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Abstract— Speaker identification is concerned with the selec-
tion of one speaker within a set of enrolled members and in this
work the experiments were performed using a text-independent
cohort Gaussian mixture model (GMM) speaker identification
system. In order to perform the tests, TIMIT speech database
is used and its corresponding version corrupted by a noisy
telephone channel, i.e., NTIMIT. The vocal tract is represented
by Mel-frequency cepstral coefficients (MFCC) with filter banks
(FB) or, alternatively, by linear prediction cepstral coefficients
(LPCC). Additionally, the cepstral mean subtraction (CMS)
technique is applied to minimize the intrinsic channel distortion
when the NTIMIT database is used. The utterance component for
which the MFCC are calculated is obtained using a voice activity
detector (VAD). However, the VADs are generally sensitive to the
signal-to-noise ratio (SNR) of the utterance, being necessary to
adapt them to the system operating conditions. It is provided by
the proposed integration into the VAD of an SNR estimator which
is based on Minima Controlled Recursive Average (MCRA), so
that is necessary in order to handle both clean and noisy speech.
It is observed that in high SNR utterances, such as those from
the TIMIT database, the more appropriate extraction method
for the MFCC was the baseline one consisting of FB, while for
noisy speech the technique of CMS coupled with the extraction
of MFCC from LPCC provided best results.

Index Terms— Speaker identification, Gaussian mixture model,
mel cepstral coeffcient, Minima Controlled Recursive Averaging.

1. INTRODUCTION

A GMM speaker identification system [3] has two main two
components. One is the training phase where speaker models
are estimated and the other one is the identification phase
where the most compatible model for an utterance input to
the system is selected. The speech signal before being input
to the identification system goes through to a preprocessing [4]
stage. The MFCC algorithm is selected according to the SNR
of the speech signal directly as this improves the performance
of the identification system, so that clean and noisy speech
may be used from NTIMIT or TIMIT databases to highlight
the most appropriate technique of MFCC extraction. The clean
component of the speech signal, from which the MFCC are
obtained, is extracted with the use of a VAD. The VAD are
generally sensitive to the SNR level of the utterance, being
necessary to adapt them to conditions of operation of the
system. This is handled by a noise estimator based on the
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method of MCRA [2] which is integrated into the VAD,
thus allowing the use of clean and noisy speech. This paper
is organized as follows. In section II signal preprocessing
is described. Section III presents the simulation framework.
Section IV presents the results as well as the experimental
conditions. Section V concludes the paper.

II. PREPROCESSING

An utterance x(n) is modeled as a time-varying excitation
e(n) filtered by a short-time-varying filter h(n) that can be
considered stable over a period of typically around 10-30 ms
[5]. This short-time stationary behavior can be exploited di-
viding the speech signal into frames and serves to characterize
the vocal tract configuration given by h(n) in Equation (1),
which allows each speaker to be exclusively identified.

z(n) = e(n) x h(n) (D

In the preprocessing stage the speech signal undergoes
pre-emphasis, segmentation, windowing and voice activity
detection, as shown in Figure 1. The characterization of the
filters h(n) is made from each of the frames y(m, ) extracted
from the speech signal, where m corresponds to the sample
index and [ to the frame number.
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Fig. 1. Utterance preprocessing

A. Voice Activity Detector

The signal z(n) = d(n)+&(n) is composed of uncorrelated
additive noise d(n) and the speech signal #(n). The noise
d(n) must be discarded by the VAD since it impairs the per-
formance of the identification system. The VAD is calibrated
according to the quality of the signal, in order to maintain its
effectiveness in situations where there are changes in the SNR
of the speech signal. To overcome this limitation, allowing the
use of TIMIT and NTIMIT databases, the MCRA method was
adopted. It estimates the speech presence observing the ratio
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between the local energy of the noisy speech and its minimum
within a specified time window and this method is formulated
below.

In Equation (2), Y (k,1) is the short-time Fourier transform
of y(m,1), the frame output by the preprocessing phase, and
b(i) is a Hanning window of length 3. It is observed that
S¢(k,l) is a smoothed version of the energy spectrum of
Y (k,1) around frequency k.

Sp(k,0) = > b)Y (k—i,D)

i=—1

2

In Equation (3), the spectrum S(k,l) at each frame is a
complementary linear combination between S(k,! — 1) and
S¢(k,1). The maximum value of the parameter o is 0.9 and
it is chosen to be greater than 0.6 to reduce the influence
of S¢(k,l) in the composition of S(k,!). This choice allows
S(k,1) to adapt gradually to S¢(k, 1) without displaying sharp
peaks.

S(k,1) = aS(k, 1 — 1) + (1 — s) Sy (K, 1) 3)

In Equation (4), the minimum value of S(k,1) is found over
the past D frames obtained in the preprocessing stage. This
minimum value Sy, (k,[) stores the smoothed noise energy
for a given frequency around the frame [.

Spmin(k,1) = arg min S(k,l—n) 4)

In Equation (5), the integrated log spectrum normalized with
respect to Sy,ip is computed in the frequency band from F, ;)
through F,., where the speech energy is concentrated. This
operation ensures that the value of Sy, (I) rises in presence
of clean speech in a similar way irrespective of the utterance
quality.

N2
g S(k,1)
Sml) = N1 71 kgl ogg D) ®
N1= %M (6)
N2 = Fmen gy w

In Figure 2 the evolution of S,,(l) is displayed for cor-
responding phrases in TIMIT and NTIMIT databases. The
speech presence is detected in frames where S, (1) exceeds the
threshold & represented by the horizontal line. It is observed
that the value of § must be experimentally calibrated and its
value is independent of the frame length due to the frequency
averaging in Equation (5). The calibration process consist of
rebuilding the utterance from the frames that already passed
through the VAD and whose value of S,,(l) exceeds d. The
noise frames are replaced by null frames in the rebuilding
process. When a good acoustic quality is reached for the
reconstructed signal, the corresponding minimum value of the
average log spectrum is assigned to J.
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After an initial period of stabilization, a strong correlation
has been observed between frames marked for speech presence
for signals extracted from either database. This is a confirma-
tion of the effectiveness of the method.
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Fig. 2. VAD result with MCRA for TIMIT and NTIMIT databases

III. SYSTEM FRAMEWORK

The system employed in the simulations consists of a mo-
dule for preprocessing, extraction of the MFCC, identification
and training. The MFCC are extracted from FB or LPCC [4]
in accordance with the choice made by the user of the system
as shown in Figure 3.

User choice
-~ © B
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" Pre-processing

LPCC Y MECC
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Train « Yes(::ff < ~ APPLY
. SMC? _~
Speaker *— v
chosen * Identify SMC
Fig. 3. System Framework diagram

A. MFCC derivation from FB

In the derivation of MFCC the filter bank proposed by
Slaney [6] was used which provides a better speaker dis-
crimination [8]. As can be seen in Figure 4, this filter bank
is composed of 40 filters whose center frequencies for the
first 13 filters are linearly spaced while the other 27 ones are
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logarithmically spaced. The frequency scales for these filters
are represented by Equations (8) and (9) respectively.

Einear =133.33 + 66.662
Fioy = 1000(1.0711703)(19)

1<i<13 (8
14<i<27 (9
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Fig. 4. Spectrum of Slaney filter bank

B. MFCC derivation from LPCC

The technique of linear prediction consists of estimating the
current value of a signal s(n) from its previous P samples. The
prediction coefficients a(¢) in Equation (10) are computed [7]
where R(m) is the autocorrelation function of the signal s(n).

R(0) RP—-1)7 [ a(l) R(1)
R(1) RP-2) || a@ | _| RO
R(P 1) R(0) a(P) R(P)
(10)

The autocorrelation function R(m) is given by Equation
(11) where M represents the length of frame obtained in the
preprocessing phase.

M—-—m—1
Rm)= > sm)sn+m) m=0,1,....,P (1)
n=0

As can be seen, the linear system represented by Equation
(10) presents Toeplitz simmetry and, therefore, can be solved
using the Durbin algorithm [10] described by Equations (12)
to (14).
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E© = R(0) (12)
R(i) - Y o R(ji— j
by = () ZHJ (li =4l l<i<Pp 13
Ez—l
For j=1,...,i—1 (14)
Ozz ki

J J i—j

B = (1 k2B

Equations 13 and 14 are iterated for increasing prediction
order 1 <4 < P. Finally, the linear prediction coefficients are
obtained at prediction order P as Equation (15).

For 1=1,...,P a(l) = of (15)

The LPCC given by a@(? (m) are computed by the algorithm
in Equations (16) where the constants C' and P correspond res-
pectively to the number of cepstral coefficients and prediction
coefficients defined in Table I.

For i=—-P,...,—2,—1, 6(i)(m) is equals to: (16)

a(=i) + .= (0) "=
(1—a2)a = (0) + a1 (1) m=1
a"P(m—1) +a@ " (m)-a(m-1) m=2,..,C

After that, the normalized coefficients a(k) are determined
through Equation (17).

- a® (k)
"0

The MFCC represented by ¢(m) is given in Equation (18).

1<k<C (17)

) =am) + S
k=1

¢kyaim—-%k m=1,...,C (18)

3=

IV. RESULTS AND EXPERIMENTAL CONDITIONS

The TIMIT and NTIMIT databases are formed by 8 dialect
region directories identified as DRI, DR2, ..., DRS and these
directories store speech signals sampled at a rate of 16 kHz.

The simulations were performed to investigate the effect
of noise on the performance of the identification system in
accordance with the method for MFCC derivation. In the
simulations involving noisy speech the CMS technique [9] was
applied to reduce the effect of telephone channel interference.
The constants adopted in the framework tests given by Figure
3, as well the Equations where they were initially used are
reported in Table 1.
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TABLE I
CONSTANTS OF SIMULATION

constant | value | equation

Qs 0.8 3

D 120 4
Foin 500 6
Fraz 3400 7
Fs 16000 6

P 14 10

M 256 11

C 23 16

In Table II the performance is shown for the identification
system using DR1 directory. The DR1 directory contains
sentences uttered by 22 different speakers, from which models
with 24 mixtures were trained using 23 MFCCs. The average
signal was 23 s long to be trained and 5.5 s long to undergo
the identification tests.

TABLE 11
PERFORMANCE OF THE IDENTIFICATION SYSTEM

MFCC from | MFCC from
database filter bank LPCC
TIMIT 100 % 95%

NTIMIT+CMS 68 % 86%

It is worth noting that similar results are achieved when
using speech sentences from other directories, i.e., the system
offers better performance for signals with high SNR from the
TIMIT database when the MFCCs are derived from FB. For
signals from the NTIMIT database with lower SNRs, it is
observed that the best MFCC are obtained by linear prediction.

V. FINAL COMMENTS

In this work a framework for the construction of a GMM
identification system has been proposed. With the use of the
MCRA method integrated into the VAD it has become possible
to employ signals with different SNR characteristics, like those
from TIMIT and NTIMIT databases, with no need to make
adjustments to the identifying and training system to tailor
them to the speech signal quality.

The framework was proposed in a modular fashion, as can
be seen in Figure 3, so that it is possible to expand it with the
inclusion of new techniques for characterization of the vocal
tract.

It was observed by the results shown in table II that the
systems whose input signals have high SNR exhibit better
performance when the MFCC are derived from FB. For poorer
quality signals, such as those from the NTIMIT database, it
was found that the derivation of MFCC from LPCC is the
better one.

Therefore, the choice of extraction method for obtaining the
MFCCs in an identification system based on GMM depends on
the observation of the speech quality to guarantee its maximum
performance.
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