
1

Ciratefi: An RST-Invariant Template

Matching with Extension to Color Images

Sidnei Alves de Araújo
a,b

 and Hae Yong Kim
a,*

a
 Escola Politécnica – Universidade de São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 158, São Paulo, SP, Brazil

b
Diretoria dos Cursos de Informática – Universidade Nove de Julho, Rua Diamantina, 302, São Paulo, SP, Brazil

Abstract. Template matching is a technique widely used for finding patterns in digital images. A good template matching

should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a

grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its

extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image

patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our

algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare

grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results

attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms

grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.

Keywords: Template matching, RST-invariance, color invariance.

*
 Corresponding author. E-mail: hae@lps.usp.br

1. Introduction

Template matching is a classical problem in com-

puter vision. It consists in detecting a given query

template Q in a digital image A. This task becomes

more complex with the invariance to rotation (R),

scale (S) and translation (T), and robustness to

brightness (B) and contrast (C) changes. We define

that two images x and y are equivalent under bright-

ness/contrast variation if there are a brightness cor-

rection factor α and a contrast correction factor β>0

such that 1xy α+β= , where 1 is the matrix of 1’s.

Some approaches achieve RST-invariance using

detection of interest points and edges, including: ge-

neralized Hough transform [4]; geometric hashing

[20]; graph matching [21]; and curvature scale space

[28].

Ullah and Kaneko [37] present a RTBC-invariant

grayscale template matching based on orientation

gradient histograms. This algorithm was improved by

Marimon e Ebrahimi [25] by using integral histo-

grams. Choi and Kim [9] present another interesting

algorithm for RTBC-invariant template matching.

Cyganek [11] present a simple and fast technique for

detecting circular road signs. Raftopoulos et al. [30]

present a biologically inspired shape classifier that

may shed light in the mechanism of biological tem-

plate matching. Sajjanhar et al. present an interesting

rotation-invariant shape descriptor method using

spherical harmonics [32].

The recently developed algorithms based on scale

and rotation-invariant keypoints and local features,

like SIFT (Scale Invariant Feature Transform) [24],

GLOH (Gradient Location and Orientation Histo-

gram) [26] and SURF (Speeded Up Robust Features)

[6] have been widely used for image matching tasks.

SIFT is very popular and has been proven to be the

one of the most efficient methods to extract invariant

features from images. It extracts some scale-invariant

keypoints and computes their associated features

based on local gradient orientations. Then, it finds

the correspondences between the keypoints of Q and

A based on the distances of the features. SIFT (fol-

lowed by a Hough transform to identify clusters be-

2

longing to a single object) can be used for object rec-

ognition or template matching.

Fourier-Mellin transform is a popular technique

for RST-invariant image registration, where image Q

may appear rotated, scaled and translated in A [31,

8]. However, this technique supposes implicitly that

the non-intersecting areas of Q and A are small. So, it

cannot be directly applied for template matching,

where template Q and image A usually have large

non-intersecting areas. If Fourier-Mellin is applied in

this case, the correlation peaks become weak, making

it difficult to detect the geometric transformation

parameters.

There are also some commercial RSTBC-invariant

template matchings, such as Open eVision Easy-

Match
1
. However, as they are commercial software

we do not know exactly which algorithm is imple-

mented inside.

In this paper, we present a template-matching al-

gorithm, named Ciratefi (Circular, Radial and Tem-

plate-Matching Filter), invariant to rotation, scale,

translation, brightness and contrast (RSTBC). The

goal of Ciratefi is to find all occurrences of a query

image Q in an image to be analyzed A, with respec-

tive orientation angle and scale. In some applications,

the number of instances of Q in A may be known,

and this information is very useful to the algorithm.

Ciratefi algorithm consists of three cascaded filters

that successively exclude pixels that have no chance

of matching the template from further processing.

Ciratefi does not require previous “simplification” of

A and Q that discards grayscale information, like

detection of edges, detection of interest points or

segmentation/binarization. These image simplifying

operations seems to be noise-sensitive and prone to

errors. Experimental results show that the absence of

“simplification” makes Ciratefi very robust to some

common image distortions such as blurring and

JPEG-compression.

We also propose an extension of Ciratefi named

color-Ciratefi that takes into account the color infor-

mation. Most existing template matching techniques

were designed for gray-level images, not taking into

account the power of color. The main problem of

color template matching is the color constancy, that

is, how to extract color information that remains con-

stant with the illumination change. Color is not an

intrinsic property of objects. Instead, the apparent

color of objects depends on the spectral composition

1
 http://www.euresys.com/Products/MachineVisionSoftware/

MachineVision.asp

of the illuminant, the reflecting properties of their

surfaces and the color of the environment. Changes

in illumination can cause changes in object colors

acquired by a camera, worsening the performance of

pattern recognition algorithms that use color informa-

tion [27].

Since color constancy is an open problem, it has

been an object of intense study and in the last two

decades many color-based methods, invariant color

models and perceptual distance measures have been

proposed [10, 5]. However, some studies have ques-

tioned the effectiveness and usefulness of the pro-

posed color invariants. For example, Funt et al. [13]

investigated several methods used in color-based

object recognition and concluded that all tested me-

thods are insufficient to deal with color constancy

problem. Schaefer [34] investigated the usefulness of

color invariants in image retrieval. He concluded that

color invariants are not always useful for image re-

trieval. He also suggests that some prior knowledge

of the application domain is necessary to improve the

performance of invariants.

Several proposed color-based matching algorithms

use only global color histograms of images ignoring

the spatial information [35, 12, 16]. These algorithms

are more suitable for image retrieval applications or

object recognition in a simple background.

Tsai and Tsai [36] present a technique for match-

ing colored objects that is somehow similar to ours.

The main drawback of this technique is the lack of

invariance to scale changes.

Geusebroek et al. [14] developed an important set

of color invariant features based on Gaussian deriva-

tive to deal with illumination changes, shadow, high-

lights and noise. These set of invariants was embed-

ded in the SIFT, by Burghouts and Geusebroek [7],

yielding powerful color invariant descriptors. Among

them are W-color-SIFT, H-color-SIFT and C-color-

SIFT. Actually, many color invariants reported in the

literature have been plugged in the SIFT, generating

many other color-based SIFT descriptors such as

CSIFT [1], HSV-SIFT, Hue-SIFT, OpponentSIFT,

W-SIFT, rgSIFT, Transformed color SIFT [33] and

SIFT-CCH [2].

Color-Ciratefi has the same structure of Ciratefi,

but was designed to deal with color images. To

achieve controlled robustness to illumination

changes, we proposed a new similarity measure,

named CSSIM, which is a weighted geometric mean

between SSIM (structural similarity) [38] and the

Euclidean distance of components a* and b* from

3

CIE L*a*b* color space, used as similarity of chro-

maticity.

In order to attest the accuracy of Ciratefi and col-

or-Ciratefi, we conducted several experiments com-

paring their results with the results obtained by SIFT,

C-color-SIFT and EasyMatch algorithms. We tested

images with few textures, large illumination varia-

tion, blur, JPEG compression and viewpoint varia-

tions. The results show that Ciratefi and color-

Ciratefi are more accurate than the compared algo-

rithms and also that Color-Ciratefi outperforms

grayscale Ciratefi in most situations.

2. Original Ciratefi
2

The objective of grayscale Ciratefi algorithm is to

find a query template image Q in a larger image to

analyze A, invariant to rotation, scaling, and transla-

tion and with controlled robustness to brightness and

contrast changes. Ciratefi consists of three cascaded

filters: Cifi, Rafi and Tefi. Each filter successively

excludes pixels that have no chance of matching the

template. Moreover, Cifi and Rafi also compute re-

spectively the scale and rotation angle.

Actually, Ciratefi uses a set of discrete angles and

scales. To avoid that a small misalignment may cause

a large mismatching, a low-pass filter (for example,

the Gaussian filter) may smooth both images A and

Q. This low-pass filtering lessens the errors intro-

duced by using discrete scales and angles.

2.1. Correlation coefficient

The original Ciratefi uses the correlation coeffi-

cient (also known as normalized correlation) in each

Ciratefi step to evaluate how well Q matches (in

brightness/contrast-invariant sense) a region of A

around a pixel (x, y). Let v be the vector that

represents the mean grayscales of certain parts of Q

and w the corresponding vector of the parts of

A(x, y). Then, the correlation coefficient is defined:

wv

wv
wv ~~

~~
)(=,X . (1)

where vvv −=~
 is the mean-corrected vector and v

is the mean of v (similar definitions are applicable to

w). Division by zero must be avoided certifying that

v~ and w
~

 are not null vectors. The correlation coef-

ficient between two non-zero vectors always ranges

from -1 to +1 and is BC-invariant. If the correlation

2
 A preliminary work was published in [18].

is greater than some threshold t≥0, we consider that

Q matches A(x, y). This comparison may be signed

tX ≥),(wv (in this case, a black-white reversed

negative instance will not match) or absolute

tX ≥),(wv (either negative or positive instance will

match).

2.2. First Filter: Cifi

The first filter, called Cifi (Circular sampling Fil-

ter) uses the projections of the images A and Q on a

set of circular rings (Figure 1) to detect the “first

grade candidate pixels” and their “best matching

scales”. Given an image B, let us define the circular

sampling as the average grayscale of the pixels of B

situated at distance r from pixel (x, y):

∫
πΩ θθ+θ+

π
=

2

0
d)sin,cos(

2

1
),,(ryrxB

r
ryxSB .(2)

We use the superscript Ω to indicate circular sam-

pling.

Given the template Q and the set of n scales s0, s1,

..., sn-1, the image Q is resized to each scale si, obtain-

ing the resized templates Q0, Q1, ..., Qn-1. Then, each

resized template Qi is circularly sampled at a set of

circle rings with l predefined radii r0, r1, …, rl-1,

yielding a 2-D table of multi-scale rotation-invariant

features with n rows (scales) and l columns (radii):

),,(],[00 kQQ ryxSkiC
i

Ω= , lkni <≤<≤ 0 and 0 (3)

where (x0, y0) is the central pixel of Q. In small

scales, some of the outer circles may not fit inside the

resized templates. These circles are represented by a

special value in table CQ (say, -1) and are not used to

compute the correlations.

Given the image to analyze A, we build the 3-D

image that contains l circular projections for each

pixel (x, y):

)domain(),(,0

),,,(],,[

Ayxlk

ryxSkyxC kAA

∈<≤

= Ω

. (4)

Cifi uses matrices QC and AC to detect the circular

sampling correlation at the best matching scale for

each pixel (x, y):

 []]),[],[(MAX),(
1

0
, yxCiCXyxX AQ

n

i
QA

−

=

Ω = , (5)

where]),[],[(yxCiCX AQ is the correlation coeffi-

cient between vectors][iCQ and],[yxCA . A pixel

(x, y) is classified as a “first grade candidate pixel” if

1,),(tyxX QA ≥Ω for some threshold t1. The appropri-

4

ate value for t1 depends on the application. Assigning

small value for t1 makes the algorithm slower, and

assigning large value for t1 decreases the algorithm’s

accuracy. In section 4, we explain this parameter can

be automatically chosen. The “best matching scale”

of a first grade candidate pixel (x, y) is the argument

that maximizes the correlation:

 []]),[],[(ARGMAX),(
1

0
, yxCiCXyxG AQ

n

i
QA

−

=

Ω = . (6)

s=1.0

s0=0.5

s1=0.57

s2=0.66

s3=0.76

s4=0.87

Fig. 1. The original query image and the circular projections at

different scales.

2.3. Second Filter: Rafi

The second filter, called Rafi (Radial sampling

Filter), uses the projections of images A and Q on a

set of radial lines (Figure 2) to upgrade some of the

first grade candidate pixels to the second grade. The

pixels that are not upgraded are discarded. It also

assigns the “best matching rotation angle” to each

second grade candidate pixel. Given an image B, let

us define the radial sampling as the average grayscale

of the pixels of B located on the radial line with one

vertex at (x, y), length λ and inclination α:

∫
λΦ α+α+

λ
=αλ

0
)sin,cos(

1
),,,(dttytxByxSB (7)

We use the superscript Φ to indicate radial sampling.

Given the template Q and the set of m angles α0,

α1, ..., αm-1, Q is radially sampled using rl-1, the ra-

dius of the largest sampling circle that fits inside Q,

yielding a vector with m features:

),,,(][100 jlQQ ryxSjR α= −
Φ , mj <≤0 (8)

where (x0, y0) is the central pixel of Q.

For each first grade candidate pixel (x, y), A is ra-

dially sampled at its probable scale),(, yxGi QA

Ω= :

 0),,,,(],,[1 mjrsyxSjyxR jliAA <≤α= −
Φ . (9)

where 1−lirs is the radius of the scaled template Qi.

At each first grade candidate pixel (x, y), Rafi

uses vectors],[yxRA and QR to detect the radial

sampling correlation at the best matching angle:

 ()[])(cshift],,[MAX),(
1

0
, QjA

m

j
QA RyxRXyxX

−

=

Φ = , (10)

where “cshiftj” means circular shifting (or element-

wise rotation) j positions of the argument vector. A

first grade pixel (x, y) is upgraded to the second grade

if 2,),(tyxX QA ≥Φ for some threshold t2. In section 4,

we explain how to select this parameter automatical-

ly. The probable rotation angle at a second grade

candidate pixel (x, y) is the angle that maximizes the

correlation:

 ()[])(cshift],,[ARGMAX

),(

1

0

,

QjA

m

j

QA

RyxRX

yxG

−

=

Φ =
. (11)

Fig. 2. Radial projections at the selected scale.

2.4. Third Filter: Tefi

The third filter, called Tefi (Template matching

Filter), computes the correlation coefficient between

the neighborhood of each second grade candidate

pixel and the template scaled and rotated using the

scale and angle determined respectively by Cifi and

Rafi.

Tefi first resizes and rotates template Q to all m

angles and n scales and stores them in a table named

TQ. Let (x, y) be a second grade candidate pixel, with

its probable scale),(, yxGi QA

Ω= and probable angle

),(, yxGj QA

Φ= . Tefi computes the correlation coeffi-

cient between the image A at pixel (x, y) and],[jiTQ

(the template image Q at scale si and angle αj). Ac-

tually, to make the algorithm more robust, Tefi tests

scales i-1, i, i+1 and angles j-1, j, j+1 (in this case,

subtraction and addition are computed modulus m)

and takes the greatest correlation coefficient. If the

greatest coefficient is above some threshold t3, the

template is considered to be found at pixel (x, y), at

the scale and the angle that yielded the greatest corre-

5

lation. If the user knows that Q appears only once in

A, the threshold t3 is not used. Instead, a single pixel

with the highest correlation is chosen.

2.5. Considerations

Cifi, Rafi and Tefi cannot be executed in different

order, because Cifi detects the probable scale, to be

used by Rafi, and Rafi detects the probable angle, to

be used by Tefi. Rafi cannot be executed without the

probable scale, and Tefi cannot be executed without

the probable scale and angle.

Some query images may have “ambiguous” scale

and/or rotation angle. Consider the query image de-

picted in Figure 3. All the circular and radial projec-

tions yield the same average grayscale. So, Ciratefi

cannot search for this image. However, even in this

case, Ciratefi can search for an off-centered subimage

of this query image.

Fig. 3. A query image with ambiguous scale and rotation angle.

Let us make the following considerations to show

that, under some assumptions, if a rotated, scaled or

brightness/contrast-changed (but not deformed) in-

stance of non-ambiguous Q appears in A, it will al-

ways be detected by Ciratefi. Let us suppose that Cifi

uses enough number of circular projections and the

images were low-pass filtered so that any scaled in-

stances of Q in A yield correlations almost equal to

one. In this case, it is clear that Cifi will never make

a false negative error. However, Cifi can still make

false positive errors, because different templates can

be mapped into the same circular projections. Simi-

larly, supposing that Cifi has computed the correct

probable scale and using enough number of radial

projections, Rafi will never make a false negative

error, though it can make false positive errors. Final-

ly, supposing Q is non-ambiguous and that the scale

and angle were correctly computed, Tefi will never

make any (false negative or positive) error, because it

compares all the pixels of Q and of the corresponding

instance in A to compute the correlation coefficient.

An instance of Q in A may pass undetected by Cirate-

fi only if Q is ambiguous or if the chosen thresholds

are too high to discard a true matching.

The template matching proposed by Lin and Chen

[23] uses circular (or ring) projection together with

parametric template to obtain RST-invariance. It has

no secondary filter as Rafi or Tefi. As we discussed

above, it is not possible to avoid false positive errors

using only circular projections (or any template

matching that uses a set of a few local features), be-

cause different templates can be mapped into the

same features.

3. Accuracy of the Original Ciratefi

We compare original Ciratefi
3
 with SIFT (Scale

Invariant Feature Transform) proposed and imple-

mented by Lowe
4
 and EasyMatch 1.0, a template

matching tool of Euresys Open eVision.

Lowe’s SIFT implementation finds the keypoint

correspondences, but does not find the template

matching locations. To find Q in A using the key-

point correspondences, we implemented the genera-

lized Hough transform [4] to identify clusters, as

suggested by Lowe. Although both SIFT and Ciratefi

can be used for image matching, they are quite dif-

ferent. We enumerate some differences below:

1. SIFT is based on keypoints and local gradient

orientations while Ciratefi compares directly

grayscales of regions of Q and A. This makes Ci-

ratefi more reliable than SIFT when the images

are blurred, have large areas with constant grays-

cales, suffer JPEG compression, have few tex-

tures or suffer large brightness/contrast changes.

SIFT is more reliable than Ciratefi when the im-

ages have many small textures. A small misa-

lignment of the tiny textures may decrease the

correlation used by Ciratefi to find the template,

decreasing its accuracy.

2. Template matching using SIFT followed by

Hough transform is robust to partial occlusions,

while Ciratefi alone is not. However, Ciratefi (as

well as any template matching algorithm) can be-

come robust to partial occlusions by taking some

sub-templates of Q, finding them all in A, and

combining the results by a Hough transform. This

idea was used in [19].

3
 Executable Ciratefi implementation is available at

http://www.lps.usp.br/~hae/software/cirateg
4
 http://www.cs.ubc.ca/~lowe/keypoints/

6

3.1. Preliminary experiments

We made some preliminary experiments and the

results are depicted in Table 1. SIFT and EasyMatch

use square query images and Ciratefi uses only the

circular regions inscribed in the square query images.

SIFT and Ciratefi searched for the templates without

knowing how many instances occur in image A. We

specified in the Hough transform (that follows SIFT)

that a matching must have at least a cluster of three

keypoint correspondences, as suggested by Lowe

[24]. On the other hand, we informed EasyMatch the

exact number of occurrences of the template. This

gives a comparative advantage to EasyMatch and

makes the numbers of false positive and negative

errors to be always the same. Table 2 presents a sim-

plification of Table 1, where we present the accuracy

computed as Hits/(Hits+FP+FN). Note that this for-

mula is slightly different from the conventional accu-

racy (TP+TN)/ (TP+TN+FP+FN), because there is

no TN in our examples.

a) Toy shapes

We took some simple toy shapes, scattered them

on the floor, and took 70 photos with different

zooms. Then, we extracted 5 query images with

51×51 pixels and searched for them in the 70 images.

In each image to analyze, there are two instances

(with different grayscales but the same shape) of

each query image, resulting in 700 total searchings.

Ciratefi found correctly all the 700 instances, without

any false negative or false positive (accuracy 100%).

Figure 4(a) depicts one of the outputs of Ciratefi,

obtained by concatenating the results of the 5 search-

ings. As the query images have few textures, we can

anticipate that SIFT will perform poorer than Cirate-

fi. Indeed, SIFT hit only 564 searchings, missed 136

and made 4 false positive errors (accuracy 80%). Due

to the impossibility to run automatized experiments,

we used EasyMatch to search only for the “frog”

shapes. It hit 131 searchings (out of 140 possible

matchings) and missed 9 (accuracy 88%).

b) McDonald’s logotype

We searched for the McDonald’s logotype in 60

natural images where the logo appears 116 times

(Figure 4(b)). Ciratefi has more hits (114) than SIFT

(54) or EasyMatch (101), with accuracies respective-

ly 97%, 39% and 77%. This query image also has

few textures and so SIFT’s performance is poor.

c) H-shaped Buildings

We searched for H-shaped popular dwelling

buildings in the 15 satellite images provided by

Google Earth (Figure 4(c)). The query building ap-

pears 187 times in the 15 images. Again, Ciratefi has

more hits (171) than SIFT (61) or EasyMatch (118),

with accuracies respectively with 83%, 21% and

46%.

d) Memory cards

We searched for 12 memory cards in 3 sets of 10

images to analyze. This problem is appropriate for

SIFT, because the query images have many textures.

In set A, the cards are only rotated. In set B, the cards

are rotated and scaled. In set C, the cards are rotated

with partial occlusions (Figure 4(d)).

Tables 1 and 2 present the results. In set A, Cira-

tefi and SIFT made zero errors, closely followed by

EasyMatch (accuracies 100%, 100% and 97%). In set

B, SIFT has the best accuracy (98%), closely fol-

lowed by Ciratefi (96%). EasyMatch has substantial-

ly lower accuracy (38%). In set C, SIFT fared much

better (accuracy 100%) than Ciratefi (73%) and Ea-

syMatch (63%). Note that we are comparing SIFT

followed by Hough transform against Ciratefi and

EasyMatch alone. The former is robust against partial

occlusions while the latters are not. This explains

SIFT’s clear superiority in set C.

3.2. Mikolajczyk’s image database

We made more comparison between Ciratefi and

SIFT using the 8 sets of natural images provided by

Mikolajczyk
5
 (Figure 5). This database is adequate

for testing the image searching algorithm’s robust-

ness to focus blur, viewpoint changes (perspective),

camera aperture (brightness/contrast change), JPEG

compression, zoom and rotation. Each set is a se-

quence of 6 progressively distorted images, totalizing

48 images. For each set, we extracted 50 square

query images with 41×41 pixels uniformly distri-

buted within the first image and searched for them in

the 6 images. Thus, each experiment consisted of 300

searchings. SIFT and EasyMatch use all the square

query image, while Ciratefi uses only the circular

region inscribed in the square query image.

5
 http://www.robots.ox.ac.uk/~vgg/research/affine/

7

(a) Toy shapes.

(b) McDonald’s logotype.

(c) H-shaped buildings.

(d) Memory cards with partial occlusions.

Fig. 4. Preliminary experiments to compare Ciratefi with SIFT and EasyMatch. Yellow circles indicate false negative errors.

Table 1

Hits and error rates of Ciratefi, SIFT and EasyMatch in preliminary experiments. * means that the experiment was not done.

toy shapes memory game

frog bear tree letter-S dog total McDonald buildings A B C

Possible matchings 140 140 140 140 140 700 116 187 120 120 120

Ciratefi

 Hits 140 140 140 140 140 700 114 171 120 118 89

 False pos. 0 0 0 0 0 0 1 18 0 3 2

 False neg. 0 0 0 0 0 0 2 16 0 2 31

SIFT

 Hits 134 122 99 77 132 564 54 61 120 120 120

 False pos. 0 4 0 0 0 4 23 99 0 2 0

 False neg. 6 18 41 63 8 136 62 126 0 0 0

EasyMatch

 Hits 131 * * * * * 101 118 118 66 93

 False pos. 9 * * * * * 15 69 2 54 27

 False neg. 9 * * * * * 15 69 2 54 27

Table 2

Simplification of Table 1, where we present the accuracy computed as Hits/(Hits+FP+FN).

 Toy shapes McDonald Buildings Game A Game B Game C

Ciratefi 100% 97% 83% 100% 96% 73%

SIFT 80% 39% 21% 100% 98% 100%

EasyMatch 88% 77% 46% 97% 38% 63%

8

As each query image Q occurs only once in A, the

results can be either correct (the algorithm correctly

localizes the query image) or erroneous (the algo-

rithm points an incorrect location or fails to locate the

query image). Then, we repeated the same experi-

ments using query images with 91×91 pixels. Both

SIFT and Ciratefi searched for the templates knowing

that each instance occurs only once in A. We speci-

fied in the Hough transform (that follows SIFT) to

take the cluster with the maximal number of keypoint

correspondences as the matching. With this choice,

SIFT detects the template even if there is only one

keypoint correspondence. The results are depicted in

Table 3. Let us interpret the results:

Table 3

Error rates of Ciratefi and SIFT searching for 300 image patches in
Mikolajczyk image database.

41×41 91×91

Cirat. SIFT Cirat. SIFT

Bark (zoom/rotation) 18% 69% 16% 16%

Bikes (focus blur) 23% 76% 10% 44%

Boat (zoom/rotation) 26% 54% 20% 27%

Graf (viewpoint) 50% 81% 44% 51%

Leuven (camera aperture) 8% 59% 4% 26%

Trees (focus blur) 38% 77% 54% 44%

UBC (compression) 25% 52% 24% 30%

Wall (viewpoint) 53% 46% 79% 30%

Average 30% 64% 31% 34%

Blur and JPEG compression: SIFT made far

more errors than Ciratefi in set Bikes, because Cirate-

fi is more robust than SIFT against blurring. Howev-

er, this superiority is not clear in set Trees, where

both Ciratefi and SIFT made many errors. In this set,

the 6 photos were taken in different instants and the

tree leaves are waving in the wind, what in our opi-

nion hinders any image matching algorithm from

successfully finding small templates. According to

the experiment with set UBC, Ciratefi is more robust

than SIFT also against JPEG compression, because

JPEG creates false edges weakening SIFT’s perfor-

mance.

Brightness/contrast: Ciratefi made far less errors

than SIFT in set Leuven, because Ciratefi is fully

brightness/contrast-invariant.

Perspective: Both Ciratefi and SIFT are not ro-

bust against perspective or affine deformation and so

both made many errors in sets Graf and Wall. Set

Wall has many small local textures that SIFT can use

to find keypoint correspondences. So, SIFT was bet-

ter than Ciratefi in this set, especially using large

templates. On the other hand, set Graf has few tex-

tures and Ciratefi fared better.

Large templates: If a large template Q is given,

any image searching algorithm can extract many

small sub-templates T1, ..., Tn from Q, search for

them in image to analyze A, and can combine the

results using Hough transform. This approach would

result in a high hit rate for Q, even the hit rates are

low for sub-templates T1, ..., Tn. This is what SIFT

followed by Hough transform is doing implicitly. So,

SIFT fared relatively better using large templates.

3.3. Processing time

For A with 465×338 pixels, Q with 51×51 pixels,

6 scales and 36 angles, the complete Ciratefi algo-

rithm took 12s, divided as follows: Cifi took 2s for

the 3D matrix calculation and 4s for the correlation

process; Rafi took 5s; Tefi took about 1s. EasyMatch

and SIFT take respectively 1.5s and 2s to do the same

task. These times were obtained in a 2GHz Intel Core

2 Duo. Moreover, SIFT is especially fast when

searching for many different templates in an un-

changing image A, because most of the processing

time is spent in computing the keypoints and the fea-

tures of A (that can be done only once). From the

experimental data, we conclude that Ciratefi is, in

many cases, more accurate than SIFT and EasyMatch

but slower.

4. Improved Ciratefi

Experimental results show that the original Cira-

tefi is accurate. However, there are many parameters

left to be adjusted by hand. In this section, we intro-

duce some improvements to automatize the choice of

the parameters.

9

Bark #1

Bark #6

zoom and rotation

Bikes #1

Bikes #6

focus blur

Boat #1

Boat #6

zoom and rotation

Graf #1

Graf #6

viewpoint

Leuven #1

Leuven #6

camera aperture

UBC #1

UBC #6

JPEG compression

Trees #1

Trees #6

focus blur

Wall #1

Wall #6

viewpoint

Fig. 5. We use Mikolajczyk database with 8 sets of natural images (each one with 6 progressively distorted images) to compare SIFT with

Ciratefi. We took 50 square templates of the first image of each set and searched for them in the 6 images. SIFT uses the whole square tem-
plate, while Ciratefi uses only the circular template inscribed in the square. The depicted images are parts of the Ciratefi output images, each

one containing 50 red circles with pointers indicating the 50 matching positions found by Ciratefi.

10

4.1. Thresholds

The appropriate values for t1, t2 and t3 are difficult

to be set by hand. Choosing small thresholds (great

number of candidate pixels) increases the accuracy

but makes the process slower. Choosing large thre-

sholds may discard true matchings. Moreover, the

appropriate values of these thresholds use to vary

according to the application. So, we replaced these

parameters by p1, p2 and p3, where pi is the num-

ber/percentage of the candidate pixels. We also de-

fined d1, d2 and d3, where di is the distance that sepa-

rates the candidate pixels of the degree i. Experimen-

tally, we chose p1=2%, p2=1% and p3=1 pixel, for

applications where Q appears once in A. This means

that 2% of pixels of A are first-grade candidate, 1%

of pixels of A are second-grade candidate, and one

single pixel is chosen as the final matching. If Q ap-

pears more than once, it is possible to define a mi-

nimal distance between matchings. For example,

specifying p3=4 pixels and d3=50 pixels, the program

will choose 4 matchings separated by at least 50 pix-

els.

4.2. Scale range

It is also difficult to choose the appropriate scale

range. So, we decided to build a pyramidal structure

for A. This structure is widely used to obtain scale-

invariance, for example, in [24]. Figure 6 depicts an

example of this structure, obtained by concatenating

the original A with its reduced versions at scales 0.5,

0.25, etc. For the query image Q, we chose to use a

set of 5 scales in geometric progression {0.5, 0.57,

0.66, 0.76, 0.87}. With this choice, Ciratefi becomes

scale-invariant in the range [0.5, ∞]. For example,

suppose that Q at scale 0.66 was detected in A at

scale 0.25. This means that Q scale

(1/0.25)×0.66=2.64 appears in original A. In our im-

plementation, we took care to not detect the template

in the boundaries of different scales of pyramidal A.

In Cifi, we chose to use 16 circles whose radii in-

crease in arithmetic progression from zero to the ra-

dius of the query image at the greatest scale. With

this choice, the query image at the smallest scale

(0.5) has 9 circles inside, enough to compute the cor-

relation with some precision. Query image Q must be

large enough in order to have 16 distinct circles in-

side the query image at scale 0.87. This happens

when the size of Q is larger than 39×39. In the expe-

riments, we use query images with typical size

61×61. Too large query Q makes the algorithm slow-

er without increasing the accuracy. In this case, we

suggest extracting and finding a sub-image of Q or

resizing down both Q and A. In Rafi, we chose to use

36 angles.

With these alterations and choices, we obtained

an implementation where the standard parameters

can be used in all experiments.

Fig. 6. The scale range expands to infinite by building a pyramidal

structure for A. Left column is the original A and the right column

is A at scales 0.5, 0.25, 0.125, etc. If a query Q matches a region in
the right column (red circles), actually Q at larger scale matches a

region in the original image A (green circles in the left column).

4.3. Structural similarity

Structural similarity (SSIM) index is an image dis-

tortion metric for grayscale images designed to emu-

late the human visual perceptual system [38]. It sepa-

rates the image distortion in three independent com-

ponents: luminance (or brightness), contrast and

structure (or correlation coefficient). Then, each

component receives a weight that depends on the

application.

To assess the perceptual similarity between two

images X and Y, the local statistics µx, µy, σx, σy, σxy
are computed within the local windows x and y that

moves pixel-by-pixel over the entire images (where

µx is the mean of x, σx is the standard deviation of x

and σxy is the covariance of x and y). The moving

window can be an 8×8 square window or an 11×11

circular Gaussian weighted window. In each window,

three similarity functions are computed:

•
1

22

12
),(

C

C
l

y +µ+µ

+µµ
=

x

yx
yx , (12)

•
2

22

22
),(

C

C
c

y +σ+σ

+σσ
=

x

yx
yx , (13)

•
3

3
),(

C

C
s

+σσ

+σ
=

yx

xy
yx . (14)

11

where l measures the lightness similarity, c measures

the contrast similarity and s measures the structural

similarity. The constants Ci are small numbers intro-

duced to avoid numerical instability when the deno-

minators are close to zero. The structural similarity is

defined:

 [] [] []γβα=),(),(),(),SSIM(yxyxyxyx scl (15)

where α, β and γ are parameters to adjust the relative

importance of the three components. The overall si-

milarity of the two images is defined as the mean

SSIM.

A template matching uses some metric to measure

how well template Q matches a region of image A

around a pixel p. Mean square difference and correla-

tion coefficient are two popular metrics used in tem-

plate matching. As SSIM was designed to evaluate

how perceptually similar are two image patches, it

seems natural to use it as similarity measure in tem-

plate matching. Using SSIM, the user can assign dif-

ferent weights for brightness, contrast and structure

depending on the application. To obtain a complete

invariance to brightness/contrast, one can set α=β=0

and γ=1. However, this is not a good choice because

regions of A with constant grayscale will match any

template (SSIM will be one). In brightness/contrast

invariant applications, we use α=β=0.01 and γ=0.98.

If brightness/contrast changes only slightly in an ap-

plication, higher weights may be assigned to α and β

to increase the accuracy.

In the improved grayscale Ciratefi, we replace the

correlation coefficient by SSIM as the similarity

measure in all the three filters.

As a curiosity, SSIM-based (not RS-invariant)

template matching can become computationally effi-

cient for finding rectangular templates using the same

ideas of the fast normalized cross correlation [22].

5. Color-Ciratefi
6

In this section, we introduce color-Ciratefi, which

takes into account the color information. According

to the literature, it seems that there is no color inva-

riant good for all applications. Our experiments con-

firm this information, indicating that color is not al-

ways useful. Color can even degrade Ciratefi’s accu-

racy in applications with great illumination variation.

However, in most applications, color increases the

accuracy. This increasing is more considerable for

6
 A preliminary work was published in [3].

detecting templates with distinctive colors in an illu-

mination-controlled environment.

5.1. The proposed similarity measure

Ciratefi’s robustness is rooted in using correlation

of local mean grayscales instead of gradient orienta-

tions. To be consistent with this concept, we do not

use color invariants that takes into account only color

gradient, like [14]. Instead, we use chromaticity itself

that allows us to distinguish the color of an image

patch (that is, the property that allows us to say that

an object is yellow, red, green, etc.)

CIE L*a*b* (CIELAB) color space was designed

to be perceptually uniform, that is, a small perturba-

tion to a color value produces a change of about the

same perceptual importance across the range of all

colors. Moreover, CIELAB isolates the lightness L*

from the chromaticity a*b*. So, this color space is

especially suited to evaluate the similarity of two

image patches, evaluating independently the light-

ness similarity and chromaticity similarity.

We made some simple experiments using images

taken under different illumination conditions. We

concluded that the chromaticity a*b* remains rela-

tively constant under small changes of illumination

temperature, intensity and direction. However, we

also realized that under a severe illumination varia-

tion, the chromaticity a*b* changes considerably. We

tested also some other color spaces concluding that

CIELAB’s chromaticity is one of the most stable.

In CIELAB space, the lightness L* varies from 0

to 100. The range of chromaticity components a*b*

depends on the original color space of the image. If

the original color space is RGB, one can assume the

range -100 to +100.

Let }...,,,{ 21 nxxx=x and }...,,,{ 21 nyyy=y be

two vectors of colors. Each component ix or iy is

composed by a set of tristimulus values L*, a* and b*

denoted, respectively, as ibiaiL xxx ,, and ibiaiL yyy ,, .

The similarity functions l, c, and s are computed on

the component L* as in the grayscale case. For simi-

larity of chromaticity h, we use the Euclidean dis-

tance of components a* and b*, because it is typical-

ly used as the distance measure in CIELAB color

space [5, 17]:

n

yxyx

h

n

i

ibibiaia

⋅⋅

−+−
−=

∑
=

2200

)()(

1),(1

22

yx (16)

where 200 is the greatest possible difference between

the components a* and b*. To obtain the similarity

12

measure, the distance is subtracted from one. We

define the color structural similarity as:

[] [] [] []δγβα=),(),(),(),(),CSSIM(yxyxyxyxyx hscl (17)

We use weighted geometric mean (instead of

weighted arithmetic mean between SSIM and h) be-

cause either complete chromaticity dissimilarity or

complete lightness dissimilarity represents a com-

plete dissimilarity of the two patches. In the im-

proved color Ciratefi, we use CSSIM as the similarity

measure in all the three filters.

In the remainder of this paper, we use α=β=0.01

and γ=δ=0.49 in all color experiments, to obtain a

template matching invariant to brightness/contrast

and that takes into account both color and structure

information. For grayscale experiments, we use the

improved grayscale Ciratefi with α=β=0.01 and

γ=0.98.

6. Experimental Results for Improved Ciratefi

6.1. Preliminary experiment

We made a preliminary experiment using toy

shape images, where color is manifestly an useful

information and where there are very few local tex-

tures (what makes SIFT disadvantageous over the

other algorithms). In this experiment, we searched for

16 query shapes (with approximately 43×43 pixels)

in 3 images to analyze with different rotations and

scales. Figure 6 depicts one of the 3 images with the

results of the 16 searchings superimposed.

We tested the improved color-Ciratefi
7
, the im-

proved grayscale Ciratefi, C-color-SIFT
8
 [7], the

grayscale SIFT, color EasyMatch and grayscale Ea-

syMatch. All algorithms knew that there was only

one instance of Q inside each A. The Hough trans-

form that follows C-color-SIFT and SIFT was pro-

grammed to detect the template even if there is only

one keypoint correspondence between Q and A. In

EasyMatch, we set the range of scales from 50% to

200%. Table 4 presents the results. As expected, col-

or-Ciratefi and color easyMatch had the lowest error

rate (0 errors or 0%), followed by grayscale Ciratefi

with 8 errors or 17%. Surprisingly, C-color-SIFT

made twice more errors (26 errors or 54%) than

grayscale SIFT (13 errors or 27%).

7
 http://www.lps.usp.br/~hae/software/cirateg

8
 http://staff.science.uva.nl/~mark/downloads.html#colorsift

Table 4

Errors rates of each algorithm searching for 48 toy shapes.

color Ciratefi 0%

gray Ciratefi 17%

C-color-SIFT 54%

gray SIFT 27%

color EasyMatch 0%

gray EasyMatch 40%

6.2. Mikolajczyk’s image database

Next, we compared the algorithms using Miko-

lajczyk’s image database. We tested EasyMatch 1.1

only in some color cases, due to the impossibility to

run automated tests. We discarded the set Boat, be-

cause it is originally grayscale. In all other sets ex-

cept Bark, we reduced the images to 50% of the orig-

inal sizes, extracted twenty 61×61 templates uniform-

ly distributed in the first image and searched for them

in the six reduced images. In set Bark, we reduced

the first image to 50% of the original size, extracted

twenty 61×61 templates uniformly distributed in the

first image and searched for them in the six original

non-reduced images. The results are in Table 5.

Overall, the two Ciratefis made fewer errors than

the two SIFTs. Surprisingly, grayscale Ciratefi and

color-Ciratefi made the same number of errors. C-

color-SIFT made considerably more errors than

grayscale SIFT. EasyMatch has the highest error

rates. Some considerations:

Great illumination change: In set Leuven, there

is great brightness/contrast variation and so the color

algorithms made considerably more errors than the

respective grayscale versions.

Colorful images: Sets Graf, Trees and UBC have

some colorful patches and almost no illumination

change. In these 3 sets, color-Ciratefi made fewer

errors than the grayscale version. Surprisingly, even

in these cases, C-color-SIFT made more errors than

the grayscale version.

Blur and JPEG compression: The two Ciratefis

made far less errors than the two SIFTs in sets Bikes

and Trees (focus blur). In blurred images, SIFTs ex-

tracts only a small amount of keypoints, yielding

errors. Ciratefis also made far less errors than SIFTs

in set UBC (JPEG compression). In this case, a large

amount of inconsistent features arises from the arti-

facts introduced by the JPEG compression, leading to

erroneous SIFT keypoint matchings.

13

Table 5

Error rates of each algorithm searching for 120 patches of Miko-
lajczyk database. * means that the experiment was not done.

color

Cirat.

gray

Cirat.

color

SIFT

gray

SIFT

color

EMat.

Bark (zoom/rotation) 0% 0% 1% 0% *

Bikes (focus blur) 0% 0% 28% 31% 53%

Graf (viewpoint) 33% 38% 56% 55% *

Leuven (cam. apert.) 13% 3% 47% 23% 55%

Trees (focus blur) 10% 13% 38% 38% 86%

UBC (JPEG) 2% 3% 54% 13% 49%

Wall (viewpoint) 30% 30% 27% 33% *

Average 12% 12% 36% 27% 60%

6.3. ALOI image database

ALOI is a color image collection of small objects
9

[15]. In order to capture the sensory variation in ob-

ject recordings, the authors systematically varied

viewing angle, illumination angle, and illumination

color for each object.

We took the images with 4 different illumination

colors (with the illuminating lamp temperatures

3075K, 2750K, 2475K and 2175K) of the first 20

objects, reduced them by 2 and glued the images with

the same illumination temperatures together, obtain-

ing four 288×480 images. We searched the objects in

the first image (3075K), cropped to 61×61 pixels, in

the four images, using the four algorithms. The errors

are depicted in row Color-A of Table 6. We repeated

the experiment using the next 20 objects (row Color-

B).

We took the images with 4 different illumination

directions (identified as l8c1, l7c1, l6c1, l4c1 in the

database) and searched the objects in the first image

(l8c1) in the four images, obtaining rows Illum-A and

Illum-B.

We searched the unrotated objects in images with

the objects rotated in 4 different angles (0, 20, 40 and

60 degrees), obtaining rows View-A and View-B.

Figure 7 depicts two of the images obtained in this

experiment.

We searched the unblurred objects in images dis-

torted with Gaussian blur with kernels 1×1, 3×3, 5×5

and 7×7 (σ=0, 0.95, 1.25 and 1.55), obtaining rows

Blur-A and Blur-B.

9
 http://staff.science.uva.nl/~aloi/

We searched the uncompressed objects in JPEG-

compressed images with qualities 100%, 75%, 50%

and 25%, obtaining rows JPEG-A and JPEG-B.

Table 6

Errors rates obtained searching for 80 objects in ALOI database. *

means that the experiment was not done.

color

Ciratefi

gray

Ciratefi

color

SIFT

gray

SIFT

color

EMatch

Color-A 0% 1% 10% 5% 60%

Color-B 0% 0% 15% 8% *

Illum-A 6% 13% 30% 38% 53%

Illum-B 15% 26% 35% 48% *

View-A 21% 29% 39% 53% 65%

View-B 20% 24% 36% 56% *

Blur-A 0% 0% 28% 31% *

Blur-B 0% 0% 26% 28% *

Jpeg-A 0% 3% 51% 19% *

Jpeg-B 0% 0% 46% 14% *

Average 6% 9% 32% 30% 59%

Let us analyze the results of Table 6. Color-

Ciratefi has equal or lower error rate than grayscale

Ciratefi in all tests, indicating that the use of color

helps to find colorful objects. The grayscale Ciratefi

has lower error rates than the best SIFT in all cases,

and this superiority is especially evident in: illumina-

tion color variation, blurring and JPEG compression.

Color EasyMatch was the worst algorithm in all tests.

To find an object, typically color-Ciratefi takes

13s; grayscale Ciratefi takes 9s; C-color-SIFT takes

3s; grayscale SIFT takes 2s and EasyMatch less than

1s.

14

Fig. 7. We took the images of 20 unrotated objects and searched

for them in images of the objects rotated by 20°, applying Ciratefi
20 times. The image at top depicts the result, with 1 error. We

repeated the process to objects rotated by 40°, resulting in the

image at bottom, with 4 errors. The red circles indicates the match-
ings of Q at scales {0.5, 0.57, 0.66, 0.76, 0.87}. Whenever Q

matches a reduced A (in red in the right column), actually Q at a

larger scale matches the original A (in green in the left column).

7. Considerations

Our experiments indicate that Ciratefi is more ac-

curate than SIFT and EasyMatch most of the time.

Nevertheless, SIFT has many practical advantages

over Ciratefi:

• SIFT is faster than Ciratefi. SIFT is especially

fast when searching for many different templates

in an unchanging image A, because most of the

processing time is spent in computing the key-

points and the features of A (that can be done only

once).

• The query image in Ciratefi must contain only the

searching pattern. The query image in SIFT may

contain the searching pattern among many other

“junk” background patterns, because it searches

the occurrences of the keypoints of Q in A instead

of the whole query image.

• Template matching using SIFT followed by

Hough transform is robust to partial occlusions,

while Ciratefi by itself is not.

• SIFT is wholly scale-invariant, while even the

improved Ciratefi is scale-invariant only from 0.5

to ∞. As a truly scale-invariant method, SIFT can

find small or large template. Meanwhile, Ciratefi

is better suited for finding relatively small tem-

plates, because large template may be time-

consuming.

In our opinion, even if Ciratefi is not practical

right now for some applications, it deserves to be

more thoroughly studied because of its superior accu-

racy. There remains the challenge of designing an

algorithm as practical as SIFT and as accurate as Ci-

ratefi.

We have already taken some steps in that direc-

tion. Ciratefi repeats exactly the same series of sim-

ple operations for each pixel, making it especially

appropriate for highly parallel implementation. One

of the authors has participated of a research [29] to

implement Ciratefi in FPGA (Field Programmable

Gate Array). In this research, the authors have simu-

lated the first of the three Ciratefi filters and con-

cluded that the hardware implementation is 5000

times faster than the software implementation and

can classify one pixel as candidate or non-candidate

in each clock (after the initial latency).

One of the authors also have presented a template

matching based on circular and radial projections that

makes use of FFT (Fast Fourier Transform) and is

fast even in a conventional computer [18].

8. Conclusions

In this paper we have presented an RST-invariant

template matching named Ciratefi, with controlled

robustness to brightness/contrast changes. We have

compared Ciratefi with SIFT and EasyMatch con-

cluding that our technique is, most of the time, more

accurate but slower. As the original Ciratefi has

many adjustable parameters, we have presented a

methodology to automatize the choice of all parame-

ters. We have also introduced a version of Ciratefi

for color images. We have compared color-Ciratefi,

grayscale Ciratefi, C-color-SIFT and grayscale SIFT.

The overall result indicates that color-Ciratefi is the

most accurate algorithm in most situations. However,

in some applications with large illumination varia-

tion, grayscale Ciratefi can overperform the color

version. In many applications, SIFT is more useful in

practice than Ciratefi due to its many nice properties.

However, as we have demonstrated experimentally

that Ciratefi is manifestly more accurate than SIFT

under many common image distortion scenarios,

there remains the challenge for designing an algo-

rithm as practical as SIFT but as accurate as Ciratefi.

15

References

[1] A. E. Abdel-Hakim and A. A. Farag, CSIFT: A SIFT

descriptor with color invariant characteristics, In: Proceedings
of the 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2006, pp. 1978-1983.

[2] C. Ancuti and P. Bekaert, SIFT-CCH: Increasing the SIFT
distinctness by color co-occurrence histograms, In:

Proceedings of 5th International Symposium on Image and

Signal Processing and Analysis, 2007, pp. 130-135.
[3] S. A. Araújo and H. Y. Kim, Color-Ciratefi: A color-based

RST-invariant template matching algorithm, In: Proceedings

of 17th Int. Conf. Systems, Signals and Image Processing,
2010, pp. 101-104.

[4] D. H. Ballard, Generalizing the Hough transform to detect

arbitrary shapes, Pattern Recognition, vol. 13, n. 2, 1981, pp.
111-122.

[5] B. Bascle, O. Bernier and V. Lemaire, Illumination-invariant

color image correction, In: Proceedings of Int. Workshop on
Intelligent Computing in Pattern Analysis/Synthesis

(IWICPAS), LNCS, vol. 4153, 2006, pp. 359-368.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, SURF:
Speeded Up Robust Features, Computer Vision and Image

Understanding, vol. 110, n. 3, 2008, pp. 346-359.

[7] G. J. Burghouts and J. M. Geusebroek, Performance
evaluation of local colour invariants, Computer Vision and

Image Understanding, vol. 113, n.1, 2009, pp. 48-62.

[8] Q. Chen, M. Defrise, and F. Deconinck. “Symmetric phase-
only matched filtering of Fourier-Mellin transforms for image

registration and recognition”. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(12):1156–1168,
December 1994.

[9] M.S. Choi, W.Y. Kim, A novel two stage template matching

method for rotation and illumination invariance, Pattern
Recognition 35(1) (2002) 119-129.

[10] H. Chong, S. Gortler and T. Zickler, A Perception-based

Color Space for illumination-invariant image processing,
ACM Trans. on Graphics, vol. 27, n. 3, 2008, pp. 1-7.

[11] B. Cyganek, Circular road signs recognition with soft

classifiers, Integrated Computer-Aided Engineering 14 (2007)
323-343.

[12] B. V. Funt and G. D. Finlayson, Color Constant Color

Indexing, IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 17, n. 5, 1995, pp. 522-529.

[13] B. V. Funt, K. Barnard and L. Martin, Is machine colour

constancy good enough?, In: Proceedings of the 5th European
Conference on Computer Vision, LNCS, Vol. 1406, 1998, pp.

445-459.

[14] J. M. Geusebroek, R. van den Boomgaard, A. W. M.
Smeulders and H. Geerts, Color invariance, IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 23, n. 12,

2001, pp.1338-1350.
[15] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders,

The Amsterdam library of object images, Int. Journal of
Computer Vision, vol. 61, n. 1, 2005, pp. 103-112.

[16] T. Gevers and A. Smeulders, Color based object recognition,

Pattern Recognition, vol. 32, 1997, pp. 453-464.
[17] A. Gijsenij, T. Gevers and M. P. Lucassen, A perceptual

comparison of distance measures for color constancy

algorithms, In: Proceedings of the 10th European Conference
on Computer Vision, LNCS, vol. 5302, 2008, pp. 208-221.

[18] H. Y. Kim and S. A. de Araújo, Grayscale template-matching

invariant to rotation, scale, translation, brightness and contrast,
In: Proceedings of the 2nd Pacific Rim conference on

Advances in image and video technology, LNCS, vol. 4872,

2007, pp. 100-113.

[19] H. Y. Kim, Rotation-discriminating template matching based
on Fourier coefficients of radial projections with robustness to

scaling and partial occlusion, Pattern Recognition, vol. 43, n.

3, 2010, pp. 859-872.
[20] Y. Lamdan and H. J. Wolfson, Geometric hashing: a general

and efficient model-based recognition scheme. In:

Proceedings of 2nd Int. Conference on Computer Vision,
1988, pp. 238-249.

[21] T. K., Leung, M. C. Burl, and P. Perona, Finding faces in

cluttered scenes using random labeled graph matching. In:
Proceedings of 5th Int. Conference on Computer Vision, 1995,

pp. 637-644.

[22] J. P. Lewis, Fast normalized cross-correlation, Vision
Interface, 1995, pp. 120-123.

[23] Y. Lin and C. Chen, “Template matching using the parametric

template vector with translation, rotation and scale
invariance,” Pattern Recognition, vol. 41, no. 7, Jul. 2008, pp.

2413-2421.

[24] D. G. Lowe, Distinctive image features from scale-invariant
keypoints, Int. Journal of Computer Vision vol. 60, n. 2, 2004,

pp. 91-110.

[25] D. Marimon and T. Ebrahimi, Efficient rotation-discriminative
template matching, Lecure Notes in Computer Science, vol.

4756, 2008, p. 221-230.
[26] K. Mikolajczyk, A performance evaluation of local

descriptors, IEEE Trans. on Pattern Analysis and Machine

Intelligence , vol. 27, n. 10, 2005, pp. 1615-1630.
[27] T. Moerland and F. Jurie, Learned color constancy from local

correspondences, In: Proceedings of the 2005 IEEE Int.

Conference on Multimedia and Expo, 2005, pp. 820-823.
[28] F. Mokhtarian, A. K. Mackworth, “A theory of multi-scale,

curvature based shape representation for planar curves,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 14,
n. 8, 1992, pp. 789-805.

[29] H. P. A. Nobre and H. Y. Kim. Automatic VHDL generation

for solving rotation and scale-invariant template matching in
FPGA. In: Proceedings of 5th Southern Programmable Logic

Conference, 2009, pp. 229-231.

[30] K. A. Raftopoulos, N. Papadakis, K. Ntalianis and S. Kollias,
A visual pathway for shape-based invariant classification of

gray scale images, Integrated Computer-Aided Engineering 14

(2007) 365–378.
[31] S. Reddy and B. N. Chatterji. “An FFT-based technique for

translation, rotation, and scale-invariant image registration”.

IEEE Trans. on Image Processing, 3(8):1266–1270, August
1996.

[32] A. Sajjanhar, G. Lu, D. Zhang, J. Hou, W. Zhou, and Y.P.

Chen (2010), “Spectral Shape Descriptor Using Spherical
Harmonics,” Integrated Computer-Aided Engineering, 17:2,

pp. 167-173.

[33] K. E. A. van de Sande, T. Gevers and C. G. M. Snoek,
Evaluation of color descriptors for object and scene

recognition. In: Proceedings of the 2008 IEEE Computer

Society Conference on Computer Vision and Pattern
Recognition, 2008 , pp. 1-8.

[34] G. Schaefer, How useful are colour invariants for image

retrieval, In: Proceedings of 2nd Int. Conference on Computer
Vision and Graphics, 2004.

[35] M. J. Swain and D. H. Ballard, Color Indexing, Int. Journal of

Computer Vision, vol. 7, n.1, 1991, pp. 11-32.
[36] D. M. Tsai and Y. H. Tsai, Rotation-invariant pattern

matching with color ring-projection, Pattern Recognition, vol.

35, n. 1, 2002, pp. 131-141.

16

[37] F. Ullah, and S. Kaneko: Using orientation codes for rotation-

invariant template matching. Pattern Recognition, vol 37, n. 2,

2004, pp. 201-209.
[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,

Image quality assessment: from error visibility to structural

similarity, IEEE Trans. on Image Processing, vol. 13, n. 4,

2004, pp. 600-612.

