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ABSTRACT: 

 

Orthoimages are aerial images where feature displacements and scale variations have been removed. This type of images is widely used 

to calculate areas, determine land cover and land use, among others. This paper introduces a rotation-invariant classification model for 

three common orthoimage regions: city, sea and forest areas, using only texture information (without color information). Our 

classification model analyzes small sub-images (for example, of 20x20 pixels) to determine their region classes. Our model is based on 

a Fuzzy Inference System (FIS) constructed over a set of new rotation-invariant texture features. The features are extracted using two 

rotation-invariant versions of the well-known grayscale co-occurrence matrix (GLCM). Rotation-invariance is a desirable property of 

orthoimage classification systems, because the aerial images can be taken from different angles. We executed tests on samples from the 

three regions, including several rotated versions. These experiments show that our system reaches 100% of correct classification rate 

for our image test database. This correct classification rate is far superior to the rate obtained using the classical GLCM without the 

rotation-invariant property. Our classifier is robust to images that contain small areas that do not belong to the overall region type. The 

results demonstrate that our model offers a reliable rotation-invariant orthoimage region classification.  
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1. INTRODUCTION 

Orthorectified digital aerial photographs (orthoimages) are aerial 

images where feature displacements and scale variations have 

been removed. In this paper, we demonstrate experimentally that 

it is possible to classify forest, city and sea orthoimage regions 

using only texture information, without color or spectral 

information. We present a Fuzzy Inference System (FIS) for 

orthoimage region classification. We propose and use new 

rotation-invariant texture features. These features are modified 

versions of the well-known texture descriptors extracted from 

grayscale co-occurrence matrix (GLCM) (Haralick et al., 1973). 

 

There are some papers that use FIS for satellite images 

classification, for example (Binaghui et al., 1997; Wei, 2010). 

Also, there are some rotation-invariant texture descriptors in the 

literature, for example wavelet-based methods (Pun et al., 2003) 

and local binary pattern methods (Song et al., 2010). Machine 

learning techniques have also been used to achieve partial 

rotation invariance and these approaches have been applied to 

the traditional GLCM (Salem at al., 2011). One of the authors 

participated in the proposal of a technique that makes GLCM 

intrinsically rotation-invariant (Ito et al., 2009). We will use this 

technique to obtain rotation-invariant orthoimage classification. 

 

 

2. ROTATION-INVARIANT CO-OCCURRENCE 

MATRIX  

The grayscale co-occurrence matrix (GLCM) is widely used as 

image texture descriptor. We modify the GLCM to make it 

rotation-invariant, obtaining two new co-occurrence matrices: 

radial and circular. We extract the rotation-invariant texture 

descriptors from the new matrices. Baraldi et al. examined the 

GLCM texture descriptors defined in the literature and concluded 

that some of them were more statistically significant. These 

descriptors are the homogeneity, contrast, entropy, correlation, 

energy and variance (Baraldi et al., 1995). We make use of the 

first three descriptors.  

 

The elements of a co-occurrence matrix provide information on 

the frequency of gray-level transitions between neighboring 

pixels in an image. Mathematically, a Lg×Lg co-occurrence 

matrix ),( yxP   defined over a n×m grayscale image I with Lg 

gray-levels and parameterized by an offset (x, y) is: 
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Clearly, the original co-occurrence matrix is not rotation-

invariant. In order to make it rotation-invariant, we define below 

the circular and radial co-occurrence matrices. 

 

Circular co-occurrence matrix: Let us denote  qpFr ,  as the 

mean gray-level on the circle ring centered at (p, q) with radius r 

(Figure 1). The circular co-occurrence matrix ),( ei rrP  with 

internal radius ri and external radius re is: 
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Figure 1. Calculation of average grayscales on circular rings, 

with radii 2ir and 3er . 

 

Radial co-occurrence matrix: Let us denote  qpF r ,),(   as the 

mean gray-level on radial line centered at (p, q) with radius r and 

inclination  (Figure 2). The radial co-occurrence matrix with 

radius r and N uniformly-spaced radial lines is: 
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The sum (l+1) must be computed modulus N. In this work, we 

used r = 5 and N = 8. In order to enhance the robustness of the 

method, it is possible to use the weighted mean of some number 

of neighboring radial lines, instead of using the mean of only one 

radial line. This is roughly equivalent to low-pass filtering the 

image. Figure 2 depicts the use of the mean of four radial lines 

(external two black lines and central two gray lines) to compute 

each  qpF r ,),(  . 

 

Once we calculate both co-occurrence matrices, they are 

normalized by dividing each element by the sum of the matrix 

elements: 
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Figure 2. Calculation of average grayscales on N=8 directions 

with radius r=5. We used 4 radial lines to compute the average in 

each direction.  

 

Then, we proceed to calculate the homogeneity, contrast and 

entropy descriptors (one for each matrix). The formulae for these 

descriptors are: 
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where ),( jip  is the normalized co-occurrence matrix; 

 


gL

jx jipip
1

),()(  and  


gL

iy jipjp
1

),()(  are the marginal 

distributions; x  and y  are the mean value of the marginal 

distributions; x  and y  are their standard deviations.  

 

We obtain 6 rotation-invariant texture descriptors, three related 

to the circular co-occurrence matrix and three related to the radial 

version. We take each pair of descriptors (e.g.: circular and radial 

contrast) and derive three new features using the root of mean 

square of each pair: 
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where  entconhomi ,, ; cir
if  denotes the three circular 

descriptors and rad
if  denotes the three radial descriptors. We 

use the three texture features rms
if  in the remaining of this 

paper. 

 

 

3. FUZZY INFERENCE SYSTEM 

We acquired a set of orthoimages containing samples of the three 

region types: city, sea and forest for the training and tests. We 
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obtained grayscale images from the color ones by adding the red, 

green and blue components with weights 0.3, 0.59 and 0.11 

respectively.  

 

We gathered 56 images with an average size of approximately 

360x240 pixels for training. We divided these training 

orthoimages in 20x20 pixel blocks, obtaining over 12000 

training blocks. We also gathered another orthoimage database 

with 90 images (with approximately 400x400 pixels) for the 

tests. In order to validate the desired rotation-invariance 

characteristic, we generated 6 rotated versions of each test image, 

obtaining a total of 630 images. We used bilinear interpolation to 

rotate the images in angles 7/360 n  where  6...,,2,1n .  

 

The three rms features described in Subsection 3.1 were 

calculated for each block of the training images with 20x20 

pixels. We used radii of 2 and 4 pixels in the circular co-

occurrence matrix. We used a radius of 5 pixels and a set of 

angles varying in steps of 45° for the radial co-occurrence 

matrix. We plotted the mean, first and third quartiles of the data 

point distributions for each descriptor.  

 

Figure 3 shows that the distribution of the contrast and 

homogeneity features falls into several well-defined intervals. 

The data distribution for the other two features (not shown) also 

follows the same behavior. By analyzing the distributions, we 

associated fuzzy intervals to each region. For example, the data 

points for a forest region would fall into a “low” contrast level 

and a “medium” homogeneity level.  

 

 

 
(a) Contrast feature. 

 
(b) Homogeneity feature. 

 

Figure 3.  Data distribution of rotation-invariant features. 

 

From this analysis, we associated the texture features to input 

linguistic variables and assigned linguistic labels to the data 

intervals. The possibility of belonging to one region type was 

associated to the range [0,1] in output linguistic variables. We 

derived trapezoidal membership functions and associated them to 

intervals of the rotation-invariant features. The universe of 

discourse for each input variable was set to the maximum 

possible range of values each feature can take. For the output 

variables, the universe of discourse was set to [0,100]. 

 

Each input linguistic variable can be used to distinguish three or 

two regions. For example, the homogeneity feature in Figure 3(b) 

is used to distinguish three classes: sea (high), forest (medium) 

and city (low). The contrast feature in Figure 3(a) is used to 

distinguish only two classes: city (high) and forest/sea (low). We 

denote )(x as the membership function associated to any input 

linguistic label; x  belongs to the universe of discourse of the 

corresponding input linguistic variable and   is a vector that 

contains all the training data values associated to the linguistic 

label. We propose the equation below to model the membership 

function of any input linguistic label: 
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where   is the standard deviation of  ,   is the arithmetic 

mean of  , 1Q  is the first quartile of   and 3Q is the third 

quartile of  . This equation generates trapezoidal membership 

functions. 

 

The membership functions of the output variables are three 

triangular fuzzy numbers associated, each of them, to the 

linguistic labels: not likely, likely and very likely. Figure 5 

illustrates the input and output linguistic variables and the 

membership functions for each fuzzy set. 

 

Finally, we created 15 fuzzy rules that characterize the relations 

between the feature value intervals and the associated outputs. 

We applied these rules under Mamdani’s inference method (Lee, 

1990) and used the centroid defuzzification method. Figure 4 

shows three example rules that exploit the relations between the 

homogeneity and contrast descriptors. Compare Figures 3 and 4 

to intuitively verify these relations. The complete set of rules is 

not presented due to space restrictions. 

 

 

 
 

Figure  4.  Example of rules derived from the homogeneity and 

contrast features. 

 

 

4. GENERAL STRUCTURE OF THE CLASSIFIER 

The general scheme of the classifier is summarized in Figure 6. 

The training flow is illustrated with dashed arrows and the 

application flow is illustrated with solid arrows.  

 

The training section initiates with the extraction of 20x20 pixel 

blocks from the training images. Then, we calculate the texture 

features for each training block and build a fuzzy inference 

system as presented in Subsection 3.2.  

 

The application section also initiates with the extraction of 

20x20 pixel blocks from the test image. We calculate the three 

texture features for each extracted block. The vector with these 

three features is used as the input of the fuzzy classifier. The 

region type that yields the highest possibility is associated to 

each block. If two or more regions yield the same and highest 

possibility, the block is associated to a null class. The final 

classification of the test image follows a simple rule: the region 
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type with the highest number of occurrences is elected as the land 

type of the test image. 

 

 

 

 

 
 

Figure 5. Input and output linguistic variables. From top to 

bottom: contrast, homogeneity, entropy and general output (city, 

forest, sea). 

 

 

 
 

Figure 6.  Texture analysis scheme for rotation-invariant region 

classification 

 

 

5. EXPERIMENTAL RESULTS 

We implemented the described system in Matlab. We gathered 

90 images representing city, forest and sea for the tests; this 

means 30 images for each region type with average size of 

400x400 pixels. Figure 7 shows three examples. Two of them 

contain small secondary regions, as seen in Figures 7(b) and 7(c). 

 

 

 
 

(a) City Region. 

 
 

(b) Sea Region – Docks are 

visible. 

 

(c) Forest Region – Small dirt 

patches are visible. 

 

Figure 7.  Examples of Non-Rotated Test Orthoimages. 

 

From these 90 initial images, we generated 6 rotated versions for 

each (as stated at the beginning of Section 3), obtaining 630 test 

images. The rotated images have an average size of 260x260 

pixels; we extracted the central area of the rotated images in 

order to eliminate the diagonal borders created by the rotations. 

For all the tests, we quantized the images from 256 to 128 

grayscale levels.  

 

We divide the results in two subsections. The first is concerned 

in classifying the complete images and the second deals with 

classifying each 20x20 pixel squares. 

 

5.1 Classification of Complete Images 

We first classified the 90 non-rotated orthoimages. We obtained 

no misclassifications, that is, the correct classification rate was 

100%. We also tested the scheme for the remaining 540 rotated 

orthoimages. Again, we obtained no misclassifications. The total 

correct classification rate considering all 630 images was 100%. 

 

To validate the effect of our rotation-invariant descriptors, we 

repeated the experiments using the classic horizontal grayscale 

co-occurrence matrix. We used our 630 image database to test 

the performance. We obtained a correct classification rate of only 

25.25%.  

 

5.2 Classification of Individual Region Blocks 

In this subsection, we consider the classification of each 20x20 

pixel block, instead of analyzing the classification of whole 

images. 
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Using all the test images, we classified around 127000 blocks. 

We calculated the classification rate for the blocks associated to 

the 90 non-rotated images and the 540 rotated images.  

 

We obtained a correct block classification rate of 85.23% for the 

non-rotated images and a correct block classification rate of 

85.24% for the rotated images. The total correct classification 

rate for all the test blocks was of 85.24%.  

 

We illustrate below the classification results of individual blocks 

using some of our test images. To make the results visible, we 

superimpose the masks depicted in Figure 8 over the blocks. 

 

 

    

Forest Mask Sea Mask City Mask Null Mask 

 

Figure 8.  Block Classification Masks 

 

Figure 9(b) shows the block classification for a city-type test 

image. There was one null classification and six 

misclassifications. Note that the classifier detected a forest-

region on top of the visible stadium. 

 

 

 
 

(a) Original 

Image 

 

(b) Classified 

Image 

 

Figure 9.  Block Classification of a City Region 

 

Figure 10(a) shows an image of a city region. There is a park and 

a lake to the left of the image; a river and an island stand to the 

right. According to Figure 10(b), the main city region was 

correctly classified (mid-gray area). The lake was classified as 

sea (clear-gray area). Some areas of the park were classified as 

forest (grid area). The two city-like spots to the bottom right 

were classified as such (mid-gray area). Finally, the river at right 

had some correctly classified areas and a considerable portion 

was not classified (“null mask”). 

 

 

 
 

(a) Original 

Image 

 

(b) Classified 

Image 

 

Figure 10.  Block Classification of a City Mixed Region 

 

 

 
 

(a) Original 

Image 

 

(b) Classified 

Image 

 

Figure 11.  Block Classification of a City and Sea Mixed Region 

 

Figure 11 illustrates a coast city image with two regions (city and 

sea). In Figure 11(b), the majority of the city portion was 

correctly classified (mid-gray area), although there were some 

misclassifications. The sea region was correctly classified. The 

empty area in the upper left corner does not belong to any of the 

considered region types. The classifier associated it with sea and 

forest type regions. 
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6. DISCUSSION 

The experimental results indicate that our rotation-invariant 

features describe robustly the texture information, even for 

rotated samples. Moreover, the inclusion of fuzzy logic provides 

a good platform for orthoimage classification. 

 

The complete image correct classification percentages for the 

rotation-invariant approach (100%) and classical approach 

(25.25%) show clearly that our descriptors greatly enhance the 

performance for classifying rotated images. 

 

The rotation-invariant features offer another advantage: it is 

possible to use a smaller training database. This is evidenced by 

the fact that our proposal coped much better with the unseen 

textures than the system based on the classic co-occurrence 

matrix. Our approach conserved the block correct classification 

percentages of the non-rotated and rotated images nearly 

identical (around 85.2%). In order to achieve a similar 

performance, the classic system would need extra training data 

with all possible rotation angles. 

 

The block classification results show that it is possible to 

segment an orthoimage in the three regions using the proposed 

rotation-invariant classification.  

 

We used images obtained from two sources: Google Maps and 

Microsoft Bing Maps. As a consequence, we built a system that 

correctly classifies orthoimages derived from aerial images 

captured by different devices. We achieved our results using only 

texture information derived from a single grayscale channel.  

 

 

7. CONCLUSIONS 

In this work, we proposed rotation-invariant texture features 

based on co-occurrence matrix and used them to classify 

orthoimages according to the land use. We proposed to use a 

fuzzy expert system. We tested our scheme in an image database 

and obtained a correct classification of 100%, while a similar 

system using classic co-occurrence matrix yielded only 25.25% 

of correct classification.  

 

Our system proved to be robust to images containing small 

regions that do not belong to the predominant land type. The 

results demonstrate that our model offers a reliable rotation-

invariant orthoimage region classification. This was achieved by 

using only grayscale texture information.  

 

As future work, the rotation-invariant texture features could be 

calculated from the various bands of multispectral images. 
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