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Abstract— Magnetic Resonance Imaging (MRI) is a powerful, 
widespread and indispensable medical imaging modality. The 
American College of Radiology (ACR) recommends weekly 
acquisition of phantom images to assess the quality of scanner. 
Usually, these images must be analyzed by experienced 
technicians.  Automatic analysis of these images would reduce 
costs and improve repeatability. Some automated methods have 
been proposed, but the automation of two of the ACR image 
quality tests remains open problem. Reports on the high- and 
low-contrast resolution tests are scarce and so far none of the 
proposed methods produce results robust enough to allow 
replacing human work. We use Machine Learning to emulate, 
with high accuracy, the detection of 120 low-contrast structures 
of ACR phantom by an experienced professional. We used a 
database with 620 sets of ACR phantom images that were 
acquired on scanners of different vendors, fields and coils, 
totaling 74,400 low-contrast structures. Technicians with more 
than 10 years of experience labeled each structure as ‘detectable’ 
or ‘undetectable’. Machine learning algorithms were fed with 
image features extracted from the structures and their 
surroundings. Among the five methods we tested, Logistic 
Regression yielded the largest area under the ROC curve (0.878) 
and the highest Krippendorff’s alpha (0.995). The results 
achieved in this study are substantially better than those 
previously reported in the literature. They are also better than 
the classifications made by junior technicians (with less than 5 
years of experience). This indicate that the ACR MRI low-
contrast resolution test may be automated using Machine 
Learning.  
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I.  INTRODUCTION  
 

Magnetic Resonance Imaging (MRI) is the medical 
imaging modality that provides the largest range of image 
contrast [1]. It does not only produce images where bones can 
be distinguished from soft tissues, as in X-rays, but it also 

allows radiologists to detect small structures with low image 
contrasts, such as a meniscus tear, a myocardial infarction or an 
ovarian cyst. MRI scanners play a fundamental role in medical 
diagnosis. 

Like any other medical measuring instrument, an MRI 
scanner must undergo periodical quality assurance (QA) tests 
and be recalibrated, promptly, whenever necessary. The 
American College of Radiology (ACR) MRI Accreditation 
Program is the most regarded and widespread MRI QA 
program [2]. In the US, the program is mandatory for 
institutions providing public healthcare, so most scanners 
operating in that country adhere to the program. But due to its 
prestige, the ACR accreditation is also sought by foreign 
international institutions that understand the importance of 
monitoring the performance of its scanners and consider 
ACR’s recommendations fairly suitable. 

The ACR recommends testing MRI scanners weekly. The 
QA image test consists of acquiring and evaluating images 
from the ACR multi-purpose phantom. Phantom is an object 
with known geometry and composition used to test imaging 
instrument. It is constructed to give origin to images or 3D 
volumes where one can measure the quality of the image 
signal. The ACR phantom is multi-purpose because there are at 
least 7 different QA metrics that can be extracted from its 
images. Only a few are monitored weekly. A full test using the 
phantom can take more than an hour; weekly tests take 
approximately 20 minutes. Automation of these tests, 
especially the low-contrast resolution test could improve the 
repeatability and reliability of QA measures, and save 
significant healthcare resources. There have been a few 
attempts to automate the ACR QA MRI tests [3, 4, 5, 6, 7] but, 
to date, none of the proposed methods has been recognized by 
the College.  

Two of the tests are entirely dependent on the visual 
perception of an experienced operator and their automation has 
been challenging: the high and low-contrast resolution tests. In 
these tests, the operator must indicate whether a given set of 
structures in the phantom can be detected in the image (i.e., 
differentiated from the background). If these two tests could be 
automated, probably the entire ACR test could be done without 



the presence of an experienced operator, reducing costs and 
improving repeatability.  

In this paper, we address the automation of the low-contrast 
resolution test. We found two studies in the literature 
addressing this test [3, 4], but the correlations between the 
human and computer outputs were low. 

II. ACR LOW-CONTRAST RESOLUTION TEST 
 

The low-contrast resolution test estimates the detection of 
structures with small signal differences, using the typical 
protocol in a given equipment. It uses the 4 last slices of the 
typical 11-slice acquisition in the ACR phantom. In slices 8-11, 
the phantom has plastic disks of varying thicknesses, each with 
30 holes. Holes are arranged in 10 radial triplets and the size of 
the holes decreases from 7mm to 1.5mm, clockwise (Fig. 1A). 
While holes are filled with phantom’s ionic solution and give 
maximum signal intensity, signal from the background depends 
on the thickness of the disk (made of a material that emits no 
signal). The thinner the plastic disk, the more contribution of 
the ionic solution to the signal; and the contrast between the 
holes and their background decreases. The phantom was 
conceived to produce disk hole contrasts from 5% (slice 11) to 
1.5% (slice 8), as shown in figure 2. The test consists in 
counting how many of the 40 triplets can be seen in the slices 
11 through 8. A triplet is considered visible only if all of its 3 
holes can be clearly detected. A high counting indicates that the 
image quality is good and allows resolving small structures 
even when the contrast is low.  

Figure 1.  (A) A typical image of ACR MRI Phantom, slice 10; (B) two 
masks utilized to obtain the image characteristics. 

The threshold of detectability is a manifestation of human 
perception, and empirical models describe it fairly well when 
the images are sharp and free from artifacts. Human perception 
in complex cases requires more sophisticated models. The 
method proposed by Fitzpatrick [4] to automate the ACR low-
contrast resolution test is derived from the Rose Model of 
visual perception and exemplifies the difficulty in predicting 
the human detectability in a real scenario using a simplistic 
model. A group from the Mayo Clinic developed that model 
further [3]. They evaluated the performance of the algorithm 
using a database much larger than that used by the former 

study and found a correlation between human and computer 
outputs – measured using Krippendorff’s alpha metric, a non-
parametric index that measures the agreement between 
observations [8] – of 0.652, which is only modest and does not 
allow using their method in place of a trained professional.  

Figure 2.  T1 images of slices 11 to 8 of the ACR Phantom. MRI images are 
acquired as 16 bits unsigned integer images. 

III. EXPERIMENTS 
 

The result of an ACR low-contrast test is the total number 
of visible triplets. A triplet is considered visible if all the 3 
holes can be detected. That is, the operator counts triplets, but 
evaluates the visibility of each hole individually. Signal 
imperfections affect differently the visibility of each hole in the 
triplet so that the operator often detects 1 or 2 of its holes and 
not the other(s). To increase the power of our learning 
algorithms, we modeled the visibility of each hole individually, 
not the triplet. The operator usually stops counting the triplets 
at the last visible one. However, this does not necessarily mean 
that the holes in the remaining triplets cannot be detected. 
There may be many more visible holes and even entirely 
visible triplets. To take advantage of the all the available 
information, our technologists classified all the 120 holes of 
each acquisition, regardless of the total triplet counting.  

We have in our database 620 ACR phantom acquisitions in 
the last 12 months, obtained in 13 scanners of different vendors 
(Siemens, GE and Philips), magnetic fields (1.5T and 3.0T) 
and head coils (8, 12 and 32 channels). That means, we have 
74,400 low-contrast structures imaged in a great range of 
conditions to train our classification algorithms. All image 



processing was carried out using in-house algorithms 
programmed in Matlab and R language.  

A. Feature Extraction 
 

Each low-contrast structure (“hole”) received a label 
consisting of 3 numbers: slice (values from 8 to 11), angle (1 to 
10) and radial position (1 to 3). We used two types of spatial 
masks (Fig. 1B): (a) a circle approximately the size of the hole, 
to measure signal characteristics within the hole; (b) an outer 
area to measure signal characteristics in its vicinity, consisting 
of sector minus the circle. 

The holes’ coordinates vary from acquisition to acquisition. 
Masks were adjusted by: (a) co-registering a template of holes 
with the image of slice 11 (that has the highest contrast) to 
obtain the parameters of an affine transformation; (b) using 
these parameters to register each mask on slice 11. On slices 
10-8, we registered the masks by rotating the mask of slice 11 
counterclockwise in steps of 9.5º. 

We used the circle and outer masks to compute the mean 
and the standard deviation in each mask, obtaining four 
features: (a) S_IN: the signal (mean) inside the hole; (b) N_IN: 
the noise (standard deviation) inside the hole; (c) S_OUT: the 
signal (mean) in the surrounding area; (d) N_OUT: the noise 
(standard deviation) in the surrounding area. 

The three hole label numbers (slice, angle and radial 
position) were also used as features. We use them as features 
because: (e) slice - the contrast of the image depends on this 
number and it helps to classify correctly the visibility of the 
holes; (f) angle - the radius of the hole depends on its angle in 
the slice, and the larger the hole, the easier it can be detected; 
(g) position - usually, the outer holes are more distorted and 
difficult to visualize than the inner holes. 

Actually, we tested much more features before concluding 
that the most important features are the chosen seven, as 
described in Table I. The area under ROC curve increases 
slightly when we add some more features. However, as the 
improvements are marginal, we decided to discard them, in 
order to make the model simple and more easily interpretable.  

TABLE I.  DESCRIPTION OF THE FEATURES WE USED. 

Variable Type Description 

S_IN Numerical Signal inside the hole 

N_IN Numerical Noise inside the hole 

S_OUT Numerical Signal in the surrounding area 

N_OUT Numerical Noise in the surrounding area 

Angle Categorical The angle of the hole that indicates its size 

Slice Categorical Slice where the hole is located 

Position Categorical Position of the hole in triplet 

B. Predicted variable 
 

The visibility of the low-contrast structures is given as the 
total number of triplets visible to the operator. We already had 
our database with 620 acquisitions, where each of the slices 8-
11 had been manually analyzed and assigned the number of 
visible triplets. However, the supervised machine learning 
algorithms should be trained with more detailed feedback, 
informing the visibility of each individual hole.  

With the aid of an in-house application, our senior 
technicians, professionals with at least 10 years of experience, 
revisited the data and provided an answer (visible/invisible) for 
each hole. The application basically consisted of a pair of 
windows displayed side-by-side, as shown in figure 3: one 
where the technician could click in the holes he/she deemed 
“detectable”; and the other, a blank screen where red circles 
would pop up to provide a clue that the mouse click had been 
effective. A subsequent click in the same region switched the 
status back to “undetectable”; and so forth.  

Figure 3.  in-house application where the technician could click in the holes 
he/she deemed “detectable” 

 

Slices were presented from 11 to 8. Technicians screened a 
batch of 10 acquisitions at a time and only eventually read 2 
batches in the same day (with a minimum rest of 2 hours 
between the screening sessions). Images could be zoomed, 
panned and windowed. All sessions took place in the same 
dark room and using a single monitor with fixed presets. A 
total of 620x120=74,400 holes were labeled as either 
“detectable” or “undetectable” by experienced technicians 
under strictly controlled conditions.  

 

C. Machine Learning methods 
 

We tested 5 Machine Learning (ML) methods [9] to predict 
the responses of the technicians. The dataset was randomly 
divided into 70% of the entries for the training and 30% for the 
testing. To avoid overfitting, we set all the parameters using 
only the training base, and we used the test base only to verify 



the performance of the algorithms. Algorithms were 
programmed and tested using the R language.  

Logistic Regression (LR) is the most frequently used 
method in binary classification problems [10], such as the one 
tackled in this study. It has been implemented using the 
standard generalized linear model method in R.  

Support Vector Machine (SVM) is a very popular ML 
classification method and is known to perform quite well in 
binary classification problems, splitting the feature space with 
hyperplanes. This algorithm has been implemented using the 
R’s package e1071 [11].  

Random Forest (RF) is an ensemble learning method that 
constructs a multitude of decision trees at training time and 
outputs the class that is the mode of the classes of the 
individual trees. It has been implemented using R’s 
randomForest package [12].  

Extreme Gradient Boosting (XGB) consists of an 
ensemble of weak prediction models, typically decision trees, 
and optimizes an arbitrary differentiable loss function. We used 
R’s xgboost package [13].  

Neural Network (NNet) with a single hidden-layer of 10 
units was also tested. This feed-forward net was implemented 
using R’s nnet package [14].  

Table II shows the main parameters we used in each 
method. For LR method, the only non-default parameter was 
“family=binomial”. We selected the parameters for the XGB 
method using cross validation with grid search. All other 
methods were automatically tuned using Caret’s Package 
default search grid. 

TABLE II.  THE CHOSEN PARAMETERS OF THE ML ALGORITHMS. 

Technique Object class Parameters 

LR glm family = binomial 

SVM train svmRadial 
tuneLength =10 

RF randomForest ntree = 500 

XGB xgb.cv eta = c(0.1,0.7) 
max_depth = c(0,15) 
nrounds = c(25,300) 
max_delta_step = c(0,7) 
subsample = c(0.5,0.7) 
objective = "reg:logistic" 
nthread = 4 
verbose = 0 
nfold = 10 
metrics = "auc" 

NNet nnet size  = 10 
decay = 0.001 

 

 

D. Performance Metrics 
 

We evaluated the performance of the ML algorithms using 
AUC - the area under the ROC (Receiver Operating 
Characteristic) curve. AUC has been used in medical 
diagnostics since the 1970s, and is probably the best index of 
prediction accuracy available. AUC=1 indicates that 
predictions are perfectly accurate while AUC=0.5 indicates 
they are pure guessing.  

We also calculated the Krippendorff’s alpha (Kripp.alpha) 
metric, a non-parametric index that measures the agreement 
between observations [8]. We used R’s package irr that 
implements this metric. It yields a value from -1 to 1, where 1 
indicates perfect agreement, 0 indicates no agreement beyond 
chance and negative values indicate inverse agreement.  

 

IV. RESULTS 
 

Table III summarizes the obtained results. The obtained 
results are substantially better than those previously reported: 
Ehman et al. [3] obtained Krippendorff’s alpha of 0.652 while 
our best alpha is 0.995.  

The method with the largest AUC was LR (logistic 
regression) with area of 0.878±0.056, where 0.878 is the mean 
of the areas obtained by 10-fold cross-validation and 0.056 is 
the standard deviation. Figure 4 shows the ROC curves of LR 
model for the train and test bases. LR also yielded the the 
highest Krippendorff’s alpha (0.995). It is noteworthy that 
there is no guarantee that AUC and Krippendorff’s alpha will 
agree that a specific algorithm is the best.  

We tried to solve this problem without using machine 
learning and did not get good results. Thresholding the signal-
to-noise ratio did not work well. We also tried to include the 
area of the hole into the formula without success. 

TABLE III.  AREA UNDER THE ROC CURVE (AUC) AND KRIPPENDORFF’S 
ALPHA OF ML TECHNIQUES. THE NOTATION X±Y INDICATES MEAN X AND 

STANDARD-DEVIATION Y OF THE 10-FOLD CROSS-VALIDATION. 

 LR SVM RF XGB NNet 

AUC 0.878 
 ±0.056 

0.781 
 ±0.08 

0.873 
 ±0.086 

0.855 
±0.042 

0.758 
 ±0.054 

Kripp.alpha 0.995 0.993 0.917 0.750 0.994 

 



 

Figure 4.  ROC curves of the logistic regression model (LR) for the train and 
test base 

 

To assess the quality of our method, we compared the 
answers of junior technicians (with less than 5 years of 
experience) with our algorithm, considering the answers of 
senior technicians (with more than 10 years of experience) as 
“gold standard”. The first row of Table 4 indicates that junior 
technicians classified correctly 82% of all holes; and classified 
correctly only 34% of undetectable holes and 84% of 
detectable holes. To measure the performance of our algorithm, 
we thresholded the output of LR model (that yielded the best 
results) using criterium “ROC01”, that minimizes the distance 
between ROC plot and point (0,1). The second row of Table IV 
indicates that LR model classified correctly 84% of all holes, 
68% of undetectable holes and 87% of detectable holes. In 
conclusion, our algorithm is better than junior technicians in 
classifying the holes as detectable/undetectable. 

Table V shows the result of junior technicians and our 
algorithm applied only to slice 8, the one with the lowest 
contrast and therefore the most difficult to visualize. Again, our 
algorithm is better than junior technicians (considering the 
answers of senior technicians as correct ones). 

We note that even senior technicians may disagree on the 
classification of a hole. As we have, at this moment, only one 
classification made by a senior technician per hole, we cannot 
calculate the dispersion of their responses. In the near future, 
we intend to collect more classifications of our images made by 
senior technicians, in order to calculate possible dispersion and 
to obtain a better “gold standard”. 

 

 

 

TABLE IV.  ACCURACY, SENSITIVITY AND SPECIFICITY CONSIDERING THE 
ANSWERS OF SENIOR TECHNICIAN AS “GOLD STANDARD”, APPLIED TO ALL 
SLICES (8-11). JUNIOR TECHNICIANS ARE THOSE WHO HAVE LESS THAN 5 
YEARS OF EXPERIENCE. LR MODEL WAS THRESHOLDED TO MINIMIZE THE 

DISTANCE BETWEEN ROC PLOT AND POINT (0,1). 

Professional experience Accuracy Sensitivity Specificity 

Junior technicians 0.824 0.343 0.844 

LR model 0.842 0.677 0.868 

 

TABLE V.  ACCURACY, SENSITIVITY AND SPECIFICITY CONSIDERING THE 
ANSWERS OF SENIOR TECHNICIAN AS CORRECT, APPLIED ONLY TO SLICE 8 (THE 

ONE WITH THE LOWEST CONTRAST). 

Professional experience Accuracy Sensitivity Specificity 

Junior technicians 0.583 0.560 0.584 

LR model 0.690 0.617 0.784 

 

V. CONCLUSIONS 
 

To our knowledge, this is the first attempt to automate the 
ACR MRI low-contrast resolution test using Machine 
Learning. We fed five learning algorithms with features 
extracted from the ACR phantom images, and with labels 
(detectable/undetectable) assigned by senior technicians with 
more than 10 years of experience. Among the five methods we 
tested, Logistic Regression yielded the largest area under the 
ROC curve (0.878) and the highest Krippendorff’s alpha 
(0.995). The results achieved in this study are substantially 
better than those previously reported in the literature. Also, the 
results are better than those obtained when junior technicians 
(with less than five years of experience) labels the image 
structures manually. This indicates that it may be possible to 
replace human operator in ACR low-resolution test.  
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