
AUTOMATIC VHDL GENERATION FOR SOLVING  
ROTATION AND SCALE-INVARIANT TEMPLATE MATCHING IN FPGA 

Henrique P. A. Nobre  and  Hae Yong Kim 

Escola Politécnica, Universidade de São Paulo, Brazil 
hennobre@provida.org.br  and  hae@lps.usp.br 

 

ABSTRACT 

Template matching is a classical problem in computer vi-
sion. It consists in detecting the presence of a given tem-
plate in a digital image. This task becomes considerably 
more complex with the invariance to rotation, scale, trans-
lation, brightness and contrast (RSTBC). A novel RSTBC-
invariant robust template matching algorithm named 
Ciratefi was recently proposed. However, its execution in 
a conventional computer takes several seconds. Moreover, 
the implementation of its general version in hardware is 
difficult, because there are many adjustable parameters. 
This paper proposes a software that automatically gener-
ates compilable Hardware Description Logic (VHDL) 
modules that implements Ciratefi in Field Programmable 
Gate Array (FPGA) devices. The proposed solution accel-
erates the time to process a frame from 7s (in a 3GHz PC) 
to 1.06ms. This excellent performance (more than the re-
quired for a real-time system) may lead to cost-effective 
high-performance co-processing computer vision systems.  

1. INTRODUCTION 

Image processing and computer vision are becoming 
popular in many areas and more and more powerful but 
time-consuming new algorithms are being developed. 
These algorithms require intensive use of mathematical 
calculations, such as averaging, interpolation and correla-
tion. FPGA (Field-Programmable Gate Array) seems to 
be an adequate hardware system for many image process-
ing algorithms, because FPGAs have the capability of 
making thousands of tasks in a single clock. Authors in 
[1] mention advantages of FPGAs for image processing 
and authors in [2] compare performance of FPGA 
systems. Paper [3] exemplifies high performance of 
FPGA architectures, where the authors implemented a 
string matching algorithm with execution time 8-340 
times faster than the implementation in a Pentium 4 com-
puter 3.5 GHz. 
 Parallel processing is particularly important in image 
processing algorithms where the same series of operations 
must be repeated for each pixel. Authors in [4] developed 
an object-tracking method based on a real time vision 

module. In this method, real-time image-processing per-
formance is achieved by a parallel implementation in a 
multiprocessor, DSP-based system. A more complex sys-
tem was proposed in [5], where the authors implemented 
highly parallel architecture for real-time object recogni-
tion using signal processing and FPGA technologies. 
 A novel template matching, invariant to rotation, 
scale, translation, brightness and contrast (RSTBC), 
named Ciratefi was recently proposed [6, 7]. The imple-
mentation of its general version in hardware is difficult, 
because there are many adjustable parameters that require 
hardware modifications. Figure 1 demonstrates the 
matching result of the algorithm. This algorithm repeats 
the same series of operations for each pixel, what makes 
it good for hardware implementation. However, the 
hardware implementation of the general version of 
Ciratefi is not straightforward, because it must be flexible 
to changes in the size of the template and the range of 
template scales. Therefore, we propose a software that, 
given the parameters, automatically generates compi-
lables VHDL modules that implements Ciratefi in FPGA. 
The generated VHDL modules are highly optimized and 
pipelined. The performance of our implementation is op-
timal, because it classifies one pixel (as matching or non-
matching) per clock. 
 Ciratefi consists of three cascaded filters, named Cifi, 
Rafi and Tefi. The first two filters are time-consuming 
and they are the objects of this hardware implementation. 
The last one is usually fast even in software and we have 
decided to let it as a software implementation. Therefore, 
we present in this paper a FPGA system that implements 
Cifi and Rafi. However, until now, we have completed 
only the implementation of Cifi. The implementation of 
Rafi is quite similar and we intend to finalize it soon. The 
proposed solution has accelerated Cifi 5000 times, from 
7s to process a frame (in a 3GHz PC) to 1.06ms (in 
FPGA).  
 In the literature, there are some other implementations 
of template matching in FPGA. Hegel et al. [8] present a 
binary image template matching algorithm in FPGA. This 
technique is neither rotation nor scale-invariant. Shen et 
al. [9] present a rotation-invariant template matching 
based on circular projections. However, it is not scale-
invariant.  



 

 
Fig. 1. Output of Ciratefi, where the matching positions, 

angles and scales are depicted as circles with pointers 

      
The circular projections different scales Fig. 2. 

 
The radial projection at the selected scale Fig. 3. 

2. CIRATEFI 

The objective of the Ciratefi algorithm is to find a gray-
scale query image Q in a larger image “to analyze” A, 
invariant to rotation, scaling, translation, brightness and 
contrast. We present below a brief description of Ciratefi. 
The readers are referred to [6] for further details. 
 Ciratefi consists of three cascaded filters. Each filter 
successively excludes pixels that have no chance of 
matching the template. 

2.1. First Filter: Cifi 

The first filter, called Cifi (Circular Sampling Filter), 
computes the average grayscales of images A and Q on 
circles (figure 2), and uses them to classify some pixels of 
A as “first grade candidate pixels” for matching. This 
filter also determines a “probable scale factor” for each 
candidate pixel. To accomplish this, Cifi makes 
successive correlations between the 2-D matrix CQ of 
average values on circles of Q in several scale factors 
(figure 2) and the 3-D matrix CA that contains, for every 
pixel (x,y) in A, a vector of the average values of the 
circles centered at (x,y). That is, CA is obtained processing 

at (x,y). That is, CA is obtained processing all the pixels of 
A according to the equation: 
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 Cifi uses matrices CQ and CA to detect the correlation 
coefficient at the best matching scale for each pixel (x,y). 
A pixel (x,y) is classified as a first grade candidate pixel if 
the best correlation is larger than some defined threshold. 

2.2. Second Filter: Rafi 

The second filter, called Rafi (Radial Sampling Filter), 
computes, for each first grade candidate pixel (x,y), the 
projections of images A and Q on radial lines (figure 3) 
with the radius given by the scale factor computed by 
Cifi. Rafi upgrades the first grade candidate pixels that 
have chance of matching the template to the second 
grade. It makes successive correlations between the two 
sets of projections using circular shifting. It also com-
putes the “probable rotation angle” for each second grade 
candidate pixel. 

2.3. Third Filter: Tefi 

The third filter, called Tefi (Template Matching Filter), is 
a conventional brightness and contrast-invariant template 
matching applied to the second grade pixels, using the 
scales and angles determined respectively by Cifi and 
Rafi. It makes use of the correlation coefficient to evalu-
ate how well the template Q matches each second grade 
candidate pixel. 

2.4. Performance of Ciratefi 

The interesting points of Ciratefi are its roughness  and 
accuracy when compared to others algorithms [6]. How-
ever, it takes several seconds to compute the matching 
positions. For the worst case tested (A with 465×338 pix-
els, Q with 52×51 pixels, 6 scales and 36 angles) the 
complete Ciratefi algorithm took 22s, divided as follows: 

• The first filter – Cifi, took 2.5s for the 3D matrix cal-
culation and 4.5s for the correlation process, with total 
of 7s. 

• The second filter – Rafi, took 13s to output its result. 
• The final filter – Rafi, was the fastest and took about 

1s to output its result.  
These times were obtained using a 3GHz Pentium 4. 
 



 
Fig. 4. Architecture of the reading process 

3. OBJECTIVES 

Our objective is to propose and demonstrate a methodol-
ogy to design a FPGA system capable of executing in real 
time, very time-consuming image processing algorithms 
originally developed for PCs. This strategy was used to 
design a hardware system (FPGA) that applies to Cifi, the 
first of the three Ciratefi filters. The solution for Rafi, the 
second filter, is very similar. Tefi, the third filter is very 
fast, and it does not make part of the proposed innovation. 
 The proposed system should be: flexible enough to be 
used by other similar processing algorithms; independ-
ently of the FPGA vendors; and easily adaptable for dif-
ferent input parameters maintaining its performance. In 
this case, the parameters are the size of the query image Q 
(that is, the size of the window matrix); the number of 
circles (where the average grayscales are computed); and 
the number of different scales.  

4. FPGA IMPLEMENTATION 

To attend both flexibility and performance requirements, 
we decided to use the high level programming language C 
to automatically create all the VHDL files needed in 
every development steps. 
 The only third-part VHDL codes used in this project 
are those for computing the square root and the division. 
All the generated VHDL files can be implemented in any 
FPGA (depending naturally of the resources of the de-
vice).  
In this work, we chose to work with Altera devices using 
its tools for synthesis, router and timing analysis. For 
simulation, we used ModelSim from MentorGraphics that 
permits to explore the parallel behavior and analyze the 
results of the designed VHDL hardware. 

 
 

Fig. 5. The window and the circle coordinates calcu-
lated by program in C to generate the CWP for Cifi 

 The Configurable Window Processor  
Our system makes use of a hardware module that we 
named “Configurable Window Processor” (CWP). An-
other paper [3] uses the same expression, with a very dif-
ferent meaning: The 7×7 CWP proposed in [3] is config-
urable in the sense it can have different functionalities; in 
our case, the CWP size can be configured from 23×23 to 
53×53 pixels. Even these limits can be easily changed. 
 The objective of our CWP module is to calculate the 
sum and averages of the pixels in each circle (Cifi filter) 
or radial line (Rafi filter), for every pixel of image A. To 
avoid accessing external memories, we chose a FPGA 
capable to store a full 640×480 grayscale image A: the 
EP3SL340H1152C3 device that has an internal memory 
of 16 Mbits. Some other papers (for example, [10]) also 
use the internal memory of the FPGA to store the ana-
lyzed image.  

Figure 4 represents the hardware architecture to read 
pixels from image A to the CWP. A whole column is writ-
ten in CWP in every clock cycle. Pixels are written in 
CWP in just one way, from right to left. This choice sim-
plifies and minimizes the logical size of the module. A 
similar approach was used in [11], where three small 
processing windows works in parallel so that the pixels 
used by a CWP is passed and used by the next one. 
 The coordinates of the pixels to be averaged are 
automatically calculated by the VHDL generator (imple-
mented in C). Figure 5 shows a plot of the calculated cir-
cles coordinates for the following parameters: CWP of 
size 53×53 and two pixels distance between two 
neighboring circles. With this approach, we use neither 
trigonometric functions in hardware as [12, 13] nor look-
up tables as [9] to calculate circles coordinates. As conse-
quence, while COrdinate Rotation Digital Computer 
(CORDIC) [12, 13] spends some iterations (clock cycles) 
to calculate each result, our implementation spend one 
clock cycle per result. The lookup table solution [13] re-
quires much memory resources as the size of the images 
grows and would be impractical in our high resolution 
non-simplified images. 
 



 
Fig. 6. Interconnections between the two filters 

4.1. System Architecture 

Figure 6 depicts the different modules of the Cifi hard-
ware architecture. The same figure also demonstrates the 
interconnections between Cifi and Rafi filters. Implemen-
tation of the Rafi filter is left to a second phase.  
 In the proposed approach, the first column of the 
CWP module (in Cifi filter) is passed to the next filter 
(Rafi filter) after the first correlation. Thus, it is not nec-
essary for the Rafi filter to wait the end of Cifi to start 
processing the data. Both filters process simultaneously 
one pixel at every clock cycle, with an initial latency of 
53 clocks (the resolution of the larger template scale). 
That is, at every clock, one pixel is categorized as a “can-
didate pixel” or “not candidate”. In the former case, the 
most suitable scale value (Cifi) and the most suitable rota-
tion angle (Rafi) are also computed. 
 Following the data path, after the computation of the 
sums of the grayscales in circles in CWP, the average 
module divides each sum by the number of pixels. Then, 
using the pre-calculated Cq matrix, the correlations are 
calculated and the largest correlation is chosen. Finally, 
we compare the result of the largest correlation with a 
given threshold to infer if the pixel has some probability 
of matching the given template. The probable scale is the 
scale that yielded the best correlation. 
 

 
Parallel architecture for correlation computation Fig. 7. 

 
Pipelined sum’s tree Fig. 8. 

 To maximize the performance, we pipelined the in-
termediate results in order to classify one pixel in every 
clock cycle (after the latency of the system for the initials 
data). This is why we implemented as many correlation 
modules as scale factors in the system. Figure 7 depicts 
this, where one correlation module is instantiated for each 
template scale. The work [4] uses a similar solution to 
make many correlations simultaneously. The number of 
scale factors is configurable. Our program in C generates 
modules with up to 7 different scale factors.  

4.2. Mathematical Calculations in Pipeline 

The four mainly used operations in our system are: sum, 
multiplication, division and square root. The CWP mod-
ule calculates the average of the sums of grayscales of the 
pixels in each circle, for all pixels in A (except at tiny 
image borders). As the high-end FPGAs have multipliers 
implemented within the device, we multiply the sums by 
the inverses of the numbers of pixels in each circle to 
calculate the average grayscales of the circles. Given the 
parameters, the software in C calculates the coordinates 
of the pixels in each circle, generating the pipelined sum’s 
tree (Figure 8) and the final division (that we compute by 
a multiplication) to finally generate the average. 
 



 
 Intermediary steps to compute correlation coefficients. Fig. 9. 

 For the computation of the correlation coefficient be-
tween two vectors x and y we use equation: 
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 Figure 9 depicts how the equation (2) is divided into 
smaller equations to compute the correlation coefficients 
through pipeline trees. The results are stored as a 16 bits 
fixed-point variables with all the 16 bits for the fraction 
part. 

5. SIMULATIONS 

Until now, we have implemented and analyzed only Cifi, 
the first of the Ciratefi filters. The implementation of Rafi 
(the second filter) is similar, and is subject of a future 
work. However, the hardware infra-structured of the sys-
tem with both filters is already designed (figure 6). We 
have compared the outputs of the software implementa-
tion of Cifi (that uses float-point variables) with the fixed-
point FPGA implementation from ModelSim simulations, 
and verified that the two are quite similar. Figure 10 de-
picts the simulation architecture that permits to validate 
the VHDL hardware using real images.  

5.1. Timing Analysis 

In this section, we present the timing analysis for each 
individual module, based on the Altera Stratix III device 
EP3SL340H1152C3. In Table 1, we present the resource 
usage and the performance for the worst case (the largest 
template with 53×53 resolution, the maximum quantity of 
circles 14, and the maximum number of scales 7). We 
also present the data for the largest and the smallest corre-
lation module. All frequency informations were obtained 
with the Classical Timing Analyzer tool (Slow Model 
Analysis) on the Altera Quartus II software. 

 

 
Simulation Architecture involving the input and 

output images 
Fig. 10. 

 After the system latency, the proposed architecture 
will classify one pixel in each clock as “candidate for 
matching” or “not candidate”, and will output the prob-
able scale and angle. The processing time for Cifi (that 
searches a 640×480 image for a 53×53 template) is 
1.06ms for the FPGA running at 258 MHz, to be com-
pared with 7s in a 3GHz Pentium. 
 
Table 1.  Performance of each module 
 Maximum  

Frequency (Mhz) 
Size in Logical 

Elements Latency

380 31.258 (12%) 9

258 21.538 (1%) 75

CWP
(Sums and Averages)

Correlations 

Module

Device: EP3SL340H1152C3  



6. CONCLUSION 

In this paper, we have designed an FPGA system that 
implements a novel rotation and scale-invariant template 
matching named Ciratefi. We have actually implemented 
and tested only the first filter, however the implementa-
tion of the second filter is quite similar. To achieve both 
flexibility and high performance, we created a C language 
program that automatically generates the VHDL for dif-
ferent parameters. The proposed system has the optimal 
performance, classifying one pixel as matching or non-
matching per clock cycle, and takes 1.06ms to process a 
frame, 5000 times faster than the software implementa-
tion. Seemingly, the same strategy can be used to imple-
ment other Image Processing and Computer Vision algo-
rithms.  
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