depending on
format, to form elements. If type is GL_BITMAP, the data is considered as a string of
unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as
eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

The first element corresponds to the lower left corner of the texture image. Subsequent
elements progress left-to-right through the remaining texels in the lowest row of the
texture image, and then in successively higher rows of the texture image. The final
element corresponds to the upper right corner of the texture image.

format determines the composition of each element in pixels. It can assume one of nine
symbolic values:

GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right
depending on the value and sign of GL_INDEX_SHIFT, and added to
GL_INDEX_OFFSET (see glPixelTransfer). The resulting index is converted to a set of
Chapter 18440

T
glTexImage2D
color components using the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped to the
range [0,1].

 GL_RED

Each element is a single red component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_GREEN

Each element is a single green component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red and blue, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_BLUE

Each element is a single blue component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red and green, and 1 for alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_ALPHA

Each element is a single alpha component. The GL converts it to floating point and
assembles it into an RGBA element by attaching 0 for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

GL_RGB

Each element is an RGB triple. The GL converts it to floating point and assembles it into
an RGBA element by attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0, 1] (see glPixelTransfer).

GL_RGBA

Each element contains all four components. Each component is multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0, 1] (see glPixelTransfer).

GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating point, then
assembles it into an RGBA element by replicating the luminance value three times for
red, green, and blue and attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0, 1] (see glPixelTransfer).

 GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point, then
assembles it into an RGBA element by replicating the luminance value three times for
red, green, and blue. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0, 1] (see
glPixelTransfer).
Chapter 18 441

T
glTexImage2D
GL_DEPTH_COMPONENT

Each element is a single depth component. It is converted to floating-point, then
multiplied by the signed scale factor GL_DEPTH_SCALE, added to the signed bias
GL_DEPTH_BIAS, and clamped to the range [0, 1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values for
the type parameter.

If an application wants to store the texture at a certain resolution or in a certain format,
it can request the resolution and format with internalformat. The GL will choose an
internal representation that closely approximates that requested by internalformat, but
it may not match exactly. (The representations specified by GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric
values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_2D target to try out a resolution and format. The
implementation will update and recompute its best match for the requested storage
resolution and format. To then query this state, call glGetTexLevelParameter. If the
texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color
extracted from pixels. A two-component image uses the R and A values. A
three-component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Notes

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a
glDrawPixels command, except that GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT cannot be used. glPixelStore and glPixelTransfer modes
affect texture images in exactly the way they affect glDrawPixels.

The format value GL_DEPTH_COMPONENT and internalformat values
GL_DEPTH_COMPONENT16_EXT, GL_DEPTH_COMPONENT24_EXT, and
GL_DEPTH_COMPONENT32_EXT may only be used if the GL_EXT_shadow extension
is supported.

glTexImage2D and GL_PROXY_TEXTURE_2D are only available if the GL version is
1.1 or greater.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or
greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is
allocated to accommodate a texture of width width and height height. You can then
download subtextures to initialize this texture memory. The image is undefined if the
user tries to apply an uninitialized portion of the texture image to a primitive.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D.

• GL_INVALID_ENUM is generated if format is not an accepted format constant.
Format constants other than GL_STENCIL_INDEX are accepted.
Chapter 18442

T
glTexImage2D
• GL_INVALID_ENUM is generated if type is not a type constant.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

• GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2
+ GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2k + 2 × border
for some integer value of k.

• GL_INVALID_VALUE is generated if border is not 0 or 1.

• GL_INVALID_OPERATION is generated if glTexImage2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also

glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexSubImage1D,
glTexSubImage2D,
glTexParameter
Chapter 18 443

T
glTexImage3DEXT
glTexImage3DEXT
glTexImage3DEXT : Specify a three-dimensional texture image.

C Specification

void glTexImage3DEXT(
GLenum target,
GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D_EXT or
GL_PROXY_TEXTURE_3D_EXT.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

Specifies the number of color components in the texture. Must be 1, 2,
3, or 4, or one of the following symbolic constants: GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8,
GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2,
GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16. Additionally, if the extension
GL_EXT_shadow is supported, may be one of the symbolic constants
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

width Specifies the width of the texture image. Must be 2n + 2 × border for
some integer n.

height Specifies the height of the texture image. Must be 2m + 2 × border for
some integer m.
Chapter 18444

T
glTexImage3DEXT
depth Specifies the depth of the texture image. Must be 2l + 2 × border for
some integer l.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. Three-dimensional texturing is enabled and disabled using
glEnable and glDisable with argument GL_TEXTURE_3D_EXT.

Texture images are defined with glTexImage3DEXT. The arguments describe the
parameters of the texture image, such as height, width, depth, width of the border,
level-of-detail number (see glTexParameter), and the internal resolution and format
used to store the image. The last three arguments describe the way the image is
represented in memory, and they are identical to the pixel formats used for
glDrawPixels.

If target is GL_PROXY_TEXTURE_3D_EXT no data is read from pixels, but all of the
texture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it will set all of the texture image state to 0
(GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_COMPONENTS), but no error will be generated.

If target is GL_TEXTURE_3D_EXT, data is read from pixels as a sequence of signed or
unsigned bytes, shorts, or longs, or single-precision floating-point values, depending on
type. These values are grouped into sets of one, two, three, or four values, depending on
format, to form elements.

The first element corresponds to the lower-left-rear corner of the texture volume.
Subsequent elements progress left-to-right through the remaining texels in the
lowest-rear row of the texture volume, then in successively higher rows of the rear 2D
slice of the texture volume, then in successively closer 2D slices of the texture volume.
The final element corresponds to the upper-right-front corner of the texture volume.

Each element of pixels is converted to an RGBA element according to

GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right
depending on the value and sign of GL_INDEX_SHIFT, and added to
GL_INDEX_OFFSET (see glPixelTransfer). The resulting index is converted to a set of
Chapter 18 445

T
glTexImage3DEXT
color components using the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped to the
range [0, 1].

GL_RED

Each element is a single red component. It is converted to floating-point and assembled
into an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha.

GL_GREEN

Each element is a single green component. It is converted to floating-point and
assembled into an RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha.

GL_BLUE

Each element is a single blue component. It is converted to floating-point and assembled
into an RGBA element by attaching 0.0 for red and green, and 1.0 for alpha.

GL_ALPHA

Each element is a single alpha component. It is converted to floating-point and
assembled into an RGBA element by attaching 0.0 for red, green, and blue.

GL_RGB

Each element is an RGB triple. It is converted to floating-point and assembled into an
RGBA element by attaching 1.0 for alpha (see glPixelTransfer).

GL_RGBA, GL_ABGR_EXT

Each element contains all four components; for GL_RGBA, the red component is first,
followed by green, then blue, and then alpha; for GL_ABGR_EXT the order is alpha,
blue, green, and then red.

GL_LUMINANCE

Each element is a single luminance value. It is converted to floating-point, then
assembled into an RGBA element by replicating the luminance value three times for red,
green, and blue and attaching 1.0 for alpha.

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. It is converted to floating-point, then assembled
into an RGBA element by replicating the luminance value three times for red, green, and
blue.

Please refer to the glDrawPixels reference page for a description of the acceptable values
for the type parameter.

An application may desire that the texture be stored at a certain resolution, or that it be
stored in a certain format. This resolution and format can be requested by
internalformat, but the implementation may not support that resolution (the formats of
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must be
supported). When a resolution and storage format is specified, the implementation will
update the texture state to provide the best match to the requested resolution. The
GL_PROXY_TEXTURE_3D_EXT target can be used to try a resolution and format. The
implementation will compute its best match for the requested storage resolution and
format; this state can then be queried using glGetTexLevelParameter.
Chapter 18446

T
glTexImage3DEXT
A one-component texture image uses only the red component of the RGBA color
extracted from pixels. A two-component image uses the R and A values. A
three-component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Notes

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats and types as the pixels
in a glDrawPixels command, except that formats GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT cannot be used, and type GL_BITMAP cannot be used.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

A texture image with zero height, width, or depth indicates the null texture. If the null
texture is specified for level-of-detail 0, it is as if texturing were disabled.

glTexImage3DEXT is part of the EXT_texture3d extension.

Errors

• GL_INVALID_ENUM is generated when target is not an accepted value.

• GL_INVALID_ENUM is generated when format is not an accepted value.

• GL_INVALID_ENUM is generated when type is not an accepted value.

• GL_INVALID_VALUE is generated if level is less than zero or greater than log2max,
where max is the returned value of GL_MAX_3D_TEXTURE_SIZE_EXT.

• GL_INVALID_VALUE is generated if internalformat is not an accepted value.

• GL_INVALID_VALUE is generated if width, height, or depth is less than zero or
greater than GL_MAX_3D_TEXTURE_SIZE_EXT, when width, height, or depth
cannot be represented as 2k + 2 × border for some integer k,

• GL_INVALID_VALUE is generated if border is not 0 or 1.

• GL_INVALID_OPERATION is generated if glTexImage3DEXT is executed between
the execution of glBegin and the corresponding execution of glEnd.

• GL_TEXTURE_TOO_LARGE_EXT is generated if the implementation cannot
accommodate a texture of the size requested.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D_EXT

See Also

glDrawPixels,
glFog,
glPixelStore,
glPixelTransfer,
glTexEnv,
Chapter 18 447

T
glTexImage3DEXT
glTexGen,
glTexImage1D,
glTexImage2D,
glTexParameter.
Chapter 18448

T
glTexParameter
glTexParameter
glTexParameterf, glTexParameteri, glTexParameterfv,
glTexParameteriv : set texture parameters.

C Specification

void glTexParameterf(
GLenum target,
GLenum pname,
GLfloat param)

void glTexParameteri(
GLenum target,
GLenum pname,
GLint param)

void glTexParameterfv(
GLenum target,
GLenum pname,
const GLfloat *params)

void glTexParameteriv(
GLenum target,
GLenum pname,

const GLint *params)

Parameters

target Specifies the target texture, which must be either GL_TEXTURE_1D,
GL_TEXTURE_2D or GL_TEXTURE_3D_EXT.

pname Specifies the symbolic name of a single-valued texture parameter.
pname can be one of the following: GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_PRIORITY,
GL_TEXTURE_COMPARE_EXT, or
GL_TEXTURE_COMPARE_OPERATOR_EXT.

param Specifies the value of pname.

target Specifies the target texture, which must be either GL_TEXTURE_1D
or GL_TEXTURE_2D.

pname Specifies the symbolic name of a texture parameter. pname can be one
of the following: GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_BORDER_COLOR, or
GL_TEXTURE_PRIORITY.

params Specifies a pointer to an array where the value or values of pname are
stored.
Chapter 18 449

T
glTexParameter
Description

Texture mapping is a technique that applies an image onto an object’s surface as if the
image were a decal or cellophane shrink-wrap. The image is created in texture space,
with an (s, t) coordinate system. A texture is a one- or two-dimensional image and a set of
parameters that determine how samples are derived from the image.

 glTexParameter assigns the value or values in params to the texture parameter
specified as pname. target defines the target texture, either GL_TEXTURE_1D or
GL_TEXTURE_2D. The following symbols are accepted in pname:

 GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured maps to an
area greater than one texture element. There are six defined minifying functions. Two of
them use the nearest one or nearest four texture elements to compute the texture value.
The other four use mipmaps.

A mipmap is an ordered set of arrays representing the same image at progressively
lower resolutions: 2a for 1D mipmaps, 2a × 2b for 2D mipmaps, and 2a × 2b × 2c for 3D
mipmaps.

For example, if a 2D texture has dimensions 2m× 2n, there are max(m, n) + 1 mipmaps.
The first mipmap is the original texture, with dimensions 2m× 2n. Each subsequent
mipmap has dimensions 2k-1× 2l-1, where 2k× 2l are the dimensions of the previous
mipmap, until either k=0 or l=0. At that point, subsequent mipmaps have dimension 1×
2l-1 or 2k-1× 1 until the final mipmap, which has dimension 1× 1. To define the mipmaps,
call glTexImage1D, glTexImage2D, glCopyTexImage1D, glCopyTexImage2D, or
glCopyTexImage3DEXT with the level argument indicating the order of the mipmaps.
Level 0 is the original texture; level max(m, n) is the final 1× 1 mipmap. params
supplies a function for minifying the texture as one of the following:

GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the
center of the pixel being textured.

GL_LINEAR

Returns the weighted average of the four texture elements that are closest to the center
of the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact
mapping.

 GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being textured and
uses the GL_NEAREST criterion (the texture element nearest to the center of the pixel)
to produce a texture value.

GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being textured and
uses the GL_LINEAR criterion (a weighted average of the four texture elements that are
closest to the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR
Chapter 18450

T
glTexParameter
Chooses the two mipmaps that most closely match the size of the pixel being textured
and uses the GL_NEAREST criterion (the texture element nearest to the center of the
pixel) to produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of the pixel being textured
and uses the GL_LINEAR criterion (a weighted average of the four texture elements
that are closest to the center of the pixel) to produce a texture value from each mipmap.
The final texture value is a weighted average of those two values.

As more texture elements are sampled in the minification process, fewer aliasing
artifacts will be apparent. While the GL_NEAREST and GL_LINEAR minification
functions can be faster than the other four, they sample only one or four texture
elements to determine the texture value of the pixel being rendered and can produce
moire patterns or ragged transitions. The initial value of GL_TEXTURE_MIN_FILTER
is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER

The texture magnification function is used when the pixel being textured maps to an
area less than or equal to one texture element. It sets the texture magnification function
to either GL_NEAREST or GL_LINEAR (see below). GL_NEAREST is generally faster
than GL_LINEAR, but it can produce textured images with sharper edges because the
transition between texture elements is not as smooth. The initial value of
GL_TEXTURE_MAG_FILTER is GL_LINEAR.

 GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the
center of the pixel being textured.

GL_LINEAR

Returns the weighted average of the four texture elements that are closest to the center
of the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact
mapping.

GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate s to GL_CLAMP, GL_REPEAT,
GL_CLAMP_TO_BORDER_EXT, or GL_CLAMP_TO_EDGE_EXT. GL_CLAMP causes s
coordinates to be clamped to the range [0, 1] and is useful for preventing wrapping
artifacts when mapping a single image onto an object. GL_REPEAT causes the integer
part of the s coordinate to be ignored; the GL uses only the fractional part, thereby
creating a repeating pattern. GL_CLAMP_TO_BORDER_EXT causes s coordinates to be
clamped to a range 1/2 texel outside [0, 1]; this prevents the “half border, half edge” color
artifact. GL_CLAMP_TO_EDGE_EXT causes s coordinates to be clamped to a range 1/2
texel inside [0, 1]; this prevents any border colors from showing up in the image. Border
texture elements are accessed only if wrapping is set to GL_CLAMP or
GL_CLAMP_TO_BORDER_EXT. Initially, GL_TEXTURE_WRAP_S is set to
GL_REPEAT.

GL_TEXTURE_WRAP_T
Chapter 18 451

T
glTexParameter
Sets the wrap parameter for texture coordinate t to GL_CLAMP, GL_REPEAT,
GL_CLAMP_TO_BORDER_EXT, or GL_CLAMP_TO_EDGE_EXT. See the discussion
under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to
GL_REPEAT.

GL_TEXTURE_WRAP_R_EXT

Sets the wrap parameter for texture coordinate r to GL_CLAMP, GL_REPEAT,
GL_CLAMP_TO_BORDER_EXT, or GL_CLAMP_TO_EDGE_EXT. See the discussion
under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_R_EXT is set to
GL_REPEAT.

GL_TEXTURE_BORDER_COLOR

Sets a border color. params contains four values that comprise the RGBA color of the
texture border. Integer color components are interpreted linearly such that the most
positive integer maps to 1.0, and the most negative integer maps to - 1.0. The values are
clamped to the range [0, 1] when they are specified. Initially, the border color is (0, 0, 0,
0).

GL_TEXTURE_PRIORITY

Specifies the texture residence priority of the currently bound texture. Permissible
values are in the range [0, 1]. See glPrioritizeTextures and glBindTexture for more
information.

GL_GENERATE_MIPMAP_EXT

Specifies whether MIP levels should be automatically filtered when the base level (level
0) of a texture map is modified with glTexImage1D, glTexImage2D, glTexImage3DEXT,
glTexSubImage1D. glTexSubImage2D, glTexSubImage3DEXT, glCopyTexImage1D,
glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, or
glCopyTexSubImage3DEXT. The default is GL_FALSE (no automatic generation of MIP
levels).

GL_TEXTURE_COMPARE_EXT

Specifies whether the depth texture comparison operator is in effect. param is either
GL_TRUE or GL_FALSE. The default is GL_FALSE, meaning that the depth texture
comparison operator is not in effect (see GL_TEXTURE_COMPARE_OPERATOR_EXT,
below).

GL_TEXTURE_COMPARE_OPERATOR_EXT

Specifies the comparison operator to be used when the depth texture comparison
operator is in effect and the texture format is one of the GL_DEPTH formats. param is
one of GL_TEXTURE_LEQUAL_R_EXT or GL_TEXTURE_GEQUAL_R_EXT. When the
depth texture comparison operator is enabled, the r coordinate is interpolated over the
primitive and compared with the depth value found at the interpolated s and t
coordinate location in the texture map. This comparison is either less-than-or-equal-to
(GL_TEXTURE_LEQUAL_R_EXT) or greater-than-or-equal-to
(GL_TEXTURE_GEQUAL_R_EXT). The result of the comparison is 0.0 if it fails, or 1.0 if
it passes. If texture filtering is enabled, this comparison is performed for all of the texels
involved in the filtering operation, and the resulting values interpolated (note that only
GL_LINEAR and GL_NEAREST minification and magnification filters are supported for
depth texture comparison). This result is passed down as the alpha component of the
texture color to subsequent texture application; the red, green, and blue components are
set to 0.0. The depth comparison operator is typically used to produce shadow effects.
Chapter 18452

T
glTexParameter
Notes

Suppose that a program has enabled texturing (by calling glEnable with argument
GL_TEXTURE_1D or GL_TEXTURE_2D) and has set GL_TEXTURE_MIN_FILTER to
one of the functions that requires a mipmap. If either the dimensions of the texture
images currently defined (with previous calls to glTexImage1D, glTexImage2D,
glCopyTexImage1D, or glCopyTexImage2D) do not follow the proper sequence for
mipmaps (described above), or there are fewer texture images defined than are needed,
or the set of texture images have differing numbers of texture components, then it is as if
texture mapping were disabled.

 Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D
textures, linear filtering accesses the two nearest texture elements. In 3D textures,
linear filtering accesses the eight nearest texture elements.

The GL_CLAMP_TO_BORDER_EXT param to GL_WRAP_S, GL_WRAP_T, and
GL_WRAP_R_EXT is only supported if the extension GL_EXT_texture_border_clamp is
supported.

The GL_CLAMP_TO_EDGE_EXT param to GL_WRAP_S, GL_WRAP_T, and
GL_WRAP_R_EXT is only supported if the extension GL_EXT_texture_edge_clamp is
supported.

GL_TEXTURE_WRAP_R_EXT and the target GL_TEXTURE_3D_EXT are only
supported if the extension GL_EXT_texture3D is supported.

GL_GENERATE_MIPMAP_EXTis only supported if the extension
GL_EXT_generate_mipmap is supported.

GL_TEXTURE_COMPARE_EXT and GL_TEXTURE_COMPARE_OPERATOR_EXT
are only supported if the extension GL_EXT_shadow is supported.

Errors

• GL_INVALID_ENUM is generated if target or pname is not one of the accepted
defined values.

• GL_INVALID_ENUM is generated if params should have a defined constant value
(based on the value of pname) and does not.

• GL_INVALID_OPERATION is generated if glTexParameter is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter
glGetTexLevelParameter

See Also

glBindTexture,
glCopyPixels,
glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
Chapter 18 453

T
glTexParameter
glDrawPixels,
glPixelStore,
glPixelTransfer,
glPrioritizeTextures,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexSubImage2D
Chapter 18454

T
glTexSubImage1D
glTexSubImage1D
glTexSubImage1D : specify a two-dimensional texture sub-image.

C Specification

void glTexSubImage1D(
GLenum target,
GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture sub-image.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, then the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

 Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. To enable or disable one-dimensional texturing, call glEnable
and glDisable with argument GL_TEXTURE_1D.

glTexSubImage1D redefines a contiguous subregion of an existing one-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture
array with X indices xoffset and xoffset + width - 1, inclusive. This region may not include
any texels outside the range of the texture array as it was originally specified. It is not
an error to specify a subtexture with width of 0, but such a specification has no effect.
Chapter 18 455

T
glTexSubImage1D
Notes

glTexSubImage1D is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

The format GL_DEPTH_COMPONENT may only be used if the GL_EXT_shadow
extension is supported.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

Errors

• GL_INVALID_ENUM is generated if target is not one of the allowable values.

• GL_INVALID_OPERATION is generated if the texture array has not been defined
by a previous glTexImage1D operation.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if xoffset < - b, or if (xoffset + width) > (w - b),
where w is the GL_TEXTURE_WIDTH, and b is the width of the
GL_TEXTURE_BORDER of the texture image being modified. Note that w includes
twice the border width.

• GL_INVALID_VALUE is generated if width is less than 0.

• GL_INVALID_ENUM is generated if format is not an accepted format constant.

• GL_INVALID_ENUM is generated if type is not a type constant.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.

• GL_INVALID_OPERATION is generated if glTexSubImage1D is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also

glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
Chapter 18456

T
glTexSubImage1D
glTexImage2D,
glTexParameter,
glTexSubImage2D
Chapter 18 457

T
glTexSubImage2D
glTexSubImage2D
glTexSubImage2D : specify a two-dimensional texture sub-image.

C Specification

void glTexSubImage2D(
GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture sub-image.

height Specifies the height of the texture sub-image.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, then the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. To enable and disable two-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_2D.

glTexSubImage2D redefines a contiguous subregion of an existing two-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture
array with X indices xoffset and xoffset + width - 1, inclusive, and Y indices yoffset and
Chapter 18458

T
glTexSubImage2D
yoffset + height - 1, inclusive. This region may not include any texels outside the range of
the texture array as it was originally specified. It is not an error to specify a subtexture
with zero width or height, but such a specification has no effect.

Notes

glTexSubImage2D is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

The format GL_DEPTH_COMPONENT may only be used if the GL_EXT_shadow
extension is supported.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

Errors

• GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

• GL_INVALID_OPERATION is generated if the texture array has not been defined
by a previous glTexImage2D operation.

• GL_INVALID_VALUE is generated if level is less than 0.

• GL_INVALID_VALUE may be generated if level is greater than log2 max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

• GL_INVALID_VALUE is generated if xoffset < - b, (xoffset + width) > (w - b), yoffset <
- b, or (yoffset + height) > (h - b), where w is the GL_TEXTURE_WIDTH, h is the
GL_TEXTURE_HEIGHT, and b is the border width of the texture image being
modified.

Note that w and h include twice the border width. GL_INVALID_VALUE is
generated if width or height is less than 0.

• GL_INVALID_ENUM is generated if format is not an accepted format constant.

• GL_INVALID_ENUM is generated if type is not a type constant.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.

• GL_INVALID_OPERATION is generated if glTexSubImage2D is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also

glCopyTexImage1D,
glCopyTexImage2D,
glCopyTexSubImage1D,
glCopyTexSubImage2D,
glDrawPixels,
Chapter 18 459

T
glTexSubImage2D
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexSubImage1D,
glTexParameter
Chapter 18460

T
glTexSubImage3DEXT
glTexSubImage3DEXT
glTexSubImage3DEXT : specify a three-dimensional texture sub-image.

C Specification

void glTexSubImage3DEXT(
GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum type,

const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D_EXT.

level Specifies the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the X direction within the texture array.

yoffset Specifies a texel offset in the Y direction within the texture array.

zoffset Specifies a texel offset in the Z direction within the texture array.

width Specifies the width of the texture sub-image.

height Specifies the height of the texture sub-image.

depth Specifies the depth of the texture sub-image.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA,GL_LUMINANCE, and
GL_LUMINANCE_ALPHA. If the extension GL_EXT_shadow is
supported, the symbolic value GL_DEPTH_COMPONENT is also
accepted.

type Specifies the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.
Chapter 18 461

T
glTexSubImage3DEXT
Description

Texturing maps a portion of a specified texture image onto each graphical primitive for
which texturing is enabled. Three-dimensional texturing is enabled and disabled using
glEnable and glDisable with argument GL_TEXTURE_3D_EXT.

glTexSubImage3DEXT redefines a contiguous subregion of an existing
three-dimensional texture image. The texels referenced by pixels replace the portion of
the existing texture array with X indices xoffset and xoffset + width - 1, inclusive, Y
indices yoffset and yoffset + height - 1, inclusive, and Z indices zoffset and zoffset + depth
- 1, inclusive. This region may not include any texels outside the range of the texture
array as it was originally specified. It is not an error to specify a subtexture with zero
width, height or depth, but such a specification has no effect.

Notes

Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they
affect glDrawPixels.

Errors

• GL_INVALID_ENUM is generated when target is not GL_TEXTURE_3D_EXT.

• GL_INVALID_OPERATION is generated when the texture array has not been
defined by a previous glTexImage3D operation.

• GL_INVALID_VALUE is generated if level is less than zero or greater than log2max,
where max is the returned value of GL_MAX_3D_TEXTURE_SIZE_EXT.

• GL_INVALID_VALUE is generated if xoffset <TEXTURE_BORDER, (xoffset +
width) > (TEXTURE_WIDTH TEXTURE_BORDER), yoffset <
TEXTURE_BORDER, zoffset < TEXTURE_BORDER, or (zoffset + depth) >
(TEXTURE_DEPTH_EXT TEXTURE_BORDER), where TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH_EXT and TEXTURE_BORDER are the
state values of the texture image being modified. Note that TEXTURE_WIDTH,
TEXTURE_HEIGHT and TEXTURE_DEPTH_EXT include twice the border width.

• GL_INVALID_ENUM is generated when format is not an accepted format constant.

• GL_INVALID_ENUM is generated when type is not a type constant.

• GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.

• GL_INVALID_OPERATION is generated if glTexSubImage3DEXT is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

 glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D_EXT
Chapter 18462

T
glTexSubImage3DEXT
See Also

glDrawPixels,
glFog,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage3D,
glTexParameter.
Chapter 18 463

T
glTranslate
glTranslate
glTranslated, glTranslatef : multiply the current matrix by a translation matrix.

C Specification

void glTranslated(
GLdouble x,
GLdouble y,
GLdouble z)

void glTranslatef(
GLfloat x,
GLfloat y,

 GLfloat z)

Parameters

x, y, z Specify the x, y, and z coordinates of a translation vector.

Description

glTranslate produces a translation by (x, y, z). The current matrix (see glMatrixMode) is
multiplied by this translation matrix, with the product replacing the current matrix, as
if glMultMatrix were called with the following matrix for its argument:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after a call to glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the un-translated coordinate
system.

Errors

• GL_INVALID_OPERATION is generated if glTranslate is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX
Chapter 18464

T
glTranslate
See Also

glMatrixMode,
glMultMatrix,
glPushMatrix,
glScale
Chapter 18 465

T
glTranslate
Chapter 18466

19 U
Chapter 19 467

U
gluUnProject
gluUnProject
gluUnProject : map window coordinates to object coordinates.

C Specification

GLint gluUnProject(
GLdouble winX,
GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* objX,
GLdouble* objY,

GLdouble* objZ)

Parameters

winX, winY, winZ Specify the window coordinates to be mapped.

model Specifies the modelview matrix (as from a glGetDoublev call).

proj Specifies the projection matrix (as from a glGetDoublev call).

view Specifies the viewport (as from a glGetIntegerv call).

objX, objY, objZ Returns the computed object coordinates.

Description

 gluUnProject maps the specified window coordinates into object coordinates using
model, proj, and view. The result is stored in objX, objY, and objZ. A return value of
GL_TRUE indicates success; a return value of GL_FALSE indicates failure.

To compute the coordinates (objX, objY, objZ), gluUnProject multiplies the normalized
device coordinates by the inverse of model × proj as follows:

 objX 2 (winX - view[0]) / view[2]

 objY = INV(PM) - 1

 objZ 2 (winY - view[1]) / view[3]

W - 1

 2 winZ - 1

1

 “INV()” denotes matrix inversion. W is an unused variable, included for consistent
matrix notation.
Chapter 19468

U
gluUnProject
See Also

glGet,
gluProject
Chapter 19 469

U
glXUseXFont
glXUseXFont
glXUseXFont : create bitmap display lists from an X font.

C Specification

void glXUseXFont(
Font font,

 int first,
int count,

int listBase)

Parameters

font Specifies the font from which character glyphs are to be taken.

first Specifies the index of the first glyph to be taken.

count Specifies the number of glyphs to be taken.

listBase Specifies the index of the first display list to be generated.

Description

glXUseXFont generates count display lists, named listBase through listBase + count - 1,
each containing a single glBitmap command. The parameters of the glBitmap command
of display list listBase + i are derived from glyph first + i. Bitmap parameters xorig,
yorig, width, and height are computed from font metrics as descent - 1, lbearing, rbearing
- lbearing, and ascent + descent, respectively. xmove is taken from the glyph’s width
metric, and ymove is set to zero. Finally, the glyph’s image is converted to the
appropriate format for glBitmap.

Using glXUseXFont may be more efficient than accessing the X font and generating the
display lists explicitly, both because the display lists are created on the server without
requiring a round trip of the glyph data, and because the server may choose to delay the
creation of each bitmap until it is accessed.

Empty display lists are created for all glyphs that are requested and are not defined in
font. glXUseXFont is ignored if there is no current GLX context.

Errors

• BadFont is generated if font is not a valid font.

• GLXBadContextState is generated if the current GLX context is in display-list
construction mode.

• GLXBadCurrentWindow is generated if the drawable associated with the current
context of the calling thread is a window, and that window is no longer valid.
Chapter 19470

U
glXUseXFont
See Also

glBitmap,
glXMakeCurrent
Chapter 19 471

U
glXUseXFont
Chapter 19472

20 V
Chapter 20 473

V
glVertex
glVertex
glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d,
glVertex3f, glVertex3i, glVertex3s, glVertex4d, glVertex4f,
glVertex4i, glVertex4s,glVertex2dv, glVertex2fv, glVertex2iv,
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,
glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv : specify a vertex.

C Specification

void glVertex2d(
GLdouble x,
GLdouble y)

void glVertex2f(
GLfloat x,
GLfloat y)

void glVertex2i(
GLint x,
GLint y)

void glVertex2s(
GLshort x,
GLshort y)

void glVertex3d(
GLdouble x,
GLdouble y,
GLdouble z)

void glVertex3f(
GLfloat x,
GLfloat y,
GLfloat z)

void glVertex3i(
GLint x,
GLint y,
GLint z)

void glVertex3s(
GLshort x,
GLshort y,
GLshort z)

void glVertex4d(
GLdouble x,
GLdouble y,
GLdouble z,
GLdouble w)

void glVertex4f(
GLfloat x,
GLfloat y,
GLfloat z,
GLfloat w)

void glVertex4i(
GLint x,
GLint y,
Chapter 20474

V
glVertex
GLint z,
GLint w)

void glVertex4s(
GLshort x,
GLshort y,
GLshort z,
GLshort w)

void glVertex2dv(
const GLdouble *v)

void glVertex2fv(
const GLfloat *v)

void glVertex2iv(
const GLint *v)

void glVertex2sv(
const GLshort *v)

void glVertex3dv(
const GLdouble *v)

void glVertex3fv(
const GLfloat *v)

void glVertex3iv(
const GLint *v)

void glVertex3sv(
const GLshort *v)

void glVertex4dv(
const GLdouble *v)

void glVertex4fv(
const GLfloat *v)

void glVertex4iv(
const GLint *v)

void glVertex4sv(

const GLshort *v)

Parameters

x, y, z, w Specify x, y, z, and w coordinates of a vertex. Not all parameters are
present in all forms of the command.

v Specifies a pointer to an array of two, three, or four elements. The
elements of a two-element array are x and y; of a three-element array,
x, y, and z; and of a four-element array, x, y, z, and w.

Description

 glVertex commands are used within glBegin/glEnd pairs to specify point, line, and
polygon vertices. The current color, normal, and texture coordinates are associated with
the vertex when glVertex is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y, and z are
specified, w defaults to 1.

Notes

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior.
Chapter 20 475

V
glVertex
See Also

glBegin,
glCallList,
glColor,
glEdgeFlag,
glEvalCoord,
glIndex,
glMaterial,
glNormal,
glRect,
glTexCoord,
glVertexPointer
Chapter 20476

V
glVertexPointer
glVertexPointer
 glVertexPointer : define an array of vertex data.

C Specification

void glVertexPointer(
GLint size,
GLenum type,
GLsizei stride,

const GLvoid *pointer)

Parameters

size Specifies the number of coordinates per vertex; must be 2, 3, or 4. The
initial value is 4.

type Specifies the data type of each coordinate in the array. Symbolic
constants GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are
accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive vertexes. If stride is 0, the
vertexes are understood to be tightly packed in the array. The initial
value is 0.

pointer Specifies a pointer to the first coordinate of the first vertex in the array.

Description

glVertexPointer specifies the location and data format of an array of vertex coordinates
to use when rendering. size specifies the number of coordinates per vertex and type the
data type of the coordinates. stride specifies the byte stride from one vertex to the next
allowing vertexes and attributes to be packed into a single array or stored in separate
arrays. (Single-array storage may be more efficient on some implementations; see
glInterleavedArrays.) When a vertex array is specified, size, type, stride, and pointer are
saved as client-side state.

To enable and disable the vertex array, call glEnableClientState and
glDisableClientState with the argument GL_VERTEX_ARRAY. If enabled, the vertex
array is used when glDrawArrays, glDrawElements, or glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from
pre-specified vertex and vertex attribute arrays. Use glArrayElement to specify
primitives by indexing vertexes and vertex attributes and glDrawElements to construct
a sequence of primitives by indexing vertexes and vertex attributes.

Notes

glVertexPointer is available only if the GL version is 1.1 or greater.

The vertex array is initially disabled and isn’t accessed when glArrayElement,
glDrawElements or glDrawArrays is called.
Chapter 20 477

V
glVertexPointer
Execution of glVertexPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error
is generated, the operation is undefined.

glVertexPointer is typically implemented on the client side.

Vertex array parameters are client-side state and are therefore not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

• GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

• GL_INVALID_ENUM is generated if type is not an accepted value.

• GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_VERTEX_ARRAY
glGet with argument GL_VERTEX_ARRAY_SIZE
glGet with argument GL_VERTEX_ARRAY_TYPE
glGet with argument GL_VERTEX_ARRAY_STRIDE
glGetPointerv with argument GL_VERTEX_ARRAY_POINTER

See Also

glArrayElement,
glColorPointer,
glDrawArrays,
glDrawElements,
glEdgeFlagPointer,
glEnable,
glGetPointerv,
glIndexPointer,
glInterleavedArrays,
glNormalPointer,
glPopClientAttrib,
glPushClientAttrib,
glTexCoordPointer
Chapter 20478

V
glViewport
glViewport
glViewport: set the viewport.

C Specification

void glViewport(
GLint x,
GLint y,
GLsizei width,

GLsizei height)

Parameters

x, y Specify the lower left corner of the viewport rectangle, in pixels. The
initial value is (0, 0).

width, height Specify the width and height of the viewport. When a GL context is
first attached to a window, width and height are set to the dimensions
of that window.

Description

glViewport specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (xnd’, ynd) be normalized device coordinates. Then
the window coordinates (xw’, yw) are computed as follows:

xw = (xnd + 1) · (width / 2) + x

yw = (ynd + 1) · (height / 2) + y

Viewport width and height are silently clamped to a range that depends on the
implementation. To query this range, call glGet with
argumentGL_MAX_VIEWPORT_DIMS.

Errors

• GL_INVALID_VALUE is generated if either width or height is negative.

• GL_INVALID_OPERATION is generated if glViewport is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_VIEWPORT
glGet with argument GL_MAX_VIEWPORT_DIMS

See Also

glDepthRange
Chapter 20 479

V
glVisibilityBufferhp
glVisibilityBufferhp
glVisibilityBufferhp - establish a buffer for Visibility Test results

C Specification

void glVisibilityBufferhp(GLSizei size,
GLboolean *buffer,

GLboolean wait_on_get)

Parameters

size Specifies the size of buffer (in bytes)

buffer Returns the Visibility Test results

wait_on_get Specifies whether a glGet of VISIBILITY_TEST_hp waits for all
Visibility Test data to be returned from the hardware before returning
to the calling program.

Description

glVisibilityBuffer has three arguments: ’buffer’ is a pointer to an array of Boolean, and
’size’ indicates the size of the array. ’buffer’ returns values of GL_TRUE or GL_FALSE
for each Visibility Test issued. A Visibility Test begins when a call is made to
glEnable(GL_VISIBILITY_TEST_hp), and ends when a call is made to either
glDisable(GL_VISIBILITY_TEST_hp), or glNextVisibilityTesthp(). When all Visibility
Tests have been performed, glDisable(GL_VISIBILITY_TEST_hp) should be called,
followed by a call to glGet of GL_VISIBILITY_TEST_hp. Calling glGet causes the
contents of ’buffer’ to be up to date (based on the value of the ’wait_on_get’ parameter,
discussed below). A Visibility Test result of GL_TRUE indicates that some portion of the
primitive(s) rendered during that test were visible. A value of GL_FALSE indicates that
no portion of the primitive(s) rendered during the test was visible.

The third parameter, ’wait_on_get’, is intended to allow for potential optimizations
during Visibility Tests. When Visibility Tests are made, there is often some amount of
latency between the time the request is made and when the answer is available. Once a
glGet of GL_VISIBILITY_TEST_hp is called after
glDisable(GL_VISIBILITY_TEST_hp), there will usually be a short delay (perhaps as
much as 50 microseconds) before the answer is available. If the application would prefer
to wait until the Visibility Test results are available before proceeding, then a value of
GL_TRUE should be specified for the ’wait_on_get’ parameter. If, on the other hand, the
application has some useful work to do during that time, a value of GL_FALSE can be
specified for the ’wait_on_get’ parameter, and glGet will return immediately. However,
’buffer’ is not guaranteed to be defined until some time later. To check to see when the
Visibility Test results are complete, the programmer can look at the data returned by a
glGet of GL_VISIBILITY_TEST_hp. Two Boolean values are returned; The first
indicates whether or not GL_VISIBILITY_TEST_hp is currently enabled. The second
indicates if there are any test results pending. If there are no test results pending, the
programmer may conclude that ’buffer’ is up to date.
Chapter 20480

V
glVisibilityBufferhp
Visibility Tests can be used by a programmer to determine whether or not a primitive or
set of primitives are visible against the current contents of the depth buffer; “Visibile” in
this context means that at least one pixel passes the depth test. This differs from
previous Occlusion Culling extensions by allowing the programmer to provide memory
for many different Visibility Test results to be returned at the same time.

Notes

The contents of ’buffer’ are undefined before a glGet of GL_VISIBILITY_TEST_hp is
called. See Description section above for more information on when the contents of
’buffer’ become valid.

 The programmer is responsible for allocating the memory for ’buffer’. If an incorrect
’size’ is specified, memory corruption may occur.

Errors

• GL_INVALID_VALUE is generated if ’size’ is negative.

• GL_INVALID_OPERATION is generated if glVisibilityBufferhp is called while
GL_VISIBILITY_TEST_hp is enabled (via glEnable()), or if
glEnable(GL_VISIBILITY_TEST_hp) is called before glVisibilityBufferhp is called
at least once.

• GL_INVALID_OPERATION is generated if glVisibilityBufferhp is called between a
call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_VISIBILITY_TEST_hp

See Also

glNextVisibilityTesthp
glIsEnabled with argument
Chapter 20 481

V
glVisibilityBufferhp
Chapter 20482

21 W
Chapter 21 483

W
glXWaitGL
glXWaitGL
glXWaitGL : complete GL execution prior to subsequent X calls.

C Specification

void glXWaitGL(void)

Description

GL rendering calls made prior to glXWaitGL are guaranteed to be executed before X
rendering calls made after glXWaitGL. Although this same result can be achieved using
glFinish, glXWaitGL does not require a round trip to the server, and it is therefore more
efficient in cases where client and server are on separate machines.

glXWaitGL is ignored if there is no current GLX context.

Notes

glXWaitGL may or may not flush the X stream.

Errors

• GLXBadCurrentWindow is generated if the drawable associated with the current
context of the calling thread is a window, and that window is no longer valid.

See Also

glFinish,
glFlush,
glXWaitX,
XSync
Chapter 21484

W
glXWaitX
glXWaitX
glXWaitX : complete X execution prior to subsequent GL calls.

C Specification

void glXWaitX(void)

Description

X rendering calls made prior to glXWaitX are guaranteed to be executed before GL
rendering calls made after glXWaitX. Although the same result can be achieved using
XSync, glXWaitX does not require a round trip to the server, and it is therefore more
efficient in cases where client and server are on separate machines.

glXWaitX is ignored if there is no current GLX context.

Note

glXWaitX may or may not flush the GL stream.

Errors

• GLXBadCurrentWindow is generated if the drawable associated with the current
context of the calling thread is a window, and that window is no longer valid.

See Also

glFinish,
glFlush,
glXWaitGL,
XSync
Chapter 21 485

W
glXWaitX
Chapter 21486

	OpenGL 1.1 Reference
	OpenGL 1.1 Reference
	OpenGL 1.1 Reference
	for HP-UX 11.x
	Manufacturing Part Number:� B2355-IE001
	Edition E0302
	© Copyright 2002 by Hewlett-Packard
	© Copyright 2002 by Hewlett-Packard

	Legal Notices
	Legal Notices
	The information contained in this document is subject to change without notice. Hewlett-Packard a...

	Restricted Rights Legend
	Restricted Rights Legend
	Use, duplication, or disclosure by the U.S. Government Department of Defense is subject to restri...
	This document contains proprietary information that is protected by copyright. All rights are res...
	UNIX is a registered trademark in the United States of America and other countries, licensed excl...
	This software and documentation is based in part on the Fourth Berkeley Software Distribution und...
	© Copyright 2002 Hewlett-Packard Company. All Rights Reserved.
	© Copyright 2002 Hewlett-Packard Company. All Rights Reserved.

	© Copyright 1980, 1984 AT&T, Inc.
	© Copyright 1980, 1984 AT&T, Inc.

	© Copyright 1979, 1980, 1983 The Regents of the University of California.
	© Copyright 1979, 1980, 1983 The Regents of the University of California.

	1 A
	glAccum
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glAlphaFunc
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glAreaTexturesResident
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glArrayElement
	C Specification
	Parameters
	Description
	Notes
	See Also

	2 B
	glBegin
	C Specification
	Parameters
	Description
	Errors
	See Also

	gluBeginCurve
	C Specification
	Parameters
	Description
	See Also

	gluBeginPolygon
	C Specification
	Parameters
	Description
	Notes
	See Also

	gluBeginSurface
	C Specification
	Parameters
	Description
	See Also

	gluBeginTrim
	C Specification
	Parameters
	Description
	See Also

	glBindTexture
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glBitMap
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glBlendColorEXT
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glBlendFunc
	C Specification
	Parameters
	Description
	Parameters
	<TABLE>

	Examples
	Notes
	Errors
	Associated Gets
	See Also

	gluBuild1DMipmaps
	C Specification
	Parameters
	Description
	Notes
	Errors
	Bugs
	See Also

	gluBuild2DMipmaps
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	3 C
	glCallList
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glCallLists
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glXChooseVisual
	C Specification
	Parameters
	Description
	Examples
	Notes
	Errors
	See Also

	glClear
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated gets
	See Also

	glClearAccum
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glClearColor
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glClearDepth
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glClearindex
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glClearStencil
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glClipPlane
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated gets
	See Also

	glColor
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glColorMask
	C Specification
	Parameters
	Description

	Errors
	Associated Gets
	See Also

	glColorMaterial
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glColorPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glXCopyContext
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glCopyPixels
	C Specification
	Parameters
	Description
	Examples
	Notes
	Errors
	Associated Gets
	See Also

	glCopyTexImage1D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glCopyTexImage2D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glCopyTexSubImage1D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glCopyTexSubImage2D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated gets
	See Also

	glCopyTexSubImage3DEXT
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glXCreateContext
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glXCreateGLXPixmap
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glCullFace
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluCylinder
	C Specification
	Parameters
	Description
	See Also

	4 D
	glDeleteLists
	C Specification
	Parameters
	Description
	Errors
	See Also

	gluDeleteNurbsRenderer
	C Specification
	Parameters
	Description
	See Also

	gluDeleteQuadric
	C Specification
	Parameters
	Description
	See Also

	gluDeleteTess
	C Specification
	Parameters
	Description
	See Also

	glDeleteTextures
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glDepthFunc
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glDepthMask
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glDepthRange
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glXDestroyContext
	C Specification
	Parameters
	Description
	Errors
	See Also

	glXDestroyGLXPixmap
	C Specification
	Parameters
	Description
	Errors
	See Also

	glDisable
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	gluDisk
	C Specification
	Parameters
	Description
	See Also

	glDrawArrays
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glDrawArraysSethp
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glDrawBuffer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glDrawElements
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glDrawPixels
	C Specification
	Parameters
	Description
	<TABLE>

	Errors
	Associated Gets
	See Also

	5 E
	glEdgeFlag
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glEdgeFlagPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glEnable
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glEnableClientState
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glErrorString
	C Specification
	Parameters
	Description
	See Also

	glEvalCoord
	C Specification
	Parameters
	Description
	Associated Gets
	See Also

	glEvalMesh
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glEvalPoint
	C Specification
	Parameters
	Description
	Associated Gets
	See Also

	6 F
	glFeedbackBuffer
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glFinish
	C Specification
	Description
	Notes
	Errors
	See Also

	glFlush
	C Specification
	Description
	Notes
	Errors
	See Also

	glFog
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glFrontFace
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glFrustum
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	7 G
	glGenLists
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glGenTextures
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glGet
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glXGetClientString
	C Specification
	Parameters
	Description
	Notes
	See Also

	glXGetClipPlane
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glXGetConfig
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glXGetCurrentContext
	C Specification
	Description
	See Also

	glXGetCurrentDisplay
	C Specification
	Description
	Notes
	See Also

	glXGetCurrentDrawable
	C Specification
	Description
	See Also

	glGetError
	C Specification
	Description
	Errors

	glGetLight
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetMap
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetMaterial
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	gluGetNurbsProperty
	C Specification
	Parameters
	Description
	See Also

	glGetPixelMap
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glGetPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetPolygonStipple
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetString
	C Specification
	Parameters
	Description
	Notes
	Errors

	gluGetString
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	gluGetTessProperty
	C Specification
	Parameters
	Description
	See Also

	glGetTexEnv
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetTexGen
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetTexImage
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glGetTexLevelParameter
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glGetTexParameter
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	8 H
	glHint
	C Specification
	Parameters
	Description
	Notes
	Errors

	9 I
	glIndex
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glIndexMask
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glIndexPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glInitNames
	C Specification
	Description
	Errors
	Associated Gets
	See Also

	glInterleavedArrays
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glXIntro
	Overview
	Examples
	Notes
	Using GLX Extensions
	GLX 1.1 and GLX 1.2

	See Also

	glXIsDirect
	C Specification
	Parameters
	Description
	Errors
	See Also

	glIsEnabled
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	See Also

	glIsList
	C Specification
	Parameters
	Description
	Errors
	See Also

	glIsTexture
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	10 L
	glLight
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glLightModel
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glLineStipple
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glLineWidth
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glListBase
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glLoadIdentity
	C Specification
	Description
	Errors
	Associated Gets
	See Also

	glLoadMatrix
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glLoadName
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	gluLoadSamplingMatrices
	C Specification
	Parameters
	Description
	See Also

	glLogicOp
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	gluLookAt
	C Specification
	Parameters
	Description
	See Also

	11 M
	glXMakeCurrent
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	glMap1
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glMap2
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glMapGrid
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glMaterials
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glMatrixMode
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glMultMatrix
	C Specification
	Parameters
	Description
	Examples
	Notes
	Errors
	Associated Gets
	See Also

	12 N
	glNewList
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glNextVisibilityTesthp
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluNewNurbsRenderer
	C Specification
	Description
	See Also

	gluNewQuadric
	C Specification
	Description
	See Also

	gluNewTess
	C Specification
	Description
	See Also

	gluNextContour
	C Specification
	Parameters
	Description
	See Also

	glNormal
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glNormalPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluNurbsCallback
	C Specification
	Parameters
	Description
	See Also

	gluNurbsCurve
	C Specification
	Parameters
	Description
	Notes
	See Also

	gluNurbsPrperty
	C Specification
	Parameters
	Description
	Notes
	See Also

	gluNurbsSurface
	C Specification
	Parameters
	Description
	See Also

	13 O
	glOrtho
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	gluOrtho2D
	C Specification
	Parameters
	Description
	See Also

	14 P
	gluPartialDisk
	C Specification
	Parameters
	Description
	See Also

	glPassThrough
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluPerspective
	C Specification
	Parameters
	Description
	Notes
	See Also

	gluPickMatrix
	C Specification
	Parameters
	Description
	See Also

	glPixelMap
	C Specification
	Parameters
	Description
	<TABLE>

	Errors
	Associated Gets
	See Also

	glPixelStore
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glPixelTransfer
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glPixelZoom
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glPointSize
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glPolygonMode
	C Specification
	Parameters
	Description
	Examples
	Notes
	Errors
	Associated Gets
	See Also

	glPolygonOffset
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glPolygonStipple
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glPrioritizeTextures
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluProject
	C Specification
	Parameters
	Description
	See Also

	glPushAttrib
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glPushClientAttrib
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glPushMatrix
	C Specification
	Description
	Errors
	Associated Gets
	See Also

	glPushName
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	gluPwlCurve
	C Specification
	Parameters
	Description
	Notes
	See Also

	15 Q
	gluQuadricCallback
	C Specification
	Parameters
	Description
	See Also

	gluQuadricDrawStyle
	C Specification
	Parameters
	Description
	See Also

	gluQuadricNormals
	C Specification
	Parameters
	Description
	See Also

	gluQuadricOrientation
	C Specification
	Parameters
	Description
	See Also

	gluQuadricTexture
	C Specification
	Parameters
	Description
	See Also

	glXQueryExtension
	C Specification
	Parameters
	Description
	Notes
	See Also

	glXQueryExtensionsString
	C Specification
	Parameters
	Description
	Notes
	See Also

	glXQueryServerString
	C Specification
	Parameters
	Description
	Notes
	See Also

	glXQueryVersion

	16 R
	glRasterPos
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glReadBuffer
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glReadPixels
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glRect
	C Specification
	Parameters
	Description
	Errors
	See Also

	glRenderMode
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glRotate
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	17 S
	glScale
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	gluScaleImage
	C Specification
	Parameters
	Description
	Errors
	See Also

	glScissor
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glSelectBuffer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glShadeModel
	C Specification
	Parameters
	Description
	<TABLE>

	Errors
	Associated Gets
	See Also

	gluSphere
	C Specification
	Parameters
	Description
	See Also

	glStencilFunc
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glStencilMask
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glStencilOp
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glXSwapBuffers
	C Specification
	Parameters
	Description
	Notes
	Errors
	See Also

	18 T
	gluTessBeginContour
	C Specification
	Parameters
	Description
	See Also

	gluTessBeginPolygon
	C Specification
	Parameters
	Description
	See Also

	gluTessCallback
	C Specification
	Parameters
	Description
	See Also

	gluTessEndPolygon
	C Specification
	Parameters
	Description
	See Also

	gluTessNormal
	C Specification
	Parameters
	Description
	See Also

	gluTessProperty
	C Specification
	Parameters
	Description
	See Also

	gluTessVertex
	C Specification
	Parameters
	Description
	Notes
	See Also

	glTexCoord
	C Specification
	Parameters
	Description
	Notes
	Associated Gets
	See Also

	glTexCoordPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexEnv
	C Specification
	Parameters
	Description
	<TABLE>

	Notes
	Errors
	Associated Gets
	See Also

	glTexGen
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glTexImage1D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexImage2D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexImage3DEXT
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexParameter
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexSubImage1D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexSubImage2D
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTexSubImage3DEXT
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glTranslate
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	19 U
	gluUnProject
	C Specification
	Parameters
	Description
	See Also

	glXUseXFont
	C Specification
	Parameters
	Description
	Errors
	See Also

	20 V
	glVertex
	C Specification
	Parameters
	Description
	Notes
	See Also

	glVertexPointer
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	glViewport
	C Specification
	Parameters
	Description
	Errors
	Associated Gets
	See Also

	glVisibilityBufferhp
	C Specification
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	See Also

	21 W
	glXWaitGL
	C Specification
	Description
	Notes
	Errors
	See Also

	glXWaitX
	C Specification
	Description
	Note
	Errors
	See Also

