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Image-based granulometry measures the size distribution of ob-

jects in an image of granular material. Usually, algorithms based 

on mathematical morphology or edge detection are used for this 

task. We propose an entirely new approach, using cross correla-

tions with kernels of different shapes and sizes. We use pyramidal 

structure to accelerate the multi-scale searching. The local maxima 

of cross correlations are the primary candidates for the centers of 

the objects. These candidate objects are filtered using criteria based 

on their correlations and intersection areas with other objects. Our 

technique spatially localizes each object with its shape, size and ro-

tation angle. This allows us to measure many different statistics 

(besides the traditional objects size distribution) e.g. the shape and 

spatial distribution of the objects. Experiments show that the new 

algorithm is greatly robust to noise and can detect even very faint 

and noisy objects. We use the new algorithm to extract quantitative 

structural characteristics of Scanning Electron Microscopy (SEM) 

images of porous silicon layer. The new algorithm computes the 

size, shape and spatial distribution of the pores. We relate these 

quantitative results to the fabrication process and discuss the rec-

tangle porous silicon formation mechanism. The new algorithm is 

a reliable tool for the SEM image processing. 

INTRODUCTION 

Granulometry is the process of measuring the size distribution of different ob-

jects/grains in a granular material. The size distribution is the histogram of objects as 

function of radius, also known as granulometric curve or pattern spectrum. Granulometry 

can be based on the analysis of an image or based on some other physical property, such 

as magnetism [1] or laser scattering [2]. In this paper, we will deal only with the digital 

image-based granulometries. There are two main groups of image-based granulometries 

in the literature:  

(1) Mathematical morphology-based algorithms;  

(2) Edge detection-based algorithms.  

Morphology granulometry for binary images obtains the pattern spectrum of an im-

age without explicitly segmenting it. It can be illustrated by sieving. In sieving, the 

granular sample passes through a series of sieves with decreasing hole sizes. As a conse-

quence, grains in the sample are separated according to their sizes. The operation of pass-

ing the sample through a sieve of a certain size is described in morphology as an image 



operator that returns the subsets of the image smaller than a specified size. Matheron has 

first proposed the morphology granulometry [3]. Dougherty et al. present a popular mor-

phology granulometry for binary images [4]. Raimundo et al. used this algorithm to char-

acterize porous material [5]. This algorithm can compute the size distribution, but it can-

not compute the distribution of grains/objects by shape or orientation. Moreover, this 

algorithm is highly sensitive to noise: one single pixel inside grain/object with wrong 

color leads to a completely wrong size estimation of that grain/object.  

Morphology-based granulometry for binary images can be extended to grayscale im-

ages using grayscale morphological operators. Vincent [6] presents an algorithm to accel-

erate grayscale morphology granulometry. A demonstration program of grayscale mor-

phology granulometry with source code is available at [7]. Unfortunately, the output of 

grayscale morphology granulometry is highly non-intuitive, making its use difficult in 

practice. It represents the size distribution as the “sum of pixel values in opened image as 

a function of radius.” Like its binary version, the grayscale morphology granulometry is 

unable to detect the shape, rotation angle and spatial localization of each grain/object. It 

is also highly sensitive to noise (especially to impulsive noise). 

Morphology granulometry assumes implicitly that every pixel inside object/grain is 

darker (or brighter) than the surrounding background. In some applications, this assump-

tion does not hold. In this case, granulometry based on object/grain boundary detection 

may be used. According to Maerz et al. [8], mining companies can use boundary-based 

granulometry to quantify the size of rock fragments and forestry companies can use it to 

measure the wood chip sizes. However, there are only few papers on the boundary-based 

granulometry in the literature and they present only overview of the technique. This 

seems to indicate that boundary-based granulometries depend on ad hoc implementations 

using many heuristics. Maerz et al. [8] present a boundary-based granulometry that de-

tects the edges of the objects using conventional gradient operators and thresholding. 

Then, it delimitates the objects using the edges. Edge-detection is a noise-sensible opera-

tion and may not be reliable in noisy or blurred images. In many applications, ob-

jects/grains (such as rock fragment or wood chip) may present internal edges that can be 

erroneously taken as object boundaries. Also, some object/grain boundaries may not be 

clearly visible in the image. So, to use this technique, special lighting and careful imaging 

may be necessary to obtain good results.  

This paper presents a new approach for the granulometry, based on cross correlations. 

In other words, our technique is based on template matching, a technique used in image 

processing for finding small parts of a search image that match a template image [9, 10]. 

One of the authors of this paper has recently proposed two fast rotation and scale-

invariant template matching techniques [11, 12]. Unfortunately, these techniques are not 

adequate for finding very simple and small shapes that may appear faintly in the image. 

In granulometry, we are highly concerned with the accuracy, and not deeply concerned 

with the computer performance. So, we use a simple idea that is not adequate for real-

time applications but yields high accuracy: compute the correlations with kernels that 

represent all the shapes, eccentricities, orientations and sizes. Our technique is appropri-

ate for applications where an object/grain has darker (or brighter) average grayscale than 

the average background grayscale. This is a requirement much easier to fulfill in practice 

than the requirement of morphology granulometries (every pixel inside object/grain must 

be darker than the background). Unlike the morphology granulometry, our algorithm spa-

tially localizes each individual grain/object with its shape, size and rotation angle, provid-

ing much more information than morphology granulometries. Experiments show that the 



new algorithm is greatly robust to noise and can detect even very faint, noisy and partial-

ly intersecting objects. In order to obtain scale-invariance with low computational cost, 

we use pyramidal structure. We have implemented the proposed algorithm in C++ using 

OpenCV image processing library.  

We use the proposed technique to compute the quantitative structural characteristics 

of the porous silicon layer applied to Scanning Electron Microscopy (SEM) images. The-

se results allow us analyzing the square pores formation correlated to thermal annealing 

process of the silicon wafer that was metalized previously to the anodization process. The 

new algorithm is a reliable tool for the SEM image processing. 

Recently, mathematical morphology-based granulometry has been used to analyze 

3D images, most of them obtained using X-ray tomography or focused ion beam tomog-

raphy [13-15]. We think that the fundamental ideas presented in our paper can be applied 

to 3D images. However, the implementation details must be adapted to each particular 

application.   

 

 

CORRELATION-BASED GRANULOMETRY 

Cross Correlation and Correlation Coefficient 

The discrete cross correlation between two real-valued images T and A is defined by 

expression: 
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In practice, images are defined only inside a rectangular domain. An image is considered 

to be filled with zeros outside of its domain. Cross correlation can be efficiently comput-

ed using FFT (Fast Fourier Transform). In our case, we will use cross correlation to find a 

(usually small) template image T inside a (usually large) image to analyze A, an operation 

known as template matching. Let t be the vector obtained by copying the pixel values of 

T and let a(x,y) be the vector obtained by copying the pixel values of A inside the domain 

of T translated to pixel (x,y). With these definitions, the cross correlation can be rewritten 

as: 

 ),(),(corr yxatyxR ⋅=  (2) 

where “ ⋅ ” is the dot product (also known as scalar product). To use cross correlation for 

template matching, a small modification must be introduced in the cross correlation, 

yielding the mean-corrected cross correlation: 
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where ttt −=~
 is the mean-corrected vector obtained by subtracting the mean grayscale 

t  from each element of vector t. The peaks of image mccR  correspond to the occurrences 

of T in A.  

Template matching using mean-corrected cross correlation is brightness-independent 

but contrast-dependent. That is, if many instances of T with different contrasts occur in A, 

the instances with large contrasts will correspond to the high peaks in Rmcc. The mean 

value (brightness) of the instances does not change the values in Rmcc. For image pro-



cessing or computer vision applications where the brightness/contrast of the images can 

vary due to illumination and exposure conditions, contrast-dependency is an undesirable 

property. So, to obtain brightness/contrast-invariance, the normalized cross correlation 

(or normalized correlation coefficient) is usually applied instead [10]:  
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where .  is the length of the argument vector, that is, ttt
~~~ ⋅= . However, in our 

application, the contrast-dependency of the mean-corrected cross correlation allows us to 

distinguish clear objects (a high contrast instance in A yields high peak in Rmcc) from faint 

objects (a low contrast instance in A yields so low peak in Rmcc). An appropriate value to 

threshold image Rmcc allows us detecting only the clear objects (high threshold) or even 

faint low-contrast objects (low threshold). Consequently, we will use the non-normalized 

cross correlation with mean-corrected templates. 

Correlation-Based Granulometry with Circular Kernels 

To obtain the pattern spectrum of an image A of granular material with only circle-

shaped grains/objects, we propose to compute cross-correlations of A with circular ker-

nels of different radii T1, T2, ..., Tn (the leftmost column of figure 1). The sizes of the ker-

nels increase in geometric progression. We have noticed experimentally that 5 kernels per 

octave are enough to obtain scale-invariance. The radii ri and Ri of inner and outer circles 

are chosen to satisfy 2ii rR ≅ . This makes the number of black pixels (that correspond 

to the negative values) nearly equal to the number of white ones (that correspond to the 

positive values). Gray pixels are zeros. In each kernel the sum of all negative pixels 

is -0.5 and the sum of all positive pixels is +0.5. So, if the grayscale of the image A rang-

es (for example) from 0 to 1, the image resulting from the correlation will range from -1 

to +1. Let us denote the images resulting from the cross correlation between A and Ti as 

Ci, that is:  

 niyxAyxTyxC ii ≤≤= 1),,(),(),( o  (5) 

Note that, by construction, the template Ti is equal to the mean-corrected template iT
~

, so 

the cross correlation is equal to the mean-corrected cross correlation. Let us define the 

maximal correlation image as: 
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A pixel (x, y) is a peak in C if it is greater than or equal to its eight spatial neighbor pixels. 

Each peak ),( yxC  corresponds to an approximately circular object/grain in A. The scale 

of the detected object is given by the argument of the maximal correlation: 
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The radius of the object at (x, y) is the radius of the corresponding kernel ),( yxGT . Usually, 

this process detects many non-existing grains together with the real objects. We filter out 

the false objects using two parameters chosen by the user: 

The first parameter τ (0≤τ≤1) is the correlation threshold parameter. The peaks with 

correlations smaller than τ are discarded. This parameter must be set iteratively by the 



user, because there is no way for the computer to decide if a faint object is to be discard-

ed or not. 

The second parameter γ (0≤γ≤1) controls the allowed amount of intersection between 

the grains. If γ=0, the grains cannot intersect each other in the slightest. If γ=1, a grain 

can lie completely inside another grain. Our algorithm sorts and scans the correlation 

peaks in decreasing correlation order, discarding an object at pixel p1 with radius r1 and 

correlation c1 if there is some other object at pixel p2 with radius r2 and correlation c2, 

satisfying:  
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Figure 2 depicts the outputs of our algorithm and compares it with the outputs of 

thresholding (the usual preliminary step of binary morphology-based granulometry) and 

Canny edge detection (the usual preliminary step of edge-based granulometry). In figure 

2a, there are 21 pores that do not intersect with the image canvas, where 18 of them are 

clearly visible and 3 are faintly visible. Our algorithm successfully detected all the 21 

pores or only the 18 clearly visible ones, depending on the chosen threshold τ. It is not 

possible to detect all the pores after the thresholding (figures 2d and 2e), because if the 

faint pores become visible (threshold=70) then the clear pores get merged. Similarly, it is 

not possible to detect the pores after edge detection (figures 2f and 2g) because edge de-

tector fails to clearly delimit all the pores. Moreover, the algorithm yielded double edges, 

due to the characteristics of the SEM images. Figure 3 illustrates the ability of our algo-

rithm to detect intersecting pores. 

This algorithm can also be used to detect circule-like objects, like equilateral trian-

gles, squares, pentagons and hexagons (although it was not primarily designed for this 

task). After detecting the objects, other techniques can be used to classify their shapes. 

However, this algorithm is not appropriate to detect, for example, ellipse or rectangle 

with high eccentricity. In these cases, this algorithm will likely detect ellipse or rectangle 

as two or more circles.   

Correlation-Based Granulometry with Multi-Shaped Kernels 

In this subsection, we extend our circular-kernel granulometry to detect also non-

circular grains (besides the circular ones). As examples, figures 4, 5, 6 and 7 depict po-

rous silicon materials with circular and rectangular pores. We want to count each pore 

together with its shape, eccentricity, size and orientation. A rotation and scale-invariant 

template matching would be a perfect technique to solve this problem [11-12, 16]. Unfor-

tunately, these techniques are not adequate to find very simple and small shapes that may 

appear faintly in the image. In granulometry, we are highly concerned with the accuracy, 

and not deeply concerned with the computer performance. There is no problem if the 

computer takes, say, one minute to analyze an image. So, we propose to use the most 

simple but highly accurate idea: compute the correlations with kernels that represent all 

the shapes, eccentricities, orientations and sizes (figure 1). Even using this simple idea, 

the extension of the granulometry to non-circular kernels is not as straightforward as it 

may seem at the first sight, because there are some subtleties. 

The first subtlety is that the adequate correlation threshold τ may be different for dif-

ferent shapes. Indeed, we had to use two different threshold values to process the image 



in figure 4: a small value for the circles (to detect faint circles) and a large value for the 

rectangles (to not detect false faint rectangles, because all rectangle pores have high con-

trast). This leads to the necessity of making an unsuspected modification in the algorithm. 

The second subtlety is how to compute the intersection between different shapes. In the 

last subsection, we estimated the intersection between circles using the distance between 

their centers. Clearly, this approach cannot be used for non-circular shapes and this leads 

to another unsuspected difficulty. 

Let us say that our application has m shapes with m different correlation threshold 

values iτ , mi ≤≤1 . Our granulometry computes cross-correlations of A with all kernels 
i
jT  with shape i and index j within the shape. Let us denote the images resulting from the 

cross correlation between A and i
jT   as i

jC :  

 ii
j
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Let us define the maximal correlation image as: 
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Surprisingly, we miss many objects if we detect the peaks in the maximal correlation 

image C. Figure 4a depicts the pores detected using this strategy. Compare it with figure 

4b obtained using our ultimate algorithm with the same parameters. Some important cir-

cles are missing in figure 4a because we are using a small correlation threshold τc for the 

circles and a large threshold τr for the rectangles. It may happen that a false rectangle 

with correlation cr is located in the neighborhood of a faint real circle with correlation cc, 

with cr cc > . Suppose also that rrc τ<  and ccc τ> . In this case, the rectangle must be 

discarded and the circle must be detected. However, the circle will not be detected as a 

peak because there is another higher peak in its neighborhood. To avoid this problem, we 

suggest computing a maximal correlation image for each shape: 
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A pixel (x,y) is a peak in iC  if it is greater than or equal to its eight spatial neighbor pix-

els. Each peak ),( yxC i  corresponds to an object/grain of shape i in A. The scale, eccen-

tricity and the orientation of the detected object is given by the kernel with shape i and 

index ),( yxG i : 
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The set V of all peaks in A is the union of peaks detected for each shape. 

As before, this process detects many non-existing objects together with the real ones. 

It is very easy to filter out faint objects in V characterized by low peaks with correlation 

smaller than iτ . However, it is not so easy to filter out objects in V that have large inter-

sections with other objects. In multi-shape granulometry where the sizes of objects can 

vary greatly a simple definition like equation (8) cannot be used. We had to use a more 

elaborated definition. Our algorithm discards from V an object i
jO  with shape i and corre-

lation i
jc  in two cases: 



(1) If the set of all the objects in V with correlations greater than i
jc  hides more than 

iγ  of the area of i
jO : 
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where )( i
jcW   is the set of all objects in V with correlation greater than i

jc . 

 (2) If there is an object 
k
lO  in V with shape k and correlation 

k
lc  such that: 
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Computationally, we measure the area of an object by drawing it in a temporary im-

age and counting the number of pixels. Similarly, we count the intersection between two 

or more objects by drawing them in a temporary image and counting the number of inter-

secting pixels. For the sake of simplicity, we will not describe the function that filters the 

peaks in V in a pseudo computer language. We only note that the key structure for the fast 

implementation of equations (13) and (14) is a matrix I (of the same size as the original 

image A) where each element I(x, y) is a list of objects of V that intersect that pixel.  

Pyramid Structure 

Some very small kernels may not have a precisely defined shape: it may be impossi-

ble to say if a very small kernel is a circle or a rotated square. For this reason, we assume 

that all small pores are circular when analyzing porous silicon SEM images. On the other 

hand, medium-sized pores have definite shapes. The user must be aware that very small 

grains/objects can be correctly detected but their shapes may be undetermined. 

For finding large objects, it is computationally more efficient to reduce the size of 

both kernel and image A and to find the reduced kernel in the reduced A. However, the 

size reduction should not be too much to generate imprecise or ambiguous kernels. 

For finding objects/grains that can greatly vary its size, we use pyramid structure. 

We construct a pyramid for image A, where the basis (or the 0-th floor) is the original 
image A with scale 1, the first floor is the image A at scale 0.5 and n-th floor is the image 

A at scale 2-n. If we find, say, a circle with diameter d at the first floor of the pyramid 

(scale 0.5), actually there is a circle with diameter 2d in the basis. 

Implementations 

We wrote two C++ programs named Granul (for circular shapes only granulometry) 

and MGranul (for granulometry with multiple shapes). The two programs with executa-

ble and source files are available in our web site
1
. 

Program Granul contains the proposed granulometry for the circular shapes and 

some ad hoc adaptations to analyze images of macroporous silicon layers with circular 

and rectangular pores. This program consists of four sub-programs: 

                                                 
1
 www.lps.usp.br/~hae/granul 



1. Corrcirc: Implements the proposed correlation-based granulometry to detect cir-

cular pores. This program also detects correctly the square pores, even it was not 

especially programmed for this task. 

2. Classify: Classifies automatically the detected pores in circle or square, based on 

the size of the pore and on the “influence zone”, that is, the pore’s neighbor area 
where there is no other pore.  

3. Edit: Allows to rectify manually eventual errors made by the automatic detection 

and classification. 

4. Relat: Computes the area of square pores by the seed growing algorithm and gen-

erates the pattern spectrum. 

Program MGranul is the implementation of the proposed multi-shape granulometry. 

It contains many sub-programs, where the most important are: 

1. Correla: Computes the local maxima of the correlations with multi-shaped kernels. 

This program takes about 50s to process a 710x420 image with 600 kernels in a 

2GHz computer. Until now, we have implemented circle, ellipsis, square and rec-

tangle, but other shapes can be easily added. 

2. Filtra: Filters the local maxima computed by the previous sub-program using the 

parameters τi and γi defined by the user. This program takes less than 1s, so the 
user can try different parameters and verify if all pores were correctly detected, 

without waiting too long.   

ANALYZING POROUS SILICON WITH THE PROPOSED ALGORITHM 

Porous Silicon Fabrication 

The macroporous silicon layers [17] with circular and square pores were obtained by 

electrochemical anodization process of (100) p-type silicon wafer with resistivity of c.a. 

10 Ωcm. The anodization process was carried out in the single electrochemical cell using 

HF (48%): DMF mixture where HF corresponds to 12% of total volume of the solution. 

The cell was anodically polarized at galvanostatic condition fixing the current density at 

12 mA/cm
2
 for 20 minutes [18]. The porous silicon structure depends strongly on the 

previous metallization process of silicon wafer with Al metal. So, we obtained three sets 

of porous silicon samples. The samples of the first set were obtained after silicon wafer 

backside metallization and annealing at different temperatures (Fig. 5). The samples of 

the second set were obtained after backside and front side metallization and annealing at 

different temperatures (Fig. 6). The samples of the third set were obtained after front side 

metallization and annealing at different temperatures (Fig. 7).  

After Al metallization, all annealing processes were made in N2 environment. The 

porous silicon obtained metalizing the front side before the anodization process present 

circular and square pores (Figs. 6 and 7). The density of square pores is important for 

silicon macrotubes formation. So, in the present work we analyze the images obtained by 

Scanning Electron Microscopy (SEM) in order to control the experimental parameters for 

adequate macroporous silicon layer formation. The images were obtained using 

NanoSem 400 microscopy and electron beams from 10 to 30 kV with the secondary elec-

tron imaging mode. 

Image Processing Results 



The SEM images of macroporous silicon layers annealed for different times are de-

picted in Figures 5 to 7. These images reveal that the distributions of square and circular 

pores depend on the thermal annealing process. We applied the proposed algorithm to 

obtain the quantitative data of the pores structural features. 

Figure 8 depicts the histogram of circular pores of samples that were obtained with 

and without Al metallization at back-side surface of silicon wafer. The sample obtained 

without metallization shows pores with area between 0.7 and 1.5 µm
2
 and the area of the 

predominant pores is 1 µm
2
. Samples with Al metalized back-side and annealed for 0.5 or 

1.5 hours show pores with area between 0.7 and 1.0 µm
2
 and the area of the predominant 

pores is 0.7 µm
2
. The pores in the sample without metallization have the largest area, so 

the porosity of this sample is the highest and the pores of this sample are the shallowest. 

In other words, samples that have pores with smaller areas have deeper pores. These re-

sults suggest that the depth propagation rate of the pores is higher in samples with Al 

metal film than in sample without metallization. Since the etching rate is proportional to 

the anodization current density, the back-side metallization of silicon wafer promote a 
local current density enhancement due to local electric field enhancement. This local field 

enhancement could be due to Al pitches formation [19-21] at silicon back-side region 

used for electrical contact in the electrochemical process.  

The other type of porous silicon structures were obtained after metallization of both 

front and back sides with Al (Figure 6). In these samples, the porous structures present 

circular and square pores. The size distribution and depth of pores depend on the thermal 

annealing process of metalized samples before anodization process. Figures 9(a) and (b) 

depict the histogram of circular and square pores distribution respectively as a function of 

annealing time. These Figures show that circular pores density decreases and square 

pores density increases as the annealing time increases. In these samples, the average area 
of circular pores is between 0.3 and 0.9 µm2 and the average area of square pores is be-

tween 0.9 and 1.7 µm2. As the annealing time increases, square pores with area of 0.9 

µm2 become predominant. 

The silicon microtubes (not shown in this work) are obtained from the porous silicon 

structure. The appropriate structures for this propose is one that has high density of both 

circular and square pores. The samples metalized in both surfaces present high square 

pores density but low circular pores density. The sample obtained without metallization 

shows many circular pores but no square pore (Figure 5). In order to obtain high density 

of both circular and square pores, we metalized only the front surface leaving the back 

side free for a direct external contact (Figure 7). Figure 10(a) depicts the histogram of 
circular pores of these samples. The circular pores distributions are similar for all samples 

and the area of the predominant pores is 0.48 µm
2
. Figure 10(b) shows the histograms of 

square pores. The samples annealed for one or two hours present low square pores densi-

ty with similar area distribution ranging from 0.48 to 12.86 µm
2
. The sample annealed for 

4 hours presents the highest square pores density and the area of the predominant square 

pores is 3.72 µm
2
. The square pore density decreases significantly in the sample annealed 

for 8 hours and the area of the predominant pores is 9.38 µm2.  

These quantitative results give us information to understand the mechanism of the 

square pores formation. The square pores are important for the silicon macrotubes for-

mation. The annealing time of Al metalized sample has increased the sheet resistance of 

silicon wafer (Figure 11) and this is well-correlated with the square pores density increas-

ing of samples annealed for 1 to 4 hours. However, in the sample annealed for 8 hours, in 



spite of the increased sheet resistance, the square pores density decreased. These results 

suggest that the sheet resistance of silicon surface defines the initial pitch distribution 

during anodization. Since the pitch formation depends on the electric field intensity, the 

field distribution at initial anodization stage depends on the sheet resistance. So, the ini-

tial pitches are originated from the breakdown-like process. In this sense, there is a criti-
cal annealing time when the square pores density begins to decrease. Since this critical 

field has high intensity, the area of pores increases consequently. Additionally, the long 

annealing time may have induced Al metal to cluster preferentially at some regions where 

the initial pitches have preferentially formed. 

The SEM images analysis by the proposed granulometry algorithm yielded quantita-

tive information of the pores size and their distribution in circular and square pores. The-

se results were important to understand the formation mechanism of square macropores.  

 

CONCLUSIONS 

The new correlation-based granulometry demonstrated to be an effective tool for 

SEM images processing, making it possible to analyze quantitatively the porous materials 

parameters such as pores radii, the size distribution and pores density. Additionally, the 

proposed granulometry allowed us to classify the pores as circular or square ones. The 

developed algorithm can contribute in the porous material research area, allowing rapid 

analysis of structures and rapid extraction of their geometric parameters. The proposed 

algorithm showed to be an excellent tool for discussing the square pores formation mech-

anism in silicon substrate by electrochemical anodization process. The results obtained 

indicate that the annealing time of the Al metalized silicon wafer before anodization pro-

cess is an important parameter for controlling the porous density and their sizes. The non-

metalized silicon wafer presented high circular pores density. When the porous silicon is 
obtained from surface metalized on both sides, the circular pores density decreases and 

the square pores density increases when the annealing time increases. The porous silicon 

structure with high density of both circular and square pores could be obtained using sili-

con wafer metalized only in the front side. This kind of porous structure has shown to be 

an excellent precursor substrate for silicon macrotubes formation. 
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Fig. 1: Some of the kernels used in our granulometry. Black pixels have negative values, 

white ones are positive, and gray ones are zeros. Correlation-based granulometry with 

circular kernels use only the kernels in the leftmost column. Multi-shape correlation-

based granulometry uses all the kernels. 

 

 

Image of porous 
material 

Correlation-based 
granulometry 

Thresholding Canny edge detector 

 
(a) A portion of the 

original SEM im-

age. 

 
(b) τ=0.01. 

 
(d) Threshold=70. 

 
(f) Threshold=100. 

 
(c) τ=0.15. 

 
(e) Threshold=90. 

 
(g) Threshold=140. 

Fig. 2: (a) A sub-image of a porous material image with 21 pores located entirely within 

the image (18 clear pores and 3 faint pores). (b-c) The output of our algorithm detecting 

all 21 pores or only 18 clear pores depending on the threshold value. (d-e) Thresholding 

with different parameters (thresholding is usually the first step of the binary morphology-

based granulometry). (f-g) Canny edge detector (edge detection is usually the first step of 
the edge-base granulometry).  

 

  



Fig. 3: Our correlation

 

(a) 

Fig. 4: A porous silicon material with circular and rectangular pores. 

correlation algorithm misses some pores if it detects peaks in the maximal correlation 

image C. (b) If the algorithm detects

pores. 

(a) 

Fig. 5: The SEM images of porous silicon structur

silicon wafer, (b) back-side

annealed for 1.5 hours. 

 

 
orrelation-based granulometry can detect even intersecting grains.

 

(b) 

A porous silicon material with circular and rectangular pores. (a) 

misses some pores if it detects peaks in the maximal correlation 

. (b) If the algorithm detects peaks separately for each shape, it does not miss 

 

  
(b) (c) 

The SEM images of porous silicon structures obtained from: (a) non

side metalized annealed for 0.5 hours and (c) back

 

try can detect even intersecting grains. 

 

(a) The multi-shape 

misses some pores if it detects peaks in the maximal correlation 

peaks separately for each shape, it does not miss 

 

es obtained from: (a) non-metalized 

and (c) back-side metalized 



 

(a) 

Fig. 6: The SEM images of porous silicon structures obtained from t

was metalized in both side

 

(a) 1 hour

(c) 4 hours

Fig. 7: The SEM images of porous silicon structures obtained from the silicon wafer me

alized only on the front side and after thermal annealing for (a) 1, (b) 2, (c) 4 and (d) 8 

hours. 

 

  
(b) (c) 

The SEM images of porous silicon structures obtained from the silicon wafer that 

both sides and annealed for (a) 0.5, (b) 1.5, and (c) 3.0 

 
(a) 1 hour (b) 2 hours

 
(c) 4 hours (d) 8 hours

The SEM images of porous silicon structures obtained from the silicon wafer me

n the front side and after thermal annealing for (a) 1, (b) 2, (c) 4 and (d) 8 

 

 

he silicon wafer that 

(c) 3.0 hours. 

 
(b) 2 hours 

 
(d) 8 hours 

The SEM images of porous silicon structures obtained from the silicon wafer met-

n the front side and after thermal annealing for (a) 1, (b) 2, (c) 4 and (d) 8 



 

Fig. 8: The histograms of circular pores obtained from the SEM images of Figu

metalized silicon wafer (NM)

hours. The inner labels describe the pores’ areas (in 

the histograms. The white bars represent the total numbers of circular pore

 

(a) 

Fig. 9: The histograms of circular (a) and square (b) pores obtained from the SEM images 

of Figure 6 (silicon wafer that was meta

ferent times. The inner labels describe the pores’ areas (in 

bar of the histograms. The white bars represent the total numbers of circular or square 

pores. 

 

 
The histograms of circular pores obtained from the SEM images of Figu

silicon wafer (NM) and back-side metalized (BM) annealed

. The inner labels describe the pores’ areas (in µm
2
) corresponding to each bar of 

the histograms. The white bars represent the total numbers of circular pore

 (b) 

The histograms of circular (a) and square (b) pores obtained from the SEM images 

silicon wafer that was metalized both front and back sides

ferent times. The inner labels describe the pores’ areas (in µm
2
) correspon

bar of the histograms. The white bars represent the total numbers of circular or square 

 

The histograms of circular pores obtained from the SEM images of Figure 5: non-

annealed for 0.5 and 1.5 

) corresponding to each bar of 

the histograms. The white bars represent the total numbers of circular pores. 

 
 

The histograms of circular (a) and square (b) pores obtained from the SEM images 

lized both front and back sides) annealed for dif-

) corresponding to each 

bar of the histograms. The white bars represent the total numbers of circular or square 



 

(a) 

Fig. 10: The histograms of circular (a) and square (b) pores obtained from the SEM i

ages of Figure 7 (metalized only on the front side

inner labels describe the pores’ areas (in 

grams. The white bars represent the total numbers of circular or square pores.

 

 

Fig. 11: The sheet resistance of the silicon wafer 

nealing time. The graph depicts also the thickness of porous silicon layers after 

anodization process. 
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 (b) 

The histograms of circular (a) and square (b) pores obtained from the SEM i

ized only on the front side) and annealed for different times. The 

inner labels describe the pores’ areas (in µm
2
) corresponding to each bar of the hist

grams. The white bars represent the total numbers of circular or square pores.

: The sheet resistance of the silicon wafer at the front surface as a function of a

nealing time. The graph depicts also the thickness of porous silicon layers after 
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